Informatics and Visualization Tools for Pharmacogenetics Research

Thomas Ferrin, Ph.D. Resource for Biocomputing, Visualization, and Informatics University of California, San Francisco

Whitehead Institute and HP: 21st Century Life Science Technology Revolution

June 11, 2002

Resource for Biocomputing, Visualization, and Informatics

The RBVI is a NIH/NCRR Biomedical Technology Research Center

We create innovative computational and visualization-based data analysis methods and algorithms, turn these into easy-to-use software tools, and apply these tools for solving a wide range of genomic and molecular recognition problems within the complex sequence \rightarrow structure \rightarrow function triad

Application areas

Gene characterization and interpretation

Drug design

Variation in drug response due to genetic factors

Protein engineering

Biomaterials design

Bioremediation

Prediction of protein function from sequence and structure

Sample RVBI projects

•New methods for large-scale data collection, storage, analysis, and presentation for polymorphism (SNP) genotyping project

•Extensible visualization tools for comparative studies of protein sequence, structure, and function

ADVERSE REACTIONS

tragedy Genetic tests to prevent adverse drug reactions may save tens of thousands of lives a year, but for a troubled boy named Michael they came too late.

By David Stipp Photographs by Suzanne Opton

THE DEATH OF NINE-YEAR-OLD MICHAEL ADAMS-CONROY didn't seem at first like a signal event in medicine. It seemed like homicide.

Michael's short life was an uphill struggle from the start, Mal-nourished as an infant, he was taken from an abusive mother and placed in a temporary foster home before his first birthday. By the time he was 6, his medical record bulged with bad news: Michael was cognitively blunted and violently moody, and appeared to be afflicted with the brain damage of fetal alcohol syndrome, as well as with obsessive-compulsive disorder, tic-inducing Tourette's syndrome, and attention-deficit hyperactivity disorder.

Over the next few years he achieved a semblance of normaley, thanks to the steadying hands of the resolutely affectionate couple who adopted him at age 3 and to daily doses of drugs to check his ties and obsessions. Small for his age, he took pride at finally being able to fling his coat up onto the grownups' pegs at his home in Martins Creek, Pa., a one-stoplight town two hours north of Philadelphia. He was learning to bowl in a league for handicapped kids and help his dad tend the garden.

October 30, 2000 FORTUNE • 171

Fortune - Oct 30, 2000

Neil and Jayne Adams-Conroy son (right) died from a Pro overdose. A genetic quirk e been at fault

Case Report #1: Michael Adams-Conroy

Young child born to abusive mother, adopted at age 3, with signs of fetal alcohol syndrome, obsessive-compulsive disorder, Tourette's syndrome, and attention-deficit hyperactivity disorder. Prescribed Prozac to help control emotional outbursts.

Child dies suddenly; toxicology tests show massive overdose of Prozac. Adoptive parents investigated for homicide and their other two children put into protective custody.

Michael Adams-Conroy (continued)

Sharp-eyed psychiatrist notices unusually high levels of other metabolites in toxicology report, indicating child may have had an enzyme deficiency inhibiting Prozac from being metabolized normally.

Subsequent genetic testing showed child had defect in 2D6 gene which resulted in abnormal liver enzyme that metabolizes antidepressants.

Adoptive parents exonerated.

Case Report #2

Patient: 3-year old boy

Diagnosis: Acute Lymphoblastic Leukemia (ALL)

Standard therapy: 6-mercaptopurine (6-MP)

Result: Adverse Drug Reaction leading to acute bone marrow suppression

Normal Mechanism of Action

6-METHYLMERCAPTOPURINE

THIOPURINE METHYLTRANSFERASE (TPMT) GENES ARE DEFECTIVE IN 1:300 PEOPLE

This leads to elevated levels of Thioguanine Nucleotides

6-METHYLMERCAPTOPURINE

PEOPLE DIFFER IN THEIR RESPONSE TO DRUGS

TESTING FOR TPMT GENES IS NOW AVAILABLE

.

