Picture System 2
Graphics Subroutine Package

UNIX™ Edition

September 1980

(minor revisions March 1982)

Computer Graphics Laboratory
School of Pharmacy
University of California
San Francisco, CA 94143

PERMUTED INDEX

pscopy: hardcopy generator for Picture System
psinit: initialize the Picture System

pserrs: expand cryptic Picture System

psfini: close all open Picture System

intro: introduction to Picture System

psreset: reset the Picture System

getchr: read from Picture System

drawps: draw an object stored in Picture System
dist3: distance between two

vv3, vxv3: dot and cross product of two

dotat: draw a dot at an

lineto: draw a line in

movelo: move in

siasync: synchronize stereo image

sia, left, right: stereo image

analog: read the value of an

cossin: compute cosine and sine for an

angle, dihed: calculate
operalion.l

matrix manipulations.
manipulations. o oo
blink: make all subsequent lines

psbuf: set refresh
dowrbuf, nowrbuf:
rot:

getrot, setrot:

scale:

getscl, setscl:

tran:

gettrn, settrn:

angle, dihed:

ispchd: is pen
analog: read the value of an analog
cload:

chargn: define a PS2
charsz: update

oricntation.

psfini:

huesat: specify

cossin:

dot: draw a dot at a relative
dotal: draw a dot at an absolute
draw2d: draw two-dimensional
draw3d: draw three-dimensional
drawdd: draw homogeneous
rdtc: read transformed

cossin: compute

nargs: argument

makeob:

makeps, maksps:

psreset: reset the Picture System 2 in time of
vv3, vxv3: dot and

pserrs: expand

2 Graphics Subrouline Package.
2intimeoferisis. 0000

3-dimensional points. L.
3-dimensional vectors.
absolute coordinate.
abBOlULE BPACE. « & o v+ v v e s s i s s Ba e e e
absolutespace.l
BIEMNAION, v s 4 womis 3 s momes = wiaom moma wmomss @ e
altlernatorroutines.
analog channel.
analog: read the value of an analog channel.

EORIEEL. cowon v wnwiw o oon w owos = wnene wowEe wouma w se
apndps: re-initiale makeps/maksps modeof
argumentcounl.o e
bldcon: perform transformation operations and
bldps: perform transformationmatrix
blink.
blink: make all subsequent lines blink.
buffermode.o oo
buffer text outpul.
build arotationmatrix.
build a rotation transformation.
build a scaling matrix.
build a scaling transformation.
build a translation matrix.

character generatorsupport.
charactersel. . & & .« . o v i v ei b e e e Vs
character size, font and orientation.
chargn: define a PS2 character sel.
charsz: update character size, fontand
cload: character generator support.

close all open Picture System 2 files.
colorand saturation.

coordinate data.
coordinate data.
coordinate data.
coordinate data.
correct for roundoff errorsinrotation
cosine and sine foranangle.
cossin: compute cosine and sine foran angle.

create a Linear Display List.
create a Picture Memory display list,
cross product of two 3-dimensional vectors.
cryplic Picture System 2 error messages.

pscopy(1G)
psinil(3G)
pserrs(1G)
psfini(3G)
intro(3G)
psreset(1G)
getchr(3G)
drawps(3G)
dis13(3GU)
w3(3GU)
dotat(3G)
lineto{3G)
moveto(3G)
siasync(1G)
sia(3G)
analog(3G)
analog(3G)
cossin(3G)
angle(3GU)
angle(3GU)
apndps(3G)
nargs(3G)
bldcon(3G)
bldps(3G)
blink(3G)
blink(3G)
psbuf(3G)
dowrbuf(3G)
rot(3G)
getrot(3G)
scale(3G)
getscl(3G)
tran(3G)
gettm(3G)
angle(3GU)
ispchd(3G)
analog(3G)
cload(3G)
chargn(1G)
charsz(3G)
chargn(1G)
charsz(3G)
cload(3G)
psfini(3G)
huesat(3G)
cossin(3G)
dot(3G)
dotat(3G)
draw2d(3G)
draw3d(3G)
draw4d(3G)
rdtc(3G)
errcheck(3GU)
cossin(3G)
cossin(3G)
nargs(3G)
makeob(3G)
makeps(3G)
psreset(1G)
w3(3GU)
pserrs(1G)

cursor: display a

tablet: retrieve data tablet
draw2d: draw two-dimensional coordinate
draw3d: draw three-dimensional coordinate
drawdd: draw homogeneous coordinate
nufram: display new frame
rdtc: read transformed coordinate
tablet: retrieve
chargn:
joystick: simulated interactive joystick
angle,
scopes: select Picture System
Cursor:
drawob: output a Linear
makeob: create a Linear
makeps, maksps: create a Picture Memory
slopob: terminate a Linear
stopps: terminate a Picture Memory
hittag, hitset, hitclr:

subps:
rsetps: reset Picture Memory
setps: initialize for Picture Memory
nufram:

text:

POMME e & s o momes & eod o Sws # e @ s @

VECLOTS. « + v v v v e v e e e e e e e vv3, vavd:
dol: draw a
dotat: draw a

pserrs: expand cryptic Picture System 2
xerrors: expanded format for

errcheck: correct for roundoff

pserrs:

XeITOrs:

pespsh, pgspop, pgsrd: manipulate
psfini: close all open Picture System 2
charsz: update character size,

xerrors: expanded

nufram: display new

Systemnobjects. . . .- . ih v s e s o a wa G e
fswitch: read

lights: set lights on

setlit: set lights on

inst:

master:

speed: set the Line

pscopy: hardcopy

cload: character

transformation.

cursor: display a cursor.
cursol position.

data tablet cursor position. oL L
define a PS2 character set.

Display List. oo
display list.,
Display List, . .o % ¢ oo 6 vh @ @ 5w s e e s B
display list hit testing.
display list structuring.
Display Lists.
Display Lists.
display new frame data.
display text.
dist3: distance between two 3-dimensional
distance between two 3-dimensional points.
dot and cross product of two 3-dimensional
dot atarelative coordinate.
dot at an absolute coordinate.
dot: draw a dot at a relative coordinate.
dotat: draw a dot at an absolute coordinate.
dowrbuf, nowrbuf: buffer textoutput.
draw a dot at a relative coordinate.

draw a dot at an absolute coordinate.
draw a line in absolute space.
draw a line in relative space. L
draw an object stored in Picture System2
draw homogeneous coordinatedata.
draw three-dimensional coordinatedata.
draw two-dimensional coordinate data.
draw2d: draw two-dimensional coordinate data.
draw3d: draw three-dimensional coordinate data.
draw4d: draw homogeneous coordinate data.
drawingspeed. . . & o5 s iwa & e v e e s B
drawob: oulput a Linear Display List.
drawps: draw an object stored in Picture System
errcheck: correct for roundoff errors in
CITOr messages.
error printout.

errors in rotation matrices.
expand cryplic Picture Syslem 2 error messages.
expanded format forerrorprintout.
file stack.

fontand orientation.
format forerrorprintout.o L. L
framedati. -a s sb e s Bmis ke E e s b
fswitch: read Function Swilches.
fulsub: subroutine to output segmented Picture
Function Switches.
Function Switches.
Function Switches.
generate instancing transformations.
generate master transformations.
Generatordrawing speed.
generator for Picture System2.
generator support.
getchr: read from Picture System 2 keyboard.
getknob: get values of interactive knobs.
getrot, setrot: buildarotation
getscl, setscl: build a scaling transformation.

