
MRIcroGL user guide 1 of 13

MRIcroGL manual
By Chris Rorden
Version 16 June 2017

1. Introduction
MRIcroGL is an intuitive viewer for medical images. This free and open source project

provides tools for 2D and 3D display of images.
MRIcroGL supports the Windows, OSX or Linux operating systems. However, it requires a

graphics card that supports volume rendering, with the appropriate driver installed.
Chris Rorden's MRIcroGL is distributed under the BSD software license. The license is as

follows: MRIcroGL, copyright 2009-2015, all rights reserved. Redistribution and use in binary forms,
with or without modification, is permitted provided inclusion of the copyright notice, this list of
conditions and the following disclaimer is provided with the distribution: Neither the name of the
copyright owner nor the name of this project (MRIcroGL) may be used to endorse or promote
products derived from this software without specific prior written permission. This software is
provided by the copyright holder "as is" and any express or implied warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright owner be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of substitute goods
or services; loss of use, data, or profits; or business interruption) however caused and on any theory
of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the possibility of such damage.

2. Quick start
Double-click on the MRIcroGL program to launch the application. MRIcroGL can view

NIfTI format images (these have the file extensions .hdr, .nii or .nii.gz). To view an image, simply
drag-and-drop the image onto the program. You can change between rendering and slice modes by
selecting the desired view from the “Display” menu (Figure 2.1).

Figure 2.1 An example of the mni152_2009bet image that is
distributed with MRIcroGL. On the left (back) is the 2D view,
while the right (top) panel shows the 3D rendered view.

MRIcroGL user guide 2 of 13

3. Adjusting color and transparency
Typical MRI scans and CT scans save data as a monochromatic intensity range. Crucially,

different tissue types have different image intensities. For example, bones appear bright on a CT scan
while soft tissue appears darker. Therefore, since different types of tissue have unique image
intensities, you can choose to make some tissues invisible (transparent) while revealing other types of
tissue. In addition, you can assign unique colors to specific image intensities, further helping to define
different types of material.

Figure 3.1 You can highlight different tissue using the ‘color and
transparency’ window. Both the top and bottom panels show the
abdo256 image. The top panel uses the Color/Scheme/Kidneys
command to hide the darker tissue, revealing the bones and
kidneys. In contrast, the bottom panel uses the
Color/Scheme/Muscles color mapping that shows the darker
tissue, so one cannot see beneath the muscles. Note that the top
panel has selected intensities between 114 and 302, while the lower
panel is adjusting values in the range –100..246. Within this
range the color schemes also differ in the colors used, with the top
scheme using oranges while the bottom scheme has predominantly
reds and yellows.

Note that the Color/Scheme menu allows you to select from several predefined color
schemes. For example, the top panel of Figure 3.1 shows the ‘CT_Kidneys’ color scheme, while the
lower panel shows the ‘CT_Muscles’ color scheme. However, you can also manually change the color
scheme. You can manually edit the intensity range you are interested in by adjusting the “Intensity
Minimum…Maximum” values shown in the upper left of the toolbar. For example, note that the
kidney color scheme is selecting a color range of 114..302 while the muscle color scheme includes
darker material (-100..246).

If you want to further customize the color scheme you can choose the Color/ColorEditor
menu item. A new histogram appears, as shown in Figure 3.1. Note that the color schemes are
composed of nodes. For example, the muscle color scheme has a node that makes some tissue
intensities to appear yellow. To change the color of a node, double click on the node. For example,
you could make this muscle node appear blue instead of yellow. You can also use the mouse to drag
the node to a new location. Dragging the node to the left or right will change the image intensity
selected by that node, while dragging the node up and down changes the transparency of the selected
image intensity. A sample video showing advanced usage of the colors is linked from
www.mccauslandcenter.sc.edu/mricrogl/tutorials.

4. Colorbars
An intensity colorbar is useful for recognizing the range of intensities displayed. Selecting

Color/Colorbar brings up a window that allows you to change the appearance of the colorbar. Note
that when viewing overlays, you will see one colorbar for each overlay image (e.g. see Figure 7.1).