CHILDREN WITH DEFECTIVE TPMT GENES SHOULD RECEIVE A LOWER DOSE OF 6-MP

Adverse Drug Reactions

ADRs may kill 30,000 - 40,000 Americans each year and cause 2,200,000 serious nonfatal reactions. JAMA 1998 June 3;279(21):1684

Drugs with known genetically-linked potential for fatal adverse reactions (partial list):

<u>Drug (Brand Name)</u>	Perscribed For	Adverse Reaction	<u>Gene at Cause</u>
Imipramine (Tofrannil)	Depression, ATD	Heartbeat irregularity	CYP2D6
lsoniazid (Laniazid)	Tuberculosis	Liver toxicity	NAT2
Warfarin (Coumadin)	Preventation of blood clots	Internal bleeding	CYP2C9
5-fluorouracil (Adrucil)	Cancer	Severe immune suppression	DPD
Clarithromycin (Biaxin)	Antibiotic	Heartbeat irregularity	KCNE2
Azathioprine (Imuran)	Rheumatoid arthritis	Severe immune suppression	TPMT

Pharmacogenetics and Pharmacogenomics

Pharmacogenetics

• The study of the genetic basis for variation in drug response

Pharmacogenomics

 The use of genetics and genomics in drug discovery and development

Research Goals:

- Identify responders and non-responders <u>before</u> therapy
- Predict response to other related drugs
- Avoid toxicity in certain drugs

Potential Impact:

- Major impact on drug discovery process
- Major impact on prediction of drug response
- Avoidance of toxic effects in many individuals

Pharmacogenetics of Membrane Transporters

\$12-million, 4-year NIH grant

• Kathleen Giacomini, PI, plus 20 other UCSF researchers

Major Project Goal:

• Understand the genetic basis for variation in response to drugs which interact with membrane transporters. This class of proteins is of great pharmacological importance, as it provides the target for about 30% of the most commonly used prescription drugs and is a major determinant of the absorption, distribution and elimination of many others.

PMT project goals - continued

- •Determine the amount of genetic variation (singlenucleotide polymorphisms) in at least 40 transporter genes by examining the DNA from an ethnically diverse sample of 250 people.
- •Test the performance of these transporter variants in cell cultures and determine, through clinical phenotype studies, if people with those variants respond differently to drugs in a clinically significant way.
- •Provide access to the data from these studies to the general scientific community through the World Wide Web to facilitate collaborative research and to speed development of new drug treatments.

The Corriel Cell Collection

African American (AA) - 100 Caucasian (CA) - 100 Asian American (AS) - 30 Mexican American (ME) - 10 Pacific Islander (PA) - 7

TOTAL - 247

Rack	Forward Reload	Stop	🮄 https://ph	armacogeneti	ics.ucsf.edu:8	001/caf-res	ults/OCT2/ind	dex.html								• 💉 Search	Print	- 1
🚮 Hom	e 😽 Bookmarks 🖉 FaxRe	ader 🥠 G	oogle 付 Wet) Developmen	t													
	red - non-synonymous	changes	blue - ind	els (insertio	ns & deletio	ons) =	green - syn	• onymous c	hanges	wł	2 uite - intronic	<u>c</u> hanges		gray	no change	es s		
Varia	nts																	
	The following results we	re obtaine	ed using 247	ethnically	identified D)NA samp	ples from t	he Coriell	Institute.									
	Version 5 of data analys	is results,	generated (on Jun 11, 1	2002.													
	Variant identification sur	nmary (ta	ab-delimited	text versio	n)													
	Variant identification sur	nmary by	ethnicity	1.11.5														
	variant identification per Variant identification per	-sample - r-sample -	<u>aata (11st)</u> <u>(t</u> data (plot)	ao-delimite	a text versi	ion)												
	Population genetics stati	stics (tab	-delimited te	ext version) s	!													
	Consensus sequences w		aman specie	<u> </u>					•••••									
	Transmembrane predicti	ion for O	CT2 protein	. Non-sync	onymous an	nino acid	changes sh	nown in <mark>re</mark>	ed, indels (i	nsertions	and deletion	s) in <mark>blue</mark> ,	and synor	iymous c	nanges in	green.		
	PG GD GD GD GD GD	ത്ത് ന			Ext	tracellı	ılar											
	ୁ କୁହିନ୍ଦ୍ର କୁନ୍ଦୁ କ	jõõo o	ത്രത്രത്															
	000000000000000000000000000000000000000	0000	00000 0 0Ö															
	Ŕ	8																
	<u>Š</u>	8																
	ŝ	ğ					0000	~~~~										
		ë	00000	00000	0000	000	8		800	000 0 8	080	00000						
	0000	000 000	000 0000	0000	00 100	000 900	000 700	00 ₀₀ 000	_ପ ରୁଦ୍ର ଜଗନ୍ଧ	0000	0 ⁰ 100	0000						
	0000	0 ₀₀	000	0000	000	000	000	©00	000	000	000	0 000						
	00000	©© ®	0000	0000	000	000	000 000	886 880	000	880 070	000	000						
	00000	00	0000	000	000	CO CO	000	900 000	0000	000 000	000	900 900						
	8	000	0000	8. and		3008	8000	08	00000	8	8	g g	 &					
	ğ					Ĩ Ŝ	ด็ลด็ดอีด			රිගා	0000000	ğğ	ğ					
	8 8				8	3 8 8888	88888					ÖÖ	Š.					
	Ö Ö					00 00 0						Ö Ö	88					
	00				(Cutoplas	510					00	œ					
a																		
Cellul	ar Fhenotyping Result No data available vet.	ts																
	10. 1																	
Clinica	al Studies No data available vet																	
	1.1.5 shalla available yet.																	