cursor(3G)
cursor(3G)
tablet(3G)
draw2d(30)
draw3d(3G)
drawdd(3G)
nufram(3G)
rdic(3G)
tablet(3G)
chargn(1G)
joystick(3GU)
angle(3GU)
scopes(3G)
cursor(3G)
drawob(3G)
makeob(3G)
makeps(3G)
stopob(3G)
stopps(3G)
hittag(3G)
subps(3G)
rsetps(3G)
setps(3G)
nufram(3G)
text(3G)
dist3(3GU)
dist3(3GU)
vv3(3GU)
dot(3G)
dotat(3G)
dol(3G)
dotat(3G)
dowrbuf(3G)
dot(3G)
dotat(3G)
lineto(3G)
line(3G)
drawps(3G)
drawdd(3G)
draw3d(3G)
draw2d(3G)
draw2d(3G)
draw3d(3G)
draw4d(3G)
speed(3G)
drawob(3G)
drawps(3G)
errcheck(3GU)
pserrs(1G)
xerrors(3G)
errcheck(3GU)
pserrs(1G)
xerrors(3G)
pestack(3GU)
psfini(3G)
charsz(3G)
xerrors(3G)
nufram(3G)
fswitch(3G)
fulsub(3GU)
fswitch(3G)
lights(3G)
setlit(3G)
inst(3G)
master(3G)
speed(3G)
pscopy(1G)
cload(3G)
getchr(3G)
getknob(3GU)
getrot(3G)
getscl(3G)

transformation.
intro: introduction to Picture System 2
pscopy:

hitest:

hittag, hitset, hitclr: display list

hitwin: specify a

hittag, hitset,

testing.

drawdd: draw

siasync: synchronize sterco
sia, left, right: stereo

selps:

psinit:

inst: generate

joystick: simulated

getknob: get values of

Graphics Subroutine Package.
Subroutine Package.

getchr: read from Picture System 2
getknob: get values of interactive
sia,

lights: set

setlit: sel

speed: set the

lineto: draw a

line: draw a

ixture: set

drawob: output a

makeob: create 8

stopob: terminate a

blink: make all subsequent

drawob: output a Linear Display

makeob: create a Linear Display

makeps, maksps: create a Picture Memory display
stopob: terminate a Linear Display

stopps: terminate a Picture Memory Display
hittag, hitset, hitclr: display

subps: display

rsetps: reset Picture Memory Display

setps: initialize for Picture Memory Display
umt:

lookat: produce

apndps: re-initiate

makeps,

mmu: Memory

pespsh, pgspop, pgsrd:

perform transformation operations and matrix
bldps: perform transformation matrix

load a unit matrix into the Picture System

master: generate

correct for roundoff errors in rotation
rol: build a rolation

scale: build a scaling

tran: build a translation

- iii -

getirn, settrn: build a translation
Graphics Subroutine Package.
hardcopy generator for Picture System2.

RItTRStING, & « wovvie & weow wimie w soe = susie = mpe @ eos
hitwindow.cc0.n
hitelr: display list hit testing.
hitest:: hittesting. v« v v v v o e
hitsel, hitclr: display list hit testing.
hittag, hitset, hitclr: display list hit
hitwin: specify ahit window.
homogeneous coordinatedata.
huesat: specify color and saturation.
imagealternator.
image alternatorroutines.
initialize for Picture Memory Display Lists.
initialize the Picture System2.
inst: generate instancing transformations.
instancing transformations.
interactive joystick device. .
interactive knobs.
intro: introduction to Picture System 2
introduction to Picture System 2 Graphics

iswset:isswitchset?..
joystick device.
joystick: simulated interactive joystick
jump to another Picture Memory object.
jumpps: jump to another Picture Memory object.

left, right: stereo image alternator routines.
lights on Function Switches.
lights on Function Switches.
lights: set lights on Function Switches.
line: draw a line in relativespace.
Line Generator drawing speed.
line in absolule space.
line in relativespace.
line texture.
Linear Display List.
Linear Display List.
Linear Display List.

listhittesting.
BSUSIUCIURING.« « . v i e vt e et e e e e e e
Lists.
Lists.
load a vnit matrix into the Picture System MAP.
lookatoperalors.0 se e e
lookal: produce lookat operators.
makeob: create a Linear Display List.
makeps, maksps: create a Picture Memory display
makeps/maksps mode of operation.
maksps: create a Picture Memory display list.
Management Unit.
manipulate filestack.
manipulations.
manipulations. L L0

masler: generate master transformations.
master transformations. L

gettrn(3G)
intro(3G)
pscopy(1G)
hitest(3G)
hittag(3G)
hitwin(3G)
hittag(3G)
hitest(3G)
hittag(3G)
hittag(3G)
hitwin(3G)
drawdd(3G)
huesal(3G)
siasync(1G)
sia(3G)
setps(3G)
psinit{3G)
inst(3G)
insl(3G)
joystick(3GU)
getknob(3GU)
intro(3G)
intro(3G)
ispchd(3G)
iswsel(3G)
joystick(3GU)
joystick(3GU)
jumpps(3G)
jumpps(3G)
getchr(3G)
getknob(3GU)
sia(3G)
lights(3G)
setlitf(3G)
lights(3G)
line(3G)
speed(3G)
lineto(3G)
line(3G)
txture(3G)
drawob(3G)
makeob(3G)
stopob(3G)
blink(3G)
lineto(3G)
drawob(3G)
makeob(3G)
makeps(3G)
stopob(3G)
stopps(3G)
hittag(3G)
subps(3G)
rsetps(3G)
setps(3G)
unit(3GU)
lookat(3GU)
lookal(3GU)
makeob(3G)
makeps(3G)
apndps(3G)
makeps(3G)
mmu(3G)
pestack(3GU)
bldcon(3G)
bldps(3G)
unit{3GU)
master(3G)
master(3G)
errcheck(3GU)
rot(3G)
scale(3G)
tran(3G)

trpose: transpose of a Picture System

unit: load a unit

bldcon: perform transformation operations and

bldps: perform transformation

pop: pop the

push: push the

draw an object stored in Picture System 2

wbimem, rbimem: wrile back to

makeps, maksps: create a Picture

stopps: terminate a Picture

rsetps: reset Picture

selps: initialize for Picture

mmu:

jumpps: jump to another Picture

menusel, menucheck, menu_box: Picture System

menusel, menucheck,

package. e e e s menuset,
mEnUPackage. . . ¢ v s 0 . v e s e ea s e s e e s

pserrs: expand cryptic Picture System 2 error

psbuf: set refresh buffer

stopwb: terminate write back
apndps: re-initiate makeps/maksps
moveto:

move:

dowrbuf,

jumpps: jump to another Picture Memory
drawps: draw an

subroutine to output segmented Picture System
psfini: close all

apndps: re-initiate makeps/maksps mode of
bldcon: perform transformation

lookat: produce lookat

charsz: update character size, font and
dowrbuf, nowrbuf: buffer text

drawob:

fulsub: subroutine to

to Picture System 2 Graphics Subroutine
menucheck, menu_box: Picture System menu
ispchd: is

bldps:

manipulations. L bldcon:
pespsh,

pespsh, pgspop,

makeps, maksps: create a

stopps: terminate a

rselps: reset

setps: initialize for

jumpps: jump to another

pscopy: hardcopy generator for
psinit: initialize the

pserrs: expand cryplic

psfini: close all open

intro: introduction to

psresel: reset the

getchr: read from

drawps: draw an object stored in
scopes: select

unit: load a unit matrix into the
transpose, trpose: transpose of a
menusel, menucheck, menu_box:
fulsub: subroutine to output segmented
psstat: report

dist3: distance between two 3-dimensional

tablet: retrieve data tablet cursor

-1v -

1711 5 5 transpose,
matrix into the Picture SystemMAP.
matrix manipulations.
matrix manipulations.