Figure 4.1 An example of the mni152_2009 image with a colorbar visible
on the bottom. Clicking the colorbar changes its position on the screen.

MRIcroGL user guide 3 of 13

5. Clipping
As mentioned earlier, MRIcroGL can either show 3D renderings or 2D slices of an image.

However, the clipping tool allows the best of both worlds showing a 2D slice cut through a rendered
image. Further, while MRIcroGL’s 2D slices are always orthogonal planes (e.g. cut perpendicular to
the image, yielding sagittal, coronal or axial views), the clipping tool allows oblique cutting angles.

To see the clipping tool, open an image in the rendering mode (if you are in the 2D slices
mode select the Display/Render menu item). Adjust the ‘Depth’ slider to set the depth of the
clipping plane. Additional sliders allow you to specify the azimuth and elevation of the clipping plane.

Figure 5.1 An example of the mni152_2009 image with a clipping
plane applied. To see this view, drop the ‘clip.gls’ script onto
MRIcroGL.

6. Cutouts
The clipping option described in the previous section allows us to cleave off a 2D slice from

the image. The cutout option removes a 3D box from our image, allowing us to see inside. To see
the cutout tool, open an image in the rendering mode (if you are in the 2D slices mode, toggle the
View/2D menu item). There are six trackbars that adjust the position and size of the cutout. The top
two adjust the left-right position, the middle two adjust the anterior-posterior location, and the
bottom two adjust the superior-inferior dimension. A good place to start is to press the ‘nearest
sector’ button, which removes the chunk of the image facing you. This is useful, as now you can see
any changes made as you adjust the trackbars.

Figure 6.1 An example of a cutout applied to the
visible human image (from cutoutdemo2.gls).

7. Overlays
The overlay function allows you to superimpose images on top of your background image. A

common usage is to load statistical maps that show brain activity on top of anatomical scans. To add
an overlay, first open the overlay window, by choosing Overlays/AddOverlay. As shown in Figure
7.1, you can load multiple overlays and set a unique colorscheme and intensity range for each. You
can also use the Overlay/Transparency menus to control how opaque the overlays appear relative to
each other and to the background.

Figure 7.1 An example of the mni152_2009 image with the ‘motor’
statistical map loaded twice as overlays. In this example, we are showing
voxels with a brightness of more than 2 as Red and less than -3 as
Green. This is from the ‘overlay.gls’ script.

MRIcroGL user guide 4 of 13

The overlay menu has several menu commands that allow you to adjust how multiple
overlays interact with each other. You can interact with the Overlays spreadsheet in the Tool Panel to
select the color scheme and intensity. There are a couple of non-obvious commands: clicking on the
name of an overlay changes its order, so it can be either ‘above’ or ‘below’ another overlay. Shift or
right-clicking on the name makes the overlay invisible (and the name will appear in red) – shift or
right click again to show the overlay.

8. Mosaics
The mosaic function allows you to show multiple 2D slices at once. The easiest way to create

a mosaic is by using the mosaic designer form (though you can also use scripting). To see the mosaic
designer panel select the Desiplay/Mosaic menu. You can then set the number of rows and columns,
as well as the horizontal and vertical overlap. As you adjust these controls, you will see the selected
image as well as the corresponding script. You can edit the script and then press ‘Run script’ for
more control. For example, you could arbitrarily switch between axial, sagittal and coronal
orientation between rows.

Figure 8.1 A mosaic created from the
mni2009_152 image. Note that this mosaic shows
both axial and sagittal slices, and that the rows
and columns have been set to overlap a little. This
was created with the following script “A L+ H -
0.300 V -0.300 0.1667 0.3333 0.5000;0.6667
0.8333 L- X S 0.5”, as described in the scripting
section.