PMT Intranet Website

Used by ~100 researchers at UCSF

Effective data analysis and display driven by iterative design/refinement cycle, successful because the bioinformatics team works closely with the molecular biologists

• Jill Mesirov, Whitehead: "Bioinformatics needs to be tightly integrated with the scientific research, not a service function"

Flexibility key!

- Multiple ways to display same data
- Simple download mechanism for scientists who want to load raw data into Excel spreadsheets

You've seen sequences.

What about structure?

Growth in Protein Structures

The Structural Genomics Initiatives

"The next step beyond the human genome project"

\$150 million in NIH grants to establish 9 U.S. centers

- Goals:
 - Speed the determination of three-dimensional atomic-scale maps of proteins
 - 35,000 structures by 2005
 - Identify all proteins expressed in an organism "proteomics"

Center

NY Struct. Genomics Res. Consortium Northeast Struct. Gen. Consort. Southeast Collab. for Struct. Gen. Berkeley Struct. Genomic Center Joint Ctr. for Struc. Genomics TB Struct. Genomics Consortium Midwest Ctr. for Struct. Genomics Ctr. for Eukaryotic Struct. Genomics Struct. Gen. of Pathogenic Protozoa

Lead Institution

Rockefeller Univ. Rutgers Univ. Univ. of Georgia Lawrence Berkeley Lab. Scripps Research Inst. Los Alamos Nat. Lab. Argonne National Lab. Univ. of Wisconsin Univ. of Washington

<u>Target</u>

Bacteria/yeast/human Roundworm/fly/human Bacteria/roundworm/human Bacteria Roundworm/human Tuberculosis Archaea/bacteria/eukarya *Arabidopsys thaliana* Protozoans

See http://www.nigms.nih.gov/funding/psi.html for additional information

The X-ray Crystallography Pipeline

Target Selection

- "Crystallomics"
 - Isolation
 - Expression
 - Purification
- Crystallization

Data Collection Structure Solution Structure Refinement Functional Annotation Publish

Anticipated Bioinformatics Developments:

- Determination of distant homologs and domain recognition
- Automation of procedures through empirical rules
- Software integration for decision support and data analysis
- Automated annotation through sequence and structural alignments, prediction of protein-protein and proteinligand interactions, and motif recognition

Sequence \rightarrow Structure \rightarrow Function

Challenges:

- Prediction of structure from sequence
- Prediction of function from sequence
- Understanding of evolutionary changes
- Engineering proteins for specialized function
- Applications in pharmacogenetics

Potential for major impact on...

- Drug discovery and development
- Prediction of drug response
- Avoidance of toxic side effects

The Same Protein?

Chimera Molecular Modeling System

Chimera is an extensible interactive 3-D modeling system designed to allow developers to quickly incorporate novel algorithms and analysis tools

- ~30 extensions written to date
- Extensions are written in the Python programming language
 - Easy to learn, even for novice programmers
 - Offers object-oriented language features
- Extensions can control standard user interface features (e.g. camera, help, menus, toolbar) as well as their own custom interfaces

Collaboratory

 supports collaborative studies of molecular structure among scientists at multiple remote locations

Volume Viewer

• an extension for visualizing three-dimensional (3D) numerical data sets

Electrostatic potential (surfaces)

Electron density (mesh)

Electrostatic potential (solids)

ViewDock

 rapid screening of promising drug candidates found with the UCSF DOCK program

	ViewDock – lusrflocal/si	rc/chimera-demos/nih2002/viewdock/ra	as.mol2 •
Elle	ListBox Sort Column	Selection Ohimera Movie	
s	Number	Desc	ription
v	1	ribose-monoph	osphate 2
v	2	vitamin B2	
v	3	arginine	
v	4	laurate(C12)	
v	5	vitamin D3	
v	6	1,4,6-gonatri	ene-3,17-dione
v	7	phenothiazine	
v	8	5h-dibenz[b,f][1,4]oxazepine
v	9	vitamin A	
		Chimera Mo	odel #0.1
##	+########	Number :	1
##	+ # # # # # # # #	Source num :	22
##	*****	Name :	test_22
##	****	Description :	ribose-monophosphate
##	*****	Reflect :	0
##	*####### :	Energy score -42.64	_
		Compoun	d State
	Purged	Oeleted	🔶 Viable