Memory display list.

Memory Display List.
Memory Display Lists.
Memory Display Lists.
Memory Management Unit.
Memory object.
MENUPACKAGE. . . .+ o v v s i e e e e e e e s
menu_box: Picture System menu package.
menucheck, menu_box: Picture Systemmenu
menuset, menucheck, menu_box: Picture System
MESSAGES.« 4 . . . e e e e e e e e e e
mmu: Memory Management Unit.

mode of operation. L
move in absolute space.
move inrelativespace. a 0.
move: move in relativespace. L
moveto: move in absolute space.
nargs: argumentcount. e . e a e e e . .
nowrbuf: buffer text cutput.
nufram: display new frame data.

open Piclure System 2 files.
OPeration. « . : « sov v wia & w4 & sece v s wwis w
operations and matrix manipulations.
operalors.

orientation.
oufpubico; & @a & Wik © IS 9 A G EENE SRR SRE B S
output a Linear Display List.
output segmented Picture System objects.

Packape: oo & o5k e & By ¥ SR S intro: introduction
ACKAZE. e e e e e e e menuset,
]';en c}ﬁmged?

perform transformation operations and matrix
paspop, pgsrd: manipulate file stack.
pespsh, pgspop, pgsrd: manipulate file stack.
pgsrd: manipulate file stack.
Picture Memory display list.
Picture Memory Display List.
Picture Memory Display Lists.
Picture Memory Display Lists.
Picture Memory object. Lo
Picture System 2.
Picture System 2.
Picture System 2 error messages. . . . - -
Picture System2files.
Picture System 2 Graphics Subroutine Package.
Picture System 2 in time of crisis.
Picture System2 keyboard.
Picture System2memory.
Picture System Display.
Picture System MAP.

Picture Systemmatrix.
Picture System menu package.
Picture Systemobjects. L.
Picture System statistics.
POINLE. . oo v w v sovie o8 8 bid e wmie Sd 5 s e
pop: pop the matrix stack.
popthematrixstack.
POSIION. o o 2 o v v posd e s b e e e s

transpose(3GU)
unit(3GU)
bldcon(3G)
bldps(3G)
Pop(3G)
push(3G)
drawps(3G)
wbtmem(3G)
makeps(3G)
stopps(3G)
rsetps(3G)
setps(3G)
mmu(3G)
jumpps(3G)
menu(3GU)
menu(3GU)
menu(3GU)
menu(3GU)
pserrs(1G)
mmu(3G)
psbuf(3G)
stopwb(3G)
apndps(3G)
moveto(3G)
move(3G)
move(3G)
moveto(3G)
nargs(3G)
dowrbuf(3G)
nufram(3G)
jumpps(3G)
drawps(3G)
fulsub(3GU)
psfini(3G)
apndps(3G)
bldcon(3G)
lookat(3GU)
charsz(3G)
dowrbuf(3G)
drawob(3G)
fulsub(3GU)
intro(3G)
menu(3GU)
ispchd(3G)
bldps(3G)
bldcon(3G)
pestack(3GU)
pestack(3GU)
pastack(3GU)
makeps(3G)
stopps(3G)
rsetps(3G)
setps(3G)
jumpps(3G)
pscopy(1G)
psinit(3G)
pserrs(1G)
psfini(3G)
intro(3G)
psresel(1G)
getchr(3G)
drawps(3G)
scopes(3G)
unit(3GU)
transpose(3GU)
menu(3GU)
fulsub(3GU)
psstat(1G)
dist3(3GU)
pop(3G)
pop(3G)
tablet(3G)

pot: a simulated

xerrors: expanded format for error
lookat:

vv3, vxv3: dot and cross

chargn: define a

BHEIR: « svai @ s W Ree © ViROE SRWTE W EEE W smem B

push:
wbtmem,

getchr:

fswitch:

analog:

rdic:

psbuf: set

apndps:

dot: draw adot at a
line: draw a line in
move: move in
psstat:

rselps:

psreset:

tablet:

sia, left,

errcheck: correct for roundoff errors in
rot: build a

getrot, setrot: build a

errcheck: correct for

sia, left, right: stereo image allernator

huesat: specify color and

scale: build a
getscl, setscl: build a

vwport: sel

fulsub: subroutine to output
scopes:

chargn: define a PS2 character
iswset: is swilch

lights:

setlit:

txture:

psbuf:

vwporl:

window:

joystick:

pot: a

cossin: compute cosine and
charsz: update character

line: draw a line in relative
lineto: draw a line in absolute
move: move in relative
moveto: move in absolute
hitwin:

huesat:

pot: a simulated potentiometer.
polentiometer.- el
prinfoul. e e e e
produce lookat operators.
product of two 3-dimensional vectors.
PS2 character sel.
psbuf: set refreshbuffermode.
pscopy: hardcopy generator for Picture System
pserrs: expand cryptic Picture System 2 error

psfini: close all open Picture System 2 files.
psinit: initialize the Picture System2.
psreset: reset the Picture System 2 in time of
psstat: report Picture System statistics.
push: push the matrix stack.
push the matrix stack.
rbimem: write back tomemory. oL
rdtc: read transformed coordinate data.
read from Picture System 2 keyboard.
read Function Switches.
read the valve of an analog channel.
read transformed coordinatedata.
refreshbuffermode.
re-initiate makeps/maksps mode of operation.
relative coordinate.ol s
relativespace.,o oo
relativespace. e e e
report Picture System statistics.
reset Picture Memory Display Lists.
resel the Picture System 2 in time of crisis.
retrieve data tablet cursor position.
right: stereo image alternator routines.
rot: build arotation matrix.
rolation Matrices.0 . i e e e
rotation matrix.
rotation transformation.
roundoff errors in rotation matrices.

rseips: reset Picture Memory Display Lists.
saturation. L Lo oo e e e
scale: build a scaling matrix.
scalingmatrix. L. ..
scaling transformation.o .
scopes: select Picture System Display.
SCREENVIEWPOTL. o o e s
segmented Picture System objects.
select Picture System Display.
BEL. & cimow swia ow e ow osmenm wmpmus w o s tmew mowow

set lights on Function Switches.
set lights on Function Switches.
setlinetexture.. ¢ .0 oo i v o v v b e e s n e
set refresh buffer mode.
sel screen viewport.
set the Line Generator drawingspeed.
setwindow. il e
setlit: set lights on Function Switches.
setps: initialize for Picture Memory Display
setrot: build arotation transformation.
setscl: build a scaling transformation.
settrn: build a translation transformation.
sia, left, right: stereo image alternator
siasync: synchronize sterco image alternator.
simulated interactive joystick device.
simulated polentiometer.o
sineforanangle.
size, font and orientation.