9. GLSL Shaders
MRIcroGL uses files called shaders to generate renderings. Whenever you are in the rendering mode
(Display/Render menu item) you will see a panel named “Shader” in the tool panel. You can use the
drop-down menu in this panel to select between different shaders, and the sliders on this panel to
adjust each shader. Each shader is simply a text file in a folder called ‘shaders’ (for OSX users, you
will have to select the application and choose ‘show package contents’ to see this folder). Power users
can edit the shader text files to create unique effects. The shader minimal.txt shows how a shader can
be created with less than 50 lines of code. Here are some useful hints:

• MRIcroGL chooses the initial default shader based on alphabetically sorted filenames. So if
you prefer the ‘simple.txt’ shader to ‘default.txt’, you could simply rename it ‘basic.txt’. This
might be a good idea if you have a slow computer, as the ‘simple’ shader renders faster than
the ‘default’ one.

• Most shader text files start with a ‘pref’ section that provides the user with adjustable values.
You can easily edit these to make the default shader settings more to your liking. For
example, the default.txt shader has a preference “specular|float|0.0|0.3|1” – which means
that the user will see a slider that allows them to adjust the amount of glistening from 0 to
100%, with a starting point of 30% (the first number is the minimum, the second is the
default, the third is the maximum). If you prefer more lighting hints, you could edit the
middle number, e.g. if you prefer a matter image you would set this to
“specular|float|0.0|0.0|1”

MRIcroGL user guide 5 of 13

• You can copy shader files and give each a different file name, this would allow you to set
custom preferences.

• You can adjust MRIcroGL’s ini file to set default shader settings (open the ‘About
MRIcroGL’ menu item and press “Abort” to open this file): RayCastQuality1to10 allows
you to choose the quality of raycasting from 1 (fast but poor quality) to 10 (slow but
excellent quality). Changing RayCastViewCenteredLight=0 will have the lighting specified
relative to the object, not the viewer.

Figure 10.1 GLSL shaders are compact
programs that can harness the capabilities of
your graphics card. To select and tune a
shader, choose Render/Shader to view the
shader form. The drop down list at the top of
the form allows you to select from the shader
plug-ins (in this case the 'phong' shader which
provides illumination cues). Some shaders will
provide additional user adjustable settings, for
example this shader has the 'specular'
trackbar that allows the user to interactively
adjust the glint of the final image. This image
is from the shader.gls demonstration scripts.

MRIcroGL user guide 6 of 13

Individual shaders work by combining different properties of the image. The table below shows a
few popular properties.
Property Example Notes
Volume

Brightness depends on image intensity.

Ambient
Light

Constant brightness, independent of all other factors.

Diffuse
Light

Illumination based on surface orientation with respect to light. Surfaces pointing
toward light are brighter than those facing away. (Lambertian reflection).

Specular
Light

Illumination based on reflection between light source and viewpoint. Emulates
glossy, reflective material. Includes additional adjustment ‘shininess’: mirrors have
small intense specular highlights, while duller surfaces have larger highlights

Edge
Shading

Edges parallel to viewing direction are made darker. This emphasizes edges. Only
depends on viewpoint (independent of light position).

Boundary
Opacity

Regions where image intensity is varying are made opaque, whereas regions with
consistent image intensity appear transparent. A simple way to create a ‘glass brain’
(see also edge enhancement).

MRIcroGL user guide 7 of 13

11. Overlay Shader
Recent releases of MRIcroGL include a new shaders named
‘overlay’, ‘overlay_glass’ and ‘overlay_toon’ that are specifically
designed for displaying functional or connectivity overlays on top
of anatomical scans These overlays allows you to independently set
the transparency of the background and overlay images. Note that
these shaders are much slower than the conventional shaders, and
require twice the memory on the graphics card (and typically
render half as fast). The ‘Default’ shader is also an overlay shader
(and therefore it is a lot slower than the ‘Simple’ shader). See
www.mccauslandcenter.sc.edu/mricrogl/about for more details. A
YouTube video tutorial is also available from
http://www.mccauslandcenter.sc.edu/mricrogl/tutorials

12. Atlas Templates
MRIcroGL includes several template images that show
the brain parceled into discrete regions (see section 15
for details on the provided templates). By default these
images appear in bright colors (as shown in the top
right). This can make it hard to discern overlay images.
To adjust the saturation of the template, simply adjust
the image intensity values. By default these have a range
of 100 (0..100), where the lower images on the left show
the image desaturated to 20% (0..20). If you set the
image intensity range to zero, the template will appear as
a grayscale image. Also note that clicking on any
location in the 2D slices view will reveal the region
name (in the lower left this is “PoCG_R” for ‘posterior
central gyrus of the right hemisphere’). A YouTube
video illustrating these effects is linked from
http://www.mccauslandcenter.sc.edu/mricrogl/tutorials