Multalign Viewer

 simultaneous display of protein sequence and structure

apoex.	.fa				•	
File Tools	s Settings					
Consensus Conservation	1 MkvLWaallv	11 t I LaGCq Akv	21 eqevellellep	31 evrqqaewqs	41 gQP.WEIALg	$\overline{ }$
APE_BOVIN APE_PIG APE_MOUSE APE_RAT APE_PAPAN APE_MACFA APE_HUMAN APE_RABIT APE_CAVPO C60940 V13652	MKVLWVAVVV MRVLWVALVV MKALWALLV MKVLWAALLV MKVLWAALLV MKVLWAALLV MKVLWAALV MKVLWAALVV	ALLAGCQADM TLLAGCRTED TLLTGCLA TFLAGCQAKV TFLAGCQAKV TFLAGCQAKV AILAGCRAQT TLLAGCRADV	EGELGPE.EP EPGPPPE.VH EGEP EQPVEPETEP EQAVEPETEP EQAVETEPE EQAVETEPE EQEVE EQEVE EQEVE EQEVE EPEVE LFQAD	LTTQQPRGKD VWWEESKWQG EVTDQLEWQS EVTDQLEWQS EVTDQLPGQS DVRQAEWQS ELRQQAEWQS ELRQAEWQS .VPEQARWKA .VREPAVWQS ELEPEAGWQT	SQP .WEQALG SQP .WEQALN DQP .WEQALN GQP .WELALG GQR .WELALG GQR .WELALG GQP .WELALG GQP .WELALS GQP .WEAALA PQP RWEAMLA	
Consensus Conservation APE_BOVIN APE_PIG APE_PADUSE APE_RAT APE_PAPAN APE_RAT APE_ABIT APE_CAVPO C60340 V13652	51 RFWDYL RWVQ RFWDYL RWVQ	61 TLSdQVQEEL SLSDQVQEEL TLSDQVQEEL TLSDQVQEEL TLSEQVQEEL TLSEQVQEEL TLSEQVQEEL TLSDQVQEEL TLSDQVQEEL TLSDQVQEEL TLSDQVQEGV TQTDGMVQNI	71 I \$ \$ QVTQELT LSTKVTQELT QSSQVTQELT QSSQVTQELT LSPQVTQELT LSPQVTQELT LSSQVTQELT LSSQVTQELT LSSQVTQELT LSSQVTQELT LSSQSRELD	81 aLmeeTMKEV ELIEESMKEV ALMEETMKEV VLMEDTMTEV TLMDETMKEL ALMDETMKEL ALMDETMKEL MLMEETMKEV ALMDETMKEV ALMDETMKEV TLITDTMAEL	91 KAYKSELEGQ KAYKELEGQ KAYKELEEQ KAYKELEEQ KAYKELEEQ KAYKELEEQ KAYKSELEEQ KAYKSELEEQ KAYKSELEEQ KAYKSELEEQ KAYKAELEKE KAYKAELEKE KAYKAELDEQ SSYSENUQTQ	Δ
				Q	uit Hide H	lelp

Chimera Demonstration...

Demo disclaimer:

- Murphy's Law in effect
 - The probability that something will go wrong is directly proportional to number of people in this room

Hardware:

- Dell laptop 1.2Ghz Pentium 3 w/512MB RAM
- NVIDIA Quadro2 Go 3-D graphics chip

Software:

- Windows 2000
- · OpenGL, Python, Tkinter
- Chimera beta version 1

Summary

We are in the midst of a profound and exciting new era in computational biology

The data made available by the various genome and structural genomics projects will occupy researchers for decades to come

High performance computing and the internet play a critical role in the navigation, analysis, and dissemination of this data and the resulting scientific knowledge

The potential impact on drug development and treatment of human disease is enormous

Acknowledgements

Collaborators & Staff

 Dr. Conrad Huang, Dr. Elaine Meng, Prof. Patricia Babbitt, Prof. Kathy Giacomini, Greg Couch, Eric Pettersen, Al Conde, Tom Goddard, Susan Johns, Doug Stryke, Michiko Kawamoto

NIH National Center for Research Resources • P41-RR01081

National Institute of General Medical Sciences • GM61390

Additional information

RBVI: www.cgl.ucsf.edu

PMT project: www.pharmacogenetics.ucsf.edu

Chimera: www.cgl.ucsf.edu/chimera