pol(3GU)
pot(3GU)
xerrors(3G)
lookat(3GU)
w3(3GU)
chargn(1G)
psbuf(3G)
pscopy(1G)
pserrs(1G)
psfini(3G)
psinil(3G)
psreset(1G)
psstat(1G)
push(3G)
push(3G)
wbtmem(3G)
rdic(3G)
getchr(3G)
fswitch(3G)
analog(3G)
rdte(3G)
psbuf(3G)
apndps(3G)
dot(3G)
line(3G)
move(3G)
psstat(1G)
rsetps(3G)
psreset(1G)
tablet(3G)
sia(3G)
rot(3G)
errcheck(3GU)
rot(3G)
getrot(3G)
errcheck(3GU)
8ia(3G)
rsetps(3G)
huesat(3G)
scale(3G)
scale(3G)
getscl(3G)
scopes(3G)
vwport(3G)
fulsub(3GU)
scopes(3G)
chargn(1G)
iswset(3G)
lights(3G)
selliy(3G)
xture(3G)
psbuf(3G)
vwporl(3G)
speed(3G)
window(3G)
setlil(3G)
setps(3G)
getrot(3G)
getscl(3G)
gettrn(3G)
sia(3G)
siasync(1G)
joystick(3GU)
pol(3GU)
cossin(3G)
charsz(3G)
line(3G)
lineto(3G)
move(3G)
moveto(3G)
hitwin(3G)
huesat(3G)

speed: set the Line Generator drawing

pespsh, pgspop, pgsrd: manipulate file
pop: pop the matrix

push: push the matrix

psstat: report Picture System

siasync: synchronize

sia, left, right:

drawps: draw an object
subps: display list

introduction to Picture System 2 Graphics
OBIBRISE vome o woe = wow m mswan m wimons mpess e 8 fulsub:
blink: make all

cload: character generator

iswsel: is

fswitch: read Function

lights: set lights on Function

setlit: set lights on Function

siasync:

pscopy: hardcopy generator for Picture
psinit: initialize the Picture

pserrs: expand cryptic Picture

psfini: close all open Picture

intro: introduction to Picture

psreset: reset the Picture

getchr: read from Picture

drawps: draw an object stored in Piclure
scopes: select Picture

unit: load a unit matrix into the Picture
transpose, trpose: transpose of a Picture
menuset, menucheck, menu_box: Picture
fulsub: subroutine to outpul segmented Picture
psstat: report Picture

tablet: retrieve data

stopob:

stopps:

slopwb:

hitest: hit

hittag, hitset, hitclr: display list hit
text: display

dowrbuf, nowrbuf: buffer
ixture: set line
draw3d: draw

getrot, setrot: build a rotation
getscl, setscl: build a scaling
getirn, settrn: build a translation
bldps: perform

manipulations. bldcon: perform
inst: generate instancing

master: generate master

rdtc: read

tran: build a

gettrn, settrn: build a

transpose, Lrpose:

transpose,
draw2d: draw

mmu: Memory Management

unit: load a

charsz:

analog: read the

getknob: get

dot and cross product of two 3-dimensional

- -« T L I T

statistics.
stereo image alternator.
stereo image alternator routines.
stopob: terminate a Linear Display List.
stopps: terminate a Picture Memory Display
stopwb: terminate write back mode.
stored in Picture System2 memory.
structuring.
subps: display list structuring.
Subroutine Package.
subroutine to output segmented Picture System
subsequent linesblink.

switch set?.
Swilches.

Switches.

Switches.

synchronize stereo image allernator..
System 2.
System 2.
System 2 error messages. oL .. e
System2files.l Loa e ed s e v e
System 2 Graphics Subroutine Package.
System 2 in time of crisis.
System 2 keyboard.
System2memory.
SyaternDisplay. . i . coiw ves v hee wew o ae e s
SystemMAP. o oo

System objects.
Systemstatistics. 0oL
tablet cursor position.
tablet: retrieve data tablet cursor position.
terminate a Linear Display List.
terminate a Picture Memory Display List.
terminate write back mode. L0 L L.

text:displaytext. 0oL
text output,
texture.
three-dimensional coordinate data.
tran: build a translationmatrix.
transformation. oL il e e
transformation.
ranBfOMMBON: = civnn & s 5 sd B S S SN0 W B S0 W 8
transformation matrix manipulations.
transformation operations and matrix
transformations.
transformations.
transformed coordinate data.
translation matrix.
translation transformation.
transpose of a Picture Systemmatrix.
transpose, trpose: transpose of aPicture
trpose: transpose of a Picture System matrix.
two-dimensional coordinatedata.
txture: sel line texture.
Unit.
unit; load a unit matrix into the Picture . . .,
unit matrix into the Picture SystemMAP.
update character size, fonl and orientation.
value of ananalogchannel.
values of interactiveknobs.

speed(3G)
specd(3G)
pestack(3GU)
pop(3G)
push(3G)
psstal(1G)
siasync(1G)
sia(3G)
stopob(3G)
stopps(3G)
stopwb(3G)
drawps(3G)
subps(3G)
subps(3G)
intro(3G)
fulsub(3GU)
blink(3G)
cload(3G)
iswset(3G)
fswitch(3G)
lights(3G)
setlit(3G)
siasync(1G)
pscopy(1G)
psinit(3G)
pserrs(1G)
psfini(3G)
intro(3G)
psreset(1G)
getchr(3G)
drawps(3G)
scopes(3G)
unit(3GU)
transpose(3GU)
menu(3GU)
fulsub(3GU)
psstat(1G)
tablet(3G)
tablet(3G)
stopob(3G)
stopps(3G)
stopwb(3G)
hitest(3G)
hittag(3G)
text(3G)
text(3G)
dowrbuf(3G)
txture(3G)
draw3d(3G)
tran(3G)
getrot(3G)
getscl(3G)
gettrn(3G)
bldps(3G)
bldcon(3G)
inst(3G)
master(3G)
1dic(3G)
tran(3G)
gettrn(3G)
transpose(3GU)
transpose(3GU)
transpose(3GU)
draw2d(3G)
txture(3G)
mmu({3G)
unit(3GU)
unit(3GU)
charsz(3G)
analog(3G)
getknob(3GU)
vv3(3GU)

vwport: set screen
3-dimensional vectors. 0. ...

3-dimensional vectors. vvi,

hitwin: specify a hit
window: sel

stopwb: terminate
wbimem, rbtmem:

- vii -

viewporl. d s
vv3, vxv3: dot and cross product of two .
vwport: set screen viewport.
vxv3: dot and cross product of two . . .

window.
window: set window.
writebackmode.
wrile back to memory.
xerrors: expanded format for error printout

vwport(3G)
vv3(3GU)
vwporl(3G)
vv3(3GU)
whbtmem(3G)
hitwin(3G)
window(3G)
window(3G)
stopwb(3G)
wbtmem(3G)
xerrors(3G)

INTRO(3G)

NAME

UNIX Programmer’s Manual INTRO(3G)

intro — introduction to Picture System 2 Graphics Subroutine Package

SYNOPSIS

#include <ps.h>

DESCRIPTION

This sub-section describes procedures found in the Picture System 2 Graphics Subroutine Package
(PS2GSP) and the Graphics Utility Library. Procedures are divided into various libraries dependent upon
both the implementation language of the calling procedure and the section number at the top of the page:

(3G)

(GU)

DIAGNOSTICS

These procedure form the basic interface to the Picture System 2 and allow the user access to all
interactive devices and the full hardware capabilities of the Picture Processor. The procedures are
available in two libraries, libg and libgf. The link editor ld(!) searches the C version of the library
under the ‘-1g’ option and the 77 version under ‘-lgf’. Macro,-constant and typedef declarations
may be obtained from the <ps.h> include file. These procedures closely match those available
from Evans & Sutherland for DEC operating systems.

These procedures implement many of the commonly needed advanced functions found in graphics
programs. Examples include pseudo-potentiometers and joysticks, ‘lightpen’ menus and
geometric operations. The C version of the library is libgu and the f77 version is libguf (Id options
“Igu’ and ‘-lguf’ respectively). Many of these procedures also require functions from the UNIX
math library, libm. This library is searched automatically by the Fortran compiler f77(1), but must
be invoked with the ‘-Im’ option from C compiler cc(1).