MRIcroGL user guide 8 of 13

13. New Features
Version 10/2011 : Thanks to Martins Upitis, David V. Smith & McKell Carter for suggestions/code

• When viewing multiple overlays, click on the overlay's filename in the overlays window to change
stacking order of overlays (Note: this feature has no influence if you have selected
Transparency/OnOtherOverlays/Additive)

• If the file /script/startup.gls exists, this script will be launched when the program starts.
• To disable this feature, edit the mricrogl.ini file and change "StartupScript=1" to read

"StartupScript=0"
• If you are having problems running MRIcroGL, launch the program with the shift key down (OSX

and Windows) or with the right mouse button depressed (Linux). You can then restore the default
settings. You will also be given the option of disabling the volume rendering (if your graphics card can
not support that feature) and enabling power-of-two upsampling (e.g. if you load an image with 192
voxels in one dimension, it will be loaded as 256 voxels, this can dramatically improve performance
on older {~2006] graphics cards, but will be slightly deleterious for newer graphics cards)

Version 7/2014 :
• Ability to display template images emulating the ‘random rainbow’ color scheme of FSLView. These

images can include text labels so that the region name is displayed when the user clicks on that
location of a 2D slice. Adjusting the ‘brightness’ of these templates influences the saturation (e.g. a
brightness range of 0..50 will have 50% of the full saturation).

• Ability to open non-NIfTI formats. Freesurfer images (MGH/MGZ format), NRRD images
(NRRD/NHDR format), AFNI (HEAD format), VTK/ITK MetaIO format (MHA/MHD). The
NRRD and MetaIO formats specify a large number of formats – this software should read most
images with at least 3 dimensions stored either uncompressed or with GZ compression.

• Overlay shader (see section 11)
• Template images (see section 12)
• Overlay window function added: File/AddOverlay(removeSmallClusters), also scripting function

overlayloadcluster (see section 15)
Version 11/2015 :

• Ability to save bitmaps to higher resolution than current display (select the ‘Preferences’ menu
command to select scaling).

• Overlay shaders improved.
• Ability to ‘Yoke’ different instances of MRIcroGL to show the same slice on different brains. Use the

‘Yoke’ command in the ‘Display’ menu. This requires running multiple instances of MRIcroGL
simultaneously (choose ‘New window’ from the ‘File’ menu).

• OSX will now show retina quality text for controls, 64-bit OSX version. Provides 3D acceleration for
modern VirtualBox installations.

• ‘Default’ shader is now an overlay shader (previous default has been renamed ‘simple’).
• ‘Occlusion’ shader.

Recent Versions
• See https://github.com/neurolabusc/MRIcroGL for recent changes

MRIcroGL user guide 9 of 13

14. Sample data
The software is distributed with sample images

• The Visible Human Project Photographed cryo-sections of a male ('visiblehuman').
• T1-weighted_MRI scan of human brain ('chris_t1' Chris Rorden).
• T2-weighted MRI scan of human brain ('chris_t2' Chris Rorden).
• Magnetic resonance angiography Time-of-flight of human head ('chris_MRA' Chris Rorden).
• Functional magnetic resonance imaging statistical maps showing regions active left versus

right hand movements (‘motor').
• X-ray computed tomography scan of human cadaver head ('ct' University of North Carolina

Volume Rendering Test Data Set).
• Average T1 scan from 152 individuals from the Montreal Neurological Institute

www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009 Fonov et al. (2009)
NeuroImage 47: S102. Saved as mni152_2009bet (0.5mm isotropic). If you are working with
a large number of overlays or using a computer with a weak graphics card you may want to
reslice this to a lower resolution (e.g. use nii_reslice1mm Matlab script).

