Visualization Tools for Integrating Sequence and Structural Information

Thomas Ferrin
University of California, San Francisco
“It’s sink or swim as a tidal wave of data approaches”

Petabyte (1,000 terabytes)
Exabyte (1,000 petabytes)
Zettabyte (1,000 exabytes)
Yottabyte (1,000 zettabytes)

Tony Reichhardt
Nature 399:517-520 10 June 1999
“Many biologists are still in denial, never having faced the amount of information now pouring into databases such as Genbank and SwissProt... They haven’t really thought about how they’re going to use all this data...”

The Growing Gap in Functional Knowledge

- Publications
- DNA sequences

Rapid DNA sequencing invented
EST sequencing begun
Growth in Protein Structures

![Graph showing the growth in protein structures over years from 1972 to 1994.](image)

last update: 01-Jan-2000
Sequence -> Structure -> Function

Challenges:

- Prediction of structure from sequence
- Prediction of function from sequence
- Understanding of evolutionary changes
- Engineering proteins for specialized function
- Applications in pharmacogenomics and pharmacogenetics

Potential for major impact on...

- Drug discovery
- Prediction of drug response
- Avoidance of toxic effects in many individuals
Stereo pairs ?
Tools for Comparative Protein Studies

MinRMS - exhaustive search for all plausible structural alignments of two proteins

AlignPlot - interactive exploration of structural alignments

MSFviewer - integrates sequence and structure space

Chimera - extensible 3-D molecular modeling system
MinRMS

Find all plausible alignments between two protein structures (experimentally-determined or modeled) using root-mean-square difference of coordinates of alpha-carbons.

- RMSD metric easy to interpret
- Avoids “single best alignment” problem
- Avoids need for parameters
- Finds reasonable alignments even for apparently dis-similar structures
MinRMS Algorithm

Two step process:

1. Rotate & translate the two structures to bring similarly shaped regions into close proximity;
2. With the two proteins fixed at a particular relative position, select corresponding alpha-carbon atoms between the proteins which minimizes the intermolecular RMSD.

Apply a dynamic programming algorithm to find best matches for different numbers of amino acid residues

Algorithm runs in $O(n^5)$ time
1. For two 300-residue proteins requires ~1 hour on a fast workstation
MinRMS Output

Large table containing, for each structure alignment:

- Number of matched residues
- RMSD for the alignment
- Longest distance between any pair of matched residues
- Levitt & Gerstein similarity score, -log(P)
- Transformation matrix for aligning the structures
AlignPlot

Used to examine MinRMS output for alignments of interest

• RMSD vs. Number of matched residue pairs
 - Useful for examining trade-off between number of matched residues and global superposition
• Orientation clusters
 - Reduces hundreds of alignments into a few representative groups
• Sequence vs. sequence histogram
 - Provides easy identification of patterns such as secondary structure
MSFviewer

Displays multiple sequence alignments from common alignment programs

- Groups of residues in the alignment can be selected
- Corresponding residues in the structure also get highlighted
- Allows user to facile interface to sequence space
Chimera

Molecular visualization system providing:

- Interactive manipulation of multiple molecular structures
- Real-time rendering of models in several formats
 - e.g. ball-and-stick, ribbons, molecular surfaces
- Support for non-molecular objects
 - e.g. points, vectors, markers, spheres, cylinders, polygons
- Command line compatibility with MidasPlus
- Extensible functionality without access to source code
- Use of standard APIs ensure portability to many platforms
 - Windows 95/98/NT/2000, Compaq, SGI, Linux, ...
Chimera’s Extensibility

Use of Python programming language as Chimera’s command language provides for both complex command “scripts” and user-written extensions

- True programming language allows for user commands to contain such constructs as iterative loops and conditional execution with full access to internal data structures
- Widely available Python libraries provide for custom GUIs
 - e.g. menus, dialog boxes, custom graphics
- Python’s interpreted language provides for dynamic run-time linking
 - Don’t need access to source code to add new features
 - New modules “linked in” when Chimera executes
Chimera Extensions

Extensions are just groups of one or more cooperating processes

- AlignPlot, MSFviewer, MidasPlus Command Interpreter are all implemented as extensions
- Extensions can maintain their own state and have their own graphical user interface
- Extensions can be ancillary to Chimera or Chimera can be invoked by another program to provide interactive graphical output
Example Study

Structural comparison of glutamine synthetase (GS) and creatine kinase (CK)

- GS: 468 residues, PDB entry 2gls
- CK: 380 residues, PDB entry 1crk
- No significant sequence similarity, both have multimeric forms, proposed similar tertiary structures, and catalyze similar reactions
GS and CK catalysis

Glutamate + ATP \rightarrow Glutamine + ADP + NH$_3$ + H$^+$

Creatine + Mg ATP \rightarrow Phosphocreatine + MgADP + H$^+$
Glutamine synthetase and creatine kinase
After MinRMS alignment

Glutamine synthetase Creatine kinase
AlignPlot GUI

![RMSD vs N](image)

# Matches	120
RMSD	1.99
Longest Distance	3.37
-log(probability)	8.25

- Zoom In
- Zoom Out
- Update selection
- Monitor selection
Resulting structure-based sequence alignment

1crk.pdb TVHEKRKLFIP PSADYPDLRK HNNCMAECLTP PAIYAKLRDK LTPNGYSLDQ CIQTVGDNPG HPIFKTVGMV AGDEESYEVF
2gls.pdb ELQSTGRSTK TSNLGSFLPL SADYPLFDP TAVLDDPTPA MPAFLQHYGR DPGHTEQGRK .EYVPGVQTV .D.EYVLS.