Error detection is performed by all of the PS2GSP procedures to ensure program integrity and to facilitate
program debugging. Errors are reported by a message on the standard error output, stderr, in the format:

Error x detected in graphics subroutine y

followed by a call to the UNIX abort(3) subroutine in order to produce a core image for debugging pur-
poses. In this case x is the type of error which was encountered. It usually is one of the following:

BADCOUNT (=0) a call has been made to a procedure with an invalid number of parameters

specified.
BADVALUE (=1) a procedure call has been made with an invalid parameter value.
HARDERR (=2) a hardware I/O error has occurred (this is very rare).
OVERFLOW (=3) a finite size array, such as a display list for makeob(3G), has overflowed its
boundary.
BADCALL (=4) an illegal or unexpected procedure call.

BADARRAY (=5) an array, such as a display list for drawob(3G), does not have the correct
internal format.

BADSTACK (=6) an attempt has been made to push the PS2 hardware matrix stack more
than 11 levels deep or to pop the stack when it is already at the top level.

The second number in the error message, y, denotes the procedure number in which the error occurred.
The name may be found by scanning the procedure summary list below or, alternatively, invoking the
pserrs(1G) shell script. This command reports both the mnemonic name for the type of error and the name
of the procedure in which the error occurred. A stack trace may optionally also be produced.

An alternative error printout is also available. Calling the subroutine xerrors(3G) enables this expanded
form of error reporting. This method is much preferred over the numerical method detailed above, but con-
sumes additional main memory space for storage of messages. When the host is a VAX processor and
memory space is not a critical resource, this method of error reporting is selected automatically.

7th Edition

local 1

INTRO(3G) UNIX Programmer’s Manual INTRO(3G)

F77 DIFFERENCES

The synopsis for usage of the individual procedures is typically oriented toward the C programmer. To call
these same routines from an 77 program it usually suffices to distinguish between which are functions and
which are true subroutines, inserting the word “‘call’” in front of the latter. Also, a limitation of six charac-
ters per subroutine name is silently enforced by the f77 compiler so that routines known by longer names in
C must be truncated to six characters in f77 programs (e.g. ‘‘autocur(1);”” in C becomes “‘call autocu(1)"’
in £77). Lastly, many global variables accessable in C are inaccessable in f77. To get around this limita-
tion either optional arguments must be supplied to the particular subroutine or a simple interface procedure
must be written in C. For example, in 77 there is no way to access the global character array _pskbrd in
connection with the gerchr subroutine, although by supplying the optional bufp and size arguments the
desired data is made equivalently available. This last limitation could be alleviated at the expense of res-
tricted common block names, although this is currently considered undesirable.

{usrfinclude/ps.h C “‘include’ file
fusr/lib/libg.a C ps2gsp library
fusr/lib/libgf.a 77 ps2gsp library
fust/lib/libgu.a C utility library
fusr/lib/libguf.a f77 utility library

SEE ALSO
psinit(3G), pserrs(1G), intro(3), 1d(1), ce(1), f77(1),
Picture System 2 User’s Manual
Principals of Interactive Graphics, W.M. Newman and R.F. Sproull, 2nd edition

ACKNOWLEDGEMENTS
Mickey Mantle of Evans and Sutherland and Authur Olson of the University of California, San Diego pro-
vided much insite into the operation of the Picture System and were instrumental in the original release of
this software package; Mickey’s patience during countless number of telephone calls is especially appreci-
ated. Ollie Jones of UCSF provided many of the general purpose routines for the Graphics Utility Library.
Conrad Huang, also of UCSF, did most of the conversion for the f77 version of the package. Funding for
this project was provided to Robert Langridge, principle investigator, by the National Institutes of Health,
Grant #RR-1081.

Thomas E. Ferrin, February 1977

7th Edition local 2

INTRO(3G) UNIX Programmer’s Manual INTRO(3G)

SUBROUTINE SUMMARY
The following is a list of subroutines currently available:

Picture System 2 Graphics Subroutine Package 5 y]
Error § Calling Sequence Error # " Calling Sequence

42 analog(knob)) master(l, 1, b, t [[w]) - 2D 1
51 apndps() 7 master(l, 1, b, t, h, y [[w]) --- 3D

29 | bldcon(type [,&matrix]) 11 move(x, y [:2))
206 | bldpstype, ps2ioc) Tn moveto(x, y [,2]))

19 | blink(status) 27 nufram()

17 charsz(size, tilt) 10 pop()]
30 | cossinangle, &cosine, &sine) 28 | psbuf(nbuffers)

24 | cumor([&x, &y [&ipen])) - | psfini()]
20 dash(slatus) 1 psinit{[refresh, update]) |
13 | dot(x, y [2) 9 | push())]
13 | dota(x,y Lz))) 36 thtmem(&array, maxlen, &lenpir [, &fulsub]) |
20m dowrbuf{&buffer, size) 36 rdte(ps2loc, &pdploc)

14 | draw2d(&data, npoints, fsml, fsm2, z [,w)) 4 rol(angle, axis)

15 drsw;d(&dala, npoints, fsm1, fam2 [,w]) - rsetps()

16 draw4d(&data, npoints, fsml, fsm2) 6 scale(x, y, z [,\w])

35 | drawob(&array) 22 scopes(aumber)

54 | drawps(name) i 37 setlit(number, status)

37 fswitch([group]) 55 setps(; limit [,nobjects, &array])

43 getchr([&buffer, &count]) 57 setrol(ps2loc, angle, axis)

|30 | getrot(&array, angle, axis) 58 setscl(ps2loc, scalex, scaley, scalez [,w])
—32 gelscl{&array, ica_l-cx. scaley, scalez [,w]) 59 settm(ps2loc, tranx, trany, tranz [,w])

31 | gettm(&armay, tranx, trany, tranz [w)) 208 sia(flag)

26 hitest(slatus) 21 speed(value)

25 hitwin(x, y, size [,w]) 34 stopob()

21 huesat(hue [,sat]) 52 stopps()

8 inst(l, r, b, t [h Ly [.W]]]) 36 stopwhby(}
205 ispchd([&ipen]) 53 subps(name)

37 iswset(number) 23 tablet{[&x, &y [, &ipen]])

56 jumpps(name) 1§ text([nchars,] &string)

37 lights(valuc [,group]) 5 tran(x, y, z [;w])

12| linex, y [:2)) 20 | tuturelinetype [.cont))

12 | lineto(x, y [,2]) 2 vwport, 1, b, 4, h, y)

33 | makeob(&array, maxlen, &lenptr [&fulsub)) | 36 btmem(type)

51 | makeps(name, &lenptr [&fulsub]) 3 window(l, 1, b, t [W]) -— 3D orthogonal |
51 | maksps(name, &lenptr [,&fulsub]) 3 window(l, 1, b, t, b, y [, [w])) l

7th Edition local

ANALOG (3G) UNIX Programmer’s Manual ANALOG (3G)

NAME
analog — read the value of an analog channel

SYNOPSIS
analog(channel)
int channel;

DESCRIPTION
The analog function is called to read the current value of the specified analog channel and return the rela-
tive amount that the channel has changed since the last time analog was called to read that channel. This
allows the values returned for a given channel to be accumulated in a variable and used for absolute posi-
tioning.
Channel is an integer which specifies the device channel number that is to be read. This value may be 0-7
for the eight Control Dials or 8-13 for the dual Joystick controls.
The value returned from analog is in the range of approximately £32700 and is the relative amount that the
channel has changed since it was last polled. Analog will return with a value of zero the first time it is
called.