• AAL is the Automated Anatomical Labeling atlas from Tzourio-Mazoyer et al. (2002)
www.ncbi.nlm.nih.gov/pubmed/11771995

• Brodmann is Krish Singh's speculative Brodmann regions, described at
www.mccauslandcenter.sc.edu/mricro/mricro/lesion.html

• HarvardOxford-cort-maxprob is the Harvard-Oxford atlas described at
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

• The INIA19 images are from the INIA19 Primate Brain Atlas,
www.nitrc.org/projects/inia19/ (see also PMID: 23230398)

• The natbrainlab image is a discrete version of the images from www.natbrainlab.com.

15. Scripting
New users can choose MRIcroGL’s View/Script menu item to show the scripting window,

the choose a demo script from the scripting window’s “File” menu and finally choose the Script/Run
menu item to run a script. This is a nice way to observe features. Advanced users can develop their
own macros to automate repetitive tasks or create nice demos.

Pascal is used as the scripting language. To write a script, simply select View/Scripting to
open the script engine. Type your commands into the text window and select Script/Compile to
execute your script. You can also save and open scripts using the File menu. Here is a very simple
script. It does one thing, which is to open the file named ch256.

Program Simple
Begin
 LOADIMAGE('mni152_2009bet');
End.

 Note that MRIcroGL is pretty intelligent. It will use files named mni152_2009bet.nii,
mni152_2009bet.nii.gz, and mni152_2009bet.hdr in the program folder and the script’s folder. If no
file is found, a dialog box allows the user to find the file. You could also be more explicit by running
“Loadimage('c:\mri\dataset.hdr')”, but this is not required.

Below is a list of all of the commands that are specific to this program, but one can also use
regular Pascal commands (like for loops, variables and constants). The included sample scripts show
some of these properties.

MRIcroGL user guide 10 of 13

SCRIPTING COMMANDS
ADDNODE(INTENSITY, R,G,B,A: byte) This command adds a new point to the color table. Consider the

default color table that has only two nodes - black is node zero and white is node one. Running
ADDNODE(192,255,0,0,64) would make images with 75% intensity (192/255) appear bright red, and be
25% opaque (64/255).

AZIMUTH (DEG: integer) This command rotates the rendering. For example, AZIMUTH(-20) rotates the
image 20 degrees counter-clockwise

AZIMUTHELEVATION (AZI, ELEV: integer). Sets the viewer location. For example,
AZIMUTHELEVATION(90,10) will show a sagittal (right side) view from a slightly inclined viewpoint.
Zero degrees azimuth refers to posterior, while 180 degress is directly anterior. Note that these values are
absolute, while the AZIMUTH and ELEVATION commands refer to relative changes in viewpoint.

BACKCOLOR (R,G,B: byte) Changes the background color, for example BACKCOLOR(255, 0, 0) will show
images on a bright red background

BMPZOOM (Z: byte) Zoom factor applied to bitmaps (Edit/Copy, File/Save and SAVEBMP). For example,
BMPZOOM = 2 will save images at twice the screen resolution.

CAMERADISTANCE (Z: single) Sets the viewing distance from the object. Values near zero will appear
inside the object (near the center of the object), values near 1 will appear at a reasonably close distance,
and larger values will make the object appear quite small.

CHANGENODE(INDEX, INTENSITY, R,G,B,A: byte) This command adjusts a point in the color table.
Consider the default color table that has only two nodes - black is node zero and white is node one.
Running CHANGENODE(1,255,255,0,0,128) would change the formerly black-to-white color table to
be black to bright red. Note that node zero can only have an intensity of zero and the final node must
have an intensity of 255.

CLIP (DEPTH: single) Creates a clip plane that hides information close to the viewer. For example, CLIP(0.5)
will hide all surfaces on the nearest half of the image.

CLIPFORMVISIBLE (VISIBLE: boolean) Shows or hides the clipping form. For example
CLIPFORMVISIBLE(TRUE) shows the form, CLIPFORMVISIBLE(FALSE) hides the form.

COLORBARCOORD (L,T,R,B: single). Sets the position of the colorbar based on the Left, Top, Right and
Bottom coordinates. The left and right coordinates are in the range 0..1 from the left to right of the
screen, while the top and bottom components range from 0 near the bottom to 1 near the top. If the
distance between L-R is greater than T-B then a horizontal colorbar will be shown, else a vertical colorbar
is displayed.