1crk.pdb AEIFDPVIAK RHNYDPRTM KHAMTDL...........DAS........... .LABRQVNAEF FEYGKMDGS
2gls.pdb

1crk.pdb SAEH VLTMINEHEV KFDIRFTDT KGR..EQLRT IPABQVNAEF FEYGKMDGS
2gls.pdb SIGGWKGINE SDMVDMPAS TAVDDCFADD STLIRTCDL EPSTLOQYDR DP.RSIKRA .E.DYLRTG IADT....V

1crk.pdb .SERSTGRSTK TSNLGSFLPL SADYPLFDP TAVLDDPTPA MPAFLQHYGR DPGHTEQGRK .EYVPGVQTV .D.EYVLS.
2gls.pdb LVEQ.GQL SIGGWKGINE SDMVDMPAS TAVDDCFADD STLIRTCDL EPSTLOQYDR DP.RSIKRA .E.DYLRTG IADT....V

1crk.pdb AGL..KML GYK.PIV SQGVLKLS SERDQQQLID DHLPLDKQVS PLLTCAMAR DWDPDARGW HNMDKTEFL WINEED....
2gls.pdb LVEQ.GQL SIGGWKGINE SDMVDMPAS TAVDDCFADD STLIRTCDL EPSTLOQYDR DP.RSIKRA .E.DYLRTG IADT....V

1crk.pdb .HGVSIR MEKGNMVR FERFCRLQKV VERLIEKCEW IFMNNERLG .YVLTPSNL GT........... .G.YAGVHV.
2gls.pdb GONL..VA.TR FNSM..MKV ADEIQQYKV VHNVAHRECG TAT........T FM........... P.KPMGCDNG SMDHCHMS.L

1crk.pdb K........LP RLSKDRPRFPK I........L.E NLRL.............
2gls.pdb AKNGTNLFSG DKYAGLSEQQ ALAGYGGVI KHA..KAINAL APTPTNSYKR LVP.GEAPVM LAYSARNRSLA

1crk.pdb QMGTGQVD .TAAVDYV DL.SN LD.RMFRS ...EVEI...V LVDYDGKN .LVDCEKMKLE KQDDKLVPP
2gls.pdb SI.HTP...VA....S PKARRI.EV .RF...PD PAAN..PYLEA BAAMLEXG G.I.K........N

1crk.pdb LP..............Q........FGR.............
2gls.pdb KIPGEPQDM DKLYDLEPE SAEK1PQVAG SLEEA..LNA LDDREFLK GGVFTDEAID ATYALREED DRVRMTPHPV

1crk.pdb
2gls.pdb EFELYYSV
Live Demonstration

Disclaimer: Anything that can go wrong will do so in direct proportion to the number of people in the room.

Hardware:
- Compaq AlphaStation DS10 (466Mhz EV6)
- PowerStorm 350 graphics accelerator
Recent developments

Re-engineering of a natural enzyme with new catalytic function

- Alan Fersht & coworkers at Cambridge Centre for Protein Engineering
- Converted activity of indole-3-glycerol phosphate synthase (IGPS) into that of phosphoribosylanlanthranilate isomerase (PRAI)
- See C&E News February 21, 2000
Significant Challenges

Robust methods for predicting function from sequence

Ways to represent biological function, including detailed chemistry, in databases

Facile access for ordinary biologists to the wealth of available sequence, structure, and function data

Training for students for the breadth of knowledge required in biology today
UCSF’s Program in Quantitative Biology

<table>
<thead>
<tr>
<th>Component Fields</th>
<th>Bioinformatics</th>
<th>Structural Biology/Biophysics</th>
<th>Complex Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomics</td>
<td>Structure Determination</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>Proteomics</td>
<td>Molecular Recognition</td>
<td>Pharmacology</td>
<td></td>
</tr>
<tr>
<td>Pharmacogenomics</td>
<td>Crystallography</td>
<td>Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Molecular evolution</td>
<td>NMR spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole-genome analysis (e.g. gene prediction, sequence comparison)</td>
<td>Imaging (large structures, in-vivo methods, confocal and electron microscopy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function prediction</td>
<td>Drug design, development & delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biocomputing</td>
<td>Molecular modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological databases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic basis for disease</td>
<td>Diagnostic & Therapeutic imaging</td>
<td>Functional imaging</td>
<td></td>
</tr>
<tr>
<td>Clinical information systems</td>
<td></td>
<td>Clinical outcomes research & epidemiology</td>
<td></td>
</tr>
<tr>
<td>Medical Information Science (MIS), Genetics, Pharmaceutical Sciences & Pharmacogenomics (PSPG)</td>
<td>Biophysics, Chemistry & Chemical Biology,</td>
<td>Neuroscience, PSPG, MIS, Bioengineering,</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

Collaborators
 - Prof. Patricia Babbitt, Prof. Teri Klein, Dr. Conrad Huang

National Center for Research Resources
 - P41-RR01081

Department of Energy
 - DE-FG03-96ER62269

National Institutes of Health
 - AR17323
Additional Information

See UCSF Computer Graphics Laboratory website:

http://www.cgl.ucsf.edu/chimera