SEE ALSO
getknob(3GU)

7th Edition local 1

ANGLE (3GU) UNIX Programmer’s Manual ANGLE (3GU)

NAME
angle, dihed — calculate angles

SYNOPSIS FOR C USAGE
double angle(a, b, ¢);
double a[3], b[3], c[3];
double dihed(a, b, c, d);
double a[3], b[3], c[3], d[3];
SYNOPSIS FOR FORTRAN USAGE
real angle(a, b, ¢)
real a(3), b(3), ¢(3)
real dihed(a, b, ¢, d);
real a(3), b(3), ¢(3), d(3)
DESCRIPTION
Angle returns the angle (in radians) between the vector a-b and the vector b-c.

Dihed calculates the **dihedral’’ angle between the planes defined by the points a, b, ¢ and the points b, c,
d.

SEE ALSO
acos(3M)

DIAGNOSTICS
If any two of the three points are the same (in the case of angle) or if any pair of the four points the same
(in the case of dihed) , a divide check will occur.

7th Edition local 1

APNDPS(3G) UNIX Programmer’s Manual APNDPS (3G)

NAME
apndps — re-initiate makeps/maksps mode of operation

SYNOPSIS
apndps()

DESCRIPTION
This routine is called to re-initiate the makeps/imaksps mode of operation, thus allowing a Picture System 2
display list to be appended to dynamically. This always appends to the last object created by
makeps/maksps.

SEE ALSO
makeps(3G)

7th Edition local 1

BLDCON (3G)

NAME

UNIX Programmer’s Manual BLDCON (3G)

bldcon — perform transformation operations and matrix manipulations

SYNOPSIS

bldcon(type [,matrix])

int type;

ps_t matrix[4][4];
DESCRIPTION

Subroutine bldcon is called to perform all Picture System 2 transformation operations and matrix manipula-

tions.

Matrix is a type ‘ps_t’ array (16 elements in length) which is used as specified by argument 1. This argu-
ment is used only for those operations which need an input matrix (operations 1, 2, 3 and 6).

Type is an integer which specifies the type of call. Valid values for rype and the operation performed for
each are:

NOTE

INITIALIZE (=0)
LOADMAT (=1)

CONCATMAT (=2)

STOREMAT (=3)

POPMAT (=4)
PUSHMAT (=5)
PRECONMAT (=6)

Initialize Matrix Stack pointer and reset the stack length.

Load the Transformation Matrix from the 16-element array specified by
argument 2.

The 16-element array specified by argument 2 is post-multiplied by the
existing Transformation Matrix. The resulting compound matrix is stored
as the new Transformation Matrix.

Store the Transformation Matrix into the 16-element array specified by
argument 2.

Pop the top element of the Matrix Stack into the Transformation Matrix.
Push the Transformation Matrix onto the Matrix Stack.

The current Transformation Matrix is pushed onto the Matrix Stack and
the manspose of this matrix is pre-multiplied by the 16-element array
specified by argument 2. The resulting matrix is again transposed and
stored as the new Transformation Matrix; this effectively pre-multiplies a
transposed input matrix by the current Transformation Matrix. The origi-
nal Transformation Matrix is left stored on the stack.

The actual data sent to the Matrix Arithmetic Processor consists of an ‘RSR’ command word followed, if
necessary, by the 16-element matrix data. For the LOADMAT command an additional data word is output
immediately after the ‘RSR’ command word and before the matrix data. It is important to bear this in mind
when manipulating the lenp parameter for the makeob(3G) and makeps(3G) subroutines.

SEE ALSO

push(3G), pop(3G), transpose(3GU), ‘MATCON’ command in PS2 Reference Manual

7th Edition

local 1

BLDPS(3G) UNIX Programmer’s Manual BLDPS(3G)

NAME

bldps — perform transformation matrix manipulations

SYNOPSIS

bldps(type, ps2loc)
int type;
psaddr_t ps2loc;

DESCRIPTION

The bldps subroutine is called to perform transformation and matrix manipulations in much the same way
as the bldcon subroutine. For bldps, however, the 4x4 matrix data is located in Picture System 2 memory
rather than PDP-11 memory. Type is an integer which specifies the type of call. Valid values for fype and
the operation performed for each are:

LOADMAT (=1) Load the Transformation Matrix.
CONCATMAT (=2) Concatenate the Transformation Matrix.
STOREMAT (=3) Store the Transformation Matrix.

Ps2loc is the location in Picture System 2 memory of the 4x4 matrix to be used as specified by the type
parameter.

SEE ALSO

bldcon(3G)

7th Edition local 1

BLINK (3G) UNIX Programmer’s Manual BLINK (3G)

NAME
blink — make all subsequent lines blink

SYNOPSIS
blink(status)
int status;

DESCRIPTION
Subroutine blink is called to set the Line Generator status such that all subsequent lines drawn will blink or
will not blink, dependent upon the value of the supplied parameter.

If status is 0, then blink mode is turned off, otherwise it is turned on.

SEE ALSO
txture(3G)

7th Edition local 1

CHARGN(1G)

UNIX Programmer’s Manual CHARGN(1G)

NAME

chargn — define a PS2 character set
SYNOPSIS

chargn [fontfile]
DESCRIPTION

Chargn is an interactive graphics program that allows the user to define a character set for the Picture Sys-
tem 2 programmable character generator. Details of the character generator hardware may be found in the
Picture System 2 Reference Manual, Section 2.4.4.

When chargn is invoked it initially displays two menus. The upper ‘character’ menu is used to display the
current individual character definitions and select the desired character(s) for modification. Fontfile, if
given, is the name of a file containing the character definitions of a existing character set. The lower ‘func-
tion” menu selects which editing function is to be performed. The functions are:

exit

initl

init2

fontl
font2

read

write

copy

swap

discard

delete
edit

7th Edition

Terminate the program.

Delete all characters in the current character set and re-initialize chargn for a single-font char-
acter set.

Delete all characters in the current character set and re-initialize chargn for a two-font charac-
ter set.

Select the first font of a character set for editing.

Select the second font of a two-font character set for editing. If chargn was initialized for a
single character font, the message ‘font 2 is non-existent’ is displayed.

Read the given character set from disk and merge it with the current character set. Any char-
acter in the current set that has a cross displayed over it is discarded and replaced with the
corresponding character from the new character set. If the number of fonts in the new charac-
ter set does not match the number of fonts originally specified the message ‘incorrect number
of fonts’ is displayed.

Write the current character set to disk. The filename is specified via the Picture System key-
board.

Copy one character definition to another character’s position. A master character must be
selected followed by an instance character. This mode continues until a new function is
selected.

Interchange the two selected characters in the character set. This mode continues until a new
function is selected.

Specify which characters will be discarded when a new character set is read from disk and
merged with the current character set. Any characters already marked for discard (i.e. have a
cross drawn over them) are restored before the newly selected characters are marked for dis-
card. Prompting for characters continues until another function is selected.

Specify additional characters for discard. Currently discarded characters are not restored.

Create a new character or edit an existing character. A particular character must be selected
and a new set of menus is displayed on the screen. A 16 x 16 character generation definition
grid is used to define the relative position of the next character stroke. The menu items are
used to define the type of command for the next stroke. The commands are:

chdraw Use the chdraw instruction in the definition of a character. The user must select a
point on the definition grid to specify the offset for the draw. A line will be drawn
from the origin of the grid to the point selected and the grid will then move so that
its origin is located at the selected point. The user may then specify the offset for
the next draw. Chargn will remain in this mode until another command is
selected.

local 1

CHARGN (1G)

chmov

rmov

rmove

exit

delete

UNIX Programmer’s Manual CHARGN(1G)

Use the chmov instruction in the definition of a character. Operation is analogous
to the chdraw command.