COLORBARFORMVISIBLE (VISIBLE: boolean) Shows or hides the window that allows the user to
interactively control the size and location of the colorbar. For example COLORBARFORMVISIBLE
(TRUE) shows the form, COLORBARFORMVISIBLE (FALSE) hides the form.

COLORBARTEXT (VISIBLE: boolean). If set to true, then colorbars will include text that indicates intensity
range. For example COLORBARTEXT(true).

COLORBARVISIBLE (VISIBLE: boolean). Shows a colorbar on the main images.
COLORNAME (Filename: string) Loads the requested colorscheme for the background image. For example,

running COLORNAME(CT_KIDNEY) will apply the kidney color scheme.
CONTRASTFORMVISIBLE (VISIBLE: boolean) Shows or hides the contrast and color window. For

example CONTRASTFORMVISIBLE (TRUE) shows the form, CONTRASTFORMVISIBLE (FALSE)
hides the form.

CONTRASTMINMAX (MIN,MAX: single); Sets the minumum nd maximum value for the color lookup table.
For example, consider CONTRASTMINMAX(-200,500). In this case, a voxel with the value of -200 will
be displayed with the darkest value in the color table, and voxel with a value of 500 will be shown with
the brightest value

CUTOUT (L,A,S,R,P,I: single) Selects a sector to remove from rendering view. For example
CUTOUT(0,0,0,0.5,0.5,0.5) will hide the left-anterior-superior hemiquadrant.

CUTOUTFORMVISIBLE (VISIBLE: boolean) Shows or hides the cutout window. For example
CUTOUTFORMVISIBLE (TRUE) shows the form, CUTOUTFORMVISIBLE (FALSE) hides the
form.

ELEVATION (DEG: integer) changes the render camera up or down. For example, Elevation(20) moves the
viewpoint 20-degrees above the object.

EXTRACT(LEVELS,DILATEVOX:integer; ONEOBJECT: boolean); Attempts to remove noise speckles
from dark regions (air) around object. Levels=1..5 (larger for larger surviving image), Dilate=0..12 (larger

MRIcroGL user guide 11 of 13

for larger surround). You can also specify if there is a single object or multiple objects. Default values are
5,2,true.

EXISTS(lFilename: string); Function reports whether a file exists. For example, EXISTS(‘c:\img.nii’) returns
TRUE if this file is present and false if the file is absent.

FRAMEVISIBLE (VISIBLE: boolean) Shows or hides the cube that appears around the rendered object. For
example FRAMEVISIBLE(false) will hide the frame.

LOADIMAGE (lFilename: string) Opens a NIfTI format image to view. For example,
LOADIMAGE('c:\mri\image.nii') will open the file named 'image.nii'.

MAXIMUMINTENSITY (MIP_ON: boolean) Changes the rendering mode between standard (which
highlights surfaces of objects) and Maximum Intensity Projection that shows the brightest object,
regardless of depth. For example MAXIMUMINTENSITY(false) switches to standard rendering.

MODALMESSAGE (STR: string) Displays a dialog box with a message. The script will wait until the user
responds prior to continuing.

MODELESSMESSAGE (STR: string) A text message is shown on the main window. This message requires no
response from the user, and the script does not pause for a response. The message is visible until the
script sends a MODELMESSAGE(‘’) or until the application is restarted.

MOSAIC(Str: string) Shows a series of 2D slices. For example MOSAIC(V 0.1 H 0.2 A 0.3, 0.6, 0.9; A 0.5 S 0.5
C 0.5) shows two rows of images, each with three columns - the top row shows three axial views, while
the bottom shows an axial, coronal and vertical slice. The vertical slices overlap 10% (V 0.1) and the
horizontal slices overlap 20% (H 0.2).
• A: subsequent slices in axial orientation
• C: subsequent slices in coronal orientation
• H: Horizontal overlay, e.g. H 0.5 means each slice has 50% overlap. Values can range from –1 to 1.
• L: turns on (L+) or off (L-) text labes for slices
• S: subsequent slices in sagittal orientation
• V: Vertical overlap, from –1 to 1, e.g. V 0 means no vertical overlap
• Z: mirrored sagittal slice
• Numbers are used for each slice, with semicolons denoting new rows, so 0.1 0.2 0.6; 0.8 0.9 is a

mosaic with five images, three in the first row and two in the second.
MOSAICFORMVISIBLE (VISIBLE: boolean) Shows or hides the mosaic designer window. For example

