

Homework

- Implement the Smith-Waterman algorithm
 - Write a function which accepts the following arguments:
 - 2 sequences
 - a similarity measure between sequence elements (either a function which takes two residue types as arguments, or a two-dimensional matrix)
 - a gap penalty function, which takes the gap length as an argument

Homework

- Implement the Smith-Waterman algorithm
 - Your function should return the common subsequence with the highest score
 - For grading purposes, your function should also print out the score matrix
 - *E-mail both your code and program output to conrad@cgl.ucsf.edu*

Homework

- Input data
 - Apply your code to the example from the Smith & Waterman paper
 - **CAGCCUCGCUUAG** vs. **AAUGCCAUUGACGG**
 - $S(A_i, B_j) = 1$ if $A_i = B_j$; $-1/3$ otherwise
 - $W_k = 1.0 + (1/3) * k$
 - Also try **GCCCUGCUUAG** vs. **UGCCCGCUGACGG**
 - Your alignment and score matrix should match those published in the paper