Use the rmov instruction in the definition of a character. When this command is
selected, the grid will move so that its origin is located at the point in the character
last specified by the previous rmov instruction or, if one doesn’t exist, the begin-
ning of the character. The user must select a point on the definition grid to specify
the offset for the move and the grid will then be located so that its origin is at the
selected point. Chargn will remain in this mode until another command is
selected.

Use the rmoy instruction with the end bit set in the definition of a character. All
characters generated with chargn must end with an rmove instruction. Operation
is analogous to the rmov command except chargn will exit rmove mode after the
desired endpoint is selected.

Place the current character definition into the character set and terminate edit
mode. If the exir command is selected and the character does not end with an
rmove instruction, the message ‘character must end with an rmove’ is displayed
and edit mode is not terminated,

Delete the last instruction from the character definition. The grid will move so
that its origin is at the end position of the previous instruction. If the previous
instruction was a chdraw, the line specified by that instruction will be removed
from the screen. Chargn returns to the previously selected mode after the charac-
ter instruction is deleted.

The files /usri/srcips2gsplps7/c128 and lusrisrc/ps2gsplps7/c256 contain the definitions of the standard con-
trol characters (characters O through 37 octal) for character sets of one and two fonts, respectively. These
files may be read using the read command or by specifying them as fontfile.

SEE ALSO

cload(3G), Picture System 2 Reference Manual, Section 2.4.4

NOTE

Control characters should be modified with care. If a control character is selected, the warning message
‘Warning! control character’ is displayed and the same character must be immediately selected a second
time before modification is permitted.

DIAGNOSTICS

If modification to a character causes the length of the character set to exceed 1024 words, the modification
will not be accepted and the message ‘character set exceeds 1024 instructions’ will be displayed.

BUGS

Characters 0, 3 and 4 cannot be modified. Existing character sets optimized with jms/jmp instructions may

not be modifiable.

7th Edition

local 2

CHARSZ (3G) UNIX Programmer’s Manual CHARSZ(3G)

NAME

charsz — update character size, font and orientation

SYNOPSIS

charsz(size, font)
int size;
struct {char orient; char type; } font;

DESCRIPTION

The charsz subroutine is called to update the character size, orientation and font selection parameters used
by the Character Generator,

Size is an integer which specifies the character size to be selected. Valid values for size are:

0 =0.36 cm (0.14 inches)
1 =0.08 cm (0.03 inches)
2 = 0.15 cm (0.06 inches)
3 =0.25 cm (0.10 inches)
4 = 0.40 cm (0.16 inches)
5 = 0.68 cm (0.27 inches)
6 = 1.14 cm (0.45 inches)
7 = 1.88 cm (0.74 inches)

These sizes give the approximate height of a capital letter (A-Z,0-9) based upon a 28.6 x 28.6 cm (11.2 x
11.2 inch) screen viewing area. It should be noted that subscript and superscript characters are only avail-
able for size = 2 to 7. Subscript or superscript character codes (30-33 octal) used when size = 0 or 1 will
result in an invalid character size selection. Font.orient is a variable which specifies the desired character
orientation. Valid values for font.orient are:

0 = Horizontal character orientation.
1 = 90 degree counterclockwise character orientation,
2 = Italic 90 degree counterclockwise character orientation.

Font.type is a variable which specifies one of four available character fonts, two of which reside in Charac-
ter Generator read-only-memory (ROM) and two of which reside in the user programmable area of Charac-
ter Generator memory (RAM). The valid values for font.type are:

0 = The normal character set.

1 = The ‘fast font’ character set.

2 = The low order RAM character set.
3 = The high order RAM character set.

(See the various ‘defines’ available in the file ps.h for mnemonics of the codes listed above. Note that after
powering up the Picture System 2 the RAM memory will contain garbage and must be loaded with a user
specified character set.)

SEE ALSO

text(3G), getchr(3G), psinit(3G), cload(3G)

7th Edition local 1

CLOAD (3G) UNIX Programmer’s Manual CLOAD (3G)

NAME
cload — character generator support

SYNOPSIS
cload(font)
char font[2048];

cfpush(hi, lo)
int hi, lo;

cfpop(

cginit()
DESCRIPTION
These routines are used to program the Picture System 2 Character Generator:
Cload takes the given character font and loads it into character generator RAM memory.

Cfpush pushes and then loads the 16-level font parameter stack; ki is the high-order six bits of the font
parameter data (intensity and character style) and /o is the low-order six bits (coefficient address). The
coefficient offset is set to zero.

Cfpop restores the previous entry in the font parameter stack.
Cginit reinitializes the character generator to its power-up state.

SEE ALSO
chargn(1G), Picture System 2 reference manual, section 2.4.4 (pgs 2—178 to 2-204)

7th Edition local 1

COSSIN(3G) UNIX Programmer’s Manual COSSIN(3G)

NAME
cossin — compute cosine and sine for an angle

SYNOPSIS
cossin(angle, cos, sin)
int angle;
ps_t *cos, *sin;

DESCRIPTION
The cossin function is called to compute a cosine and sine for the angle specified and returns these values
to the calling routine as a binary fraction (the form expected by the Picture Processor). Cossin is useful for
forming one’s own rotation matrices for use in updating a Linear Display List.

Angle is an integer which specifies that angle of rotation. The angle is given by dividing a circle into 2**16
equal parts, with zero being equal to zero degrees and 2**15-1 equaling 180 degrees. Two’s complement
addition, ignoring overflow, causes the angle to increase counter-clockwise through 360 degrees, when
viewed along the specified axis in the positive direction. Cos and sin are the addresses of ‘ps_t’ type vari-
ables in which the computed cosine and sine, respectively, will be returned.

SEE ALSO
rot(3G), getrot(3G)

7th Edition local 1

CURSOR (3G) UNIX Programmer’s Manual CURSOR (3G)

NAME
cursor — display a cursor

SYNOPSIS
cursor([x, y [,pen]])
int *x, *y, *pen;
and
autocur(status)
int status;

DESCRIPTION
The cursor subroutine is called to display a cursor at the position specified by the parameter list. As an
alternative, the user may specify initiation of automatic cursor mode via autocur. This will cause a cursor
to be displayed upon each frame refresh regardless of the new frame update rate. The cursor displayed in
automatic cursor mode will be at the position determined by the data tablet cursor and is displayed within a
full screen viewport. In either case the cursor displayed consists of a cross whose center is at the desired X
and Y position,

In the call to cursor, x and y are the addresses of integers which specify the X and Y cursor positions. If
these arguments are omitted the default external variables _ix, _iy and _ipen are used. The values of x and
y should be in the approximate range of +32767. Pen is the address of integer which, if specified, should
be the pen information which is returned from the tabler subroutine. The specification of this parameter
allows the cursor to be increased in intensity whenever the pen is down, providing visual feedback of the
pen status.

When calling the autocur subroutine, if status + 0, automatic cursor mode is turned on, otherwise automatic
cursor mode is turned off.

SEE ALSO
tablet(3G)

7th Edition local 1

DIST3(3GU) UNIX Programmer’s Manual DIST3 (3GU)

NAME
dist3 — distance between two 3-dimensional points

SYNOPSIS FOR C USAGE
double dist3(a, b)
double a[3], b[3];

SYNOPSIS FOR FORTRAN USAGE
real dist3(a, b)
real a(3), b(3)

DESCRIPTION
Dist3 calculates the distance between two three-dimensional points (the second-degree norm of their vector
difference).