CLIPFORMVISIBLE(TRUE) shows the form, CLIPFORMVISIBLE(FALSE) hides the form.
ORTHOVIEW (X,Y,Z: single) Shows a 2D projection view of the brain, with an axial slice at the Z coordinate,

a coronal slice at the Y value, a sagittal slice at the X coordinate. For example ORTHOVIEW(0.5,0.5,0.5)
shows a slice in the middle of the volume.

ORTHOVIEWMM (X,Y,Z: single) Shows a 2D projection view of the brain, with an axial slice at the Z
coordinate, a coronal slice at the Y value, a sagittal slice at the X coordinate. For example
ORTHOVIEWMM(0, 0, 50) shows a slice 50mm superior to the anterior commissure.

OVERLAYCLOSEALL. This function has no parameters. All open overlays will be closed. The background
image (if any) will remain opened.

OVERLAYCOLORFROMZERO(FROMZERO: Boolean). If set to false, then the full color range is used to
show the overlay.If set to false, then the color range spans from zero to the most intense color. For
example, consider an overlay with a color scheme that goes from black to bright red and a
OVERLAYMINMAX(1,1,2). With colorfromzero set to false, a voxel with an intensity of 1 will appear
black (minimum in the range 1..2). On the other hand, if colorfromzero is true, then this same voxel will
appear dark red (as 1 is half way between 0 and 2). Note that in this case voxels darker than 1 will still be
invisible (as they must exceed the 1..2 threshold set by overlayminmax).

OVERLAYCOLORNAME (lOverlay: integer; lFilename: string); Set the colorscheme for the target overlay to
a specified name. For example OVERLAYCOLORNAME(1,’ CT_Kidneys’) will make the first overlay
show intermediate brightness regions as red and very bright regions as white.

OVERLAYCOLORNUMBER (lOverlay,lLUTIndex: integer) Sets the color scheme for a overlay. For
example, consider that you load a single overlay and want it to make it appear blue, you could call
OVERLAYCOLORNUMBER(1,2). The LUTindex refers to the order of the colorscheme in the overlay
menu’s drop down menu, such that 0=grayscale, 1=red, 2=blue, etc.

OVERLAYFORMVISIBLE (VISIBLE: boolean) Shows or hides the overlay window. For example
OVERLAYFORMVISIBLE (TRUE) shows the form, OVERLAYFORMVISIBLE (FALSE) hides the
form.

MRIcroGL user guide 12 of 13

OVERLAYLOAD (lFilename: string): integer; Will add the overlay named filename and return the number of
the overlay. Will return zero if unable to find the file or if there are too many overlays already loaded.

OVERLAYLOADCLUSTER (lFilename: string; lThreshold, lClusterMM3: single; lSaveToDisk: boolean):
integer; Will add the overlay named filename, only display voxels with intensity greater than threshold
with a cluster volume greater than clusterMM and return the number of the overlay.

OVERLAYLOADSMOOTH (SMOOTH: boolean) Determines whether overlays are interpolated using
trilinear interpolation (SMOOTH = true) or nearest neighbor (SMOOTH= false). Smoothed images will
not appear jagged, but a thresholded map (where values below say Z=2.3 are set to zero) may appear to
have dark edges. Note the this command does not influence currently loaded images, rather it sets how
future images will be smoothed when overlayload is called.

OVERLAYMASKEDBYBACKGROUND (MASK: BOOLEAN). If true, than a overlay will be transparent
on any voxel where the background image is transparent. If false, the overlay will always be shown,
regardless of the background image. Sometimes it is nice to mask an overlay, so for example brain activity
does not appear outside the brain. On the other hand, consider the glassbrain script, where we want to
see overlays that are inside the brain’s shell. In this case, we would want to use set this value to false.

OVERLAYMINMAX (lOverlay: integer; lMin,lMax: single) Sets the color range for the overlay. Values outside
this range but closer to zero will not be displayed, voxels with more extreme values will appear with the
maximum color from the color scheme For example OVERLAYMINMAX(1,2 9) will set the first
overlay to have an intensity range of 2..9.

OVERLAYTRANSPARENCYONBACKGROUND (lPct: integer). Controls the opacity of the overlays on
the background. For example, setting this to 50 will equally blend the overlays with the background, while
90 means that the overlays will be barely visible. Use –1 for an additive mixture (where the largest red,
green and blue components are taken from each image).

OVERLAYTRANSPARENCYONOVERLAY (lPct: integer); Controls the opacity of the overlays on other
overlays. For example, setting this to 50 will equally blend the overlays, while 90 means that the top
overlay will be barely visible against a lower overlay. Use –1 for an additive mixture (where the largest red,
green and blue components are taken from each image).

PERSPECTIVE (USEPERSPECTIVE: boolean) Toggles the usage of perspective on or off. If set on, closer
objects will appear larger than more distant objects in the rendering window. If off, an orthographic
projection is used (where size is not influenced by distance from viewer).

RESETDEFAULTS. Sets all of the user adjustable settings to their default values. Calling this at the beginning
of a script ensures that an image will always look identical, regardless of user-implemented changes.

SAVEBMP (lFilename: string) Saves the currently viewed image as a PNG format compressed bitmap image.
SCRIPTFORMVISIBLE (VISIBLE: boolean) Shows or hides the scripting window. For example

CLIPFORMVISIBLE(TRUE) shows the form, CLIPFORMVISIBLE(FALSE) hides the form.
SETCOLORTABLE (TABLENUM: integer) Changes the color scheme used to display an image. For

example, SETCOLORTABLE(0) applies the default gray-scale color scheme. To determine the color
scheme number, open the Color and Transparency Window and check the pull-down menu. For
example, the first item is the default table, so it has a value of zero, while Kidneys is the second item and
has a value of 1.

 SHADERFORMVISIBLE(VISIBLE: boolean) Shows or hides the GLSL shader control window.
 SHADERNAME(lFilename: string). Will load the named GLSL shader and set the shaders default variables.

For example, shadername(‘phong’) will load the ‘Phong’ shader (assuming ‘phong.txt’ is in your shader
folder).

 SHADERADJUST(Property: string; Val: single). Some shaders allow the user to interactively adjust settings
(using the shader form) – this command allows you to change these settings via a script. For example,
shaderadjust('specular',1.0) would set the value specular to 1. Some shader properties are integers or floats
(both shown as trackbars), whereas others are Boolean (which are displayed as checkboxes). For Boolean
values, shaderadjust(‘name’,0) sets the value ‘name’ to false, whereas any other value
(shaderadjust(‘name’,1)) will set the property to true.

SHARPEN Applies Unsharp-mask to make background image sharper but noiser. Can be applied multiple
times for exaggerated effects.

SLICETEXT (VISIBLE: boolean) If true, the 2D slices will be displayed with text indicating which side is left
and numbers indicating slice coordinates.

VIEWAXIAL (STD: boolean) creates rendering from an axial viewpoint. VIEWAXIAL(true) shows a bird's
eye view (from directly above), while VIEWAXIAL(false) shows an image from directly below.

MRIcroGL user guide 13 of 13

VIEWCORONAL (STD: boolean) creates rendering from a coronal viewpoint. VIEWCORONAL(true)
shows a view from directly in front, while VIEWCORONAL(false) shows an image from directly behind.

VIEWSAGITTAL (STD: boolean) creates rendering from an sagittal viewpoint. VIEWAXIAL(true) shows a
profile view with the anterior dimension on the right side, while VIEWSAGITTAL(false) has the anterior
dimension on the left side.

WAIT (MSEC: integer) The program pauses for the specified duration. For example WAIT(1000) delays the
script for one second.