7th Edition local 1

DOT (3G) UNIX Programmer’s Manual DOT(3G)

NAME
dot — draw a dot at a relative coordinate

SYNOPSIS
dot(dx, dy [,dz])
int dx, dy, dz;
DESCRIPTION
The dot subroutine is called to draw a dot at the specified 2D relative X, Y coordinates or the 3D relative
X, Y and Z coordinates from the current position.

Dx, dy and dz are integers which specify the delta X, Y and Z relative coordinates. If dz is not specified,
the 3-space relative coordinate (dx, dy, 0) is used for positioning instead.

SEE ALSO
dowat(3G)

Tth Edition local 1

DOTAT (3G) UNIX Programmer’s Manual DOTAT(3G)

NAME
dotat — draw a dot at an absolute coordinate

SYNOPSIS
dotat(x, y [,z])
int x, y, z;

DESCRIPTION
The dotat subroutine is called to draw a dot at the 2D absolute X, Y coordinates or the 3D absolute X, Y, Z
coordinates specified.

X, y and z are integers which specify the X, Y and Z absolute coordinate. If z is not specified, the 3-space
point (x, y, 0) is used for positioning instead.

NOTE
Dotat positions the dot with the homogeneous coordinate (IW) = 32767.

SEE ALSO
dot(3G)

7th Edition local 1

DOWRBUF (3G) UNIX Programmer’s Manual DOWRBUF (3G)

NAME

dowrbuf, nowrbuf — buffer text output

SYNOPSIS

dowrbuf(array, size)
ps_t *array;
int size;
and
nowrbuf()

DESCRIPTION

Write buffering is a technique used to decrease the overhead associated with UNIX system calls. It con-
sists of declaring an array to hold the data for several system calls and then passing the array of data with
one call. With the potential for a large number of small word count data transfers to the Picture System,
this technique saves a substantial amount of system overhead. Even on the PDP-11/70 each UNIX system
call takes a minimum of 320 microseconds.

The code to implement write buffering has been incorporated into the Picture System software in such a
way as to be transparent to the user. That is, once the user has declared the location and size of his/her
write buffer he/she need not be concerned with it. The software will buffer output to the Picture System,
flushing the buffer whenever necessary. This includes whenever the buffer becomes full, a nufram call is
made, a drawob call is made with the display list larger than the write buffer array (the display list is
transferred directly in this case), a store matrix command is executed, or an explicit call is made to _fiwrbuf
or nowrbuf (the latter disables the write buffering feature),

Array is a pointer to an array of type ‘ps_t’ in user memory space allocated for storage of the buffered data.
Size is the number of ps_t array elements in the allocated space. For convenience, the BUFRPS(size)
macro defined in <ps.h> may be used to automatically allocate buffer space.

Experience has shown that the optimal buffer size is 100 to 200 elements and that it is advantageous to use
write buffering in nearly every graphics program which uses the Picture System 2.

7th Edition local 1

DRAW2D (3G) UNIX Programmer’s Manual DRAW2D (3G)

NAME

draw2d — draw two-dimensional coordinate data
SYNOPSIS

draw2d(data, num, fl, f2, z [,w])

ps_t *data;

int num, f1, £2, z, w;
DESCRIPTION

The draw2d subroutine is called to draw two-dimensional data coordinate points using the drawing mode
specified in the parameter list. The points to be drawn are arranged in X, Y pairs and are displayed at an
intensity which is dependent upon both the z parameter and the intensity values previously specified for the
hither and yon clipping planes.

Data is a type ‘ps_t’ array (2 * num elements in length) which contains the X, Y coordinate points to be
drawn. These data will be drawn in the drawing mode specified by the arguments f/ and f2 at the intensity
specified by argument z. Num is an integer which specifies the number of coordinate pairs to be drawn. FI
is an integer which specifies the type of draw function to be performed. Valid values for f1 are:

DISNEW (=0) Disjoint lines from new position.
DISCUR (=1) Disjoint lines from current position.
CONNEW (=2) Connected lines from new position.
CONCUR (=3) Connected lines from current position.
DOTTED (=4) Dot at each point.

F2 is an integer which specifies the mode in which the coordinates are interpreted. Valid values for f2 are:

FIRSTABS (=0) Absolute-relative-relative-relative-etc.
RELATIVE (=1) Relative always.

ABSOLUTE (=2) Absolute always.

SETBASE (=3) Set base-offset-offset-offset-etc.
OFFSET (=4) Offset always.

Z is an integer which specifies the Z position of the X, Y coordinate pairs drawn. This Z position is used to
compute the intensity of the drawn data. A value of z = 0 will produce lines of maximum intensity when
drawn using a two-dimensional window (the maximum intensity is specified using the vwpor(3G) subrou-
tine). W is an integer used to scale the coordinate data. If the scale factor is omitted or given as zero, it is
treated as 32767.

SEE ALSO
draw3d(3G), draw4d(3G), line(3G), move(3G), lineto(3G), moveto(3G)

Tth Edition local 1

DRAW3D(3G) UNIX Programmer’s Manual DRAW3D (3G)

NAME
draw3d — draw three-dimensional coordinate data

SYNOPSIS
draw3d(data, num, f1, f2 [,w])
ps_t *data;
int num, f1, 2, w;

DESCRIPTION
The draw3d subroutine is called to draw three-dimensional data coordinate points using the drawing mode
specified in the parameter list. The points to be drawn are arranged in X, Y and Z triplets and are displayed
at an intensity which is dependent upon both the z coordinate data and the intensity values previously
specified for the hither and yon clipping planes.

Data is a type ‘ps_t’ array (3 * num elements in length) which contains the X, Y and Z coordinates points
to be drawn. These data will be drawn in the drawing mode specified by the arguments fI and f2. Num is
an integer which specifies the number of coordinate triples to be drawn. FI is an integer which specifies
the type of draw function to be performed. Valid values for fI are:

DISNEW (=0) Disjoint lines from new position.
DISCUR (=1) Disjoint lines from current position.
CONNEW (=2) Connected lines from new position.
CONCUR (=3) Connected lines from current position.
DOTTED (=4) Dot at each point.

F2 is an integer which specifies the mode in which the coordinates are interpreted. Valid values for f2 are:

FIRSTABS (=0) Absolute-relative-relative-relative-etc.
RELATIVE (=1) Relative always.

ABSOLUTE (=2) Absolute always.

SETBASE (=3) Set base-offset-offset-offset-etc.
OFFSET (=4) Offset always.

W is an integer used to scale the coordinate data. If the scale factor is omitted or given as zero, it is treated
as 32767.

SEE ALSO
draw2d(3G), drawdd(3G), line(3G), move(3G), lineto(3G), moveto(3G)

7th Edition local 1

DRAWA4D(3G) UNIX Programmer’s Manual DRAW4D (3G)

NAME
drawdd — draw homogeneous coordinate data

SYNOPSIS
drawdd(data, num, f1, f2)
ps_t *data;
int num, f1, f2;

DESCRIPTION
The draw4d subroutine is called to draw homogeneous coordinate data using the drawing mode specified in
the parameter list. The points to be drawn are arranged as sets of X, Y, Z and W coordinates and are
displayed at an intensity which is dependent upon both the scaled z coordinates and the intensity values
previously specified for the hither and yon clipping planes.

Data is a type ‘ps_t’ array (4 * num elements in length) which contains the X, Y, Z and W.coordinate data
to be drawn. These data will be drawn in the drawing mode specified by the arguments f7 and f2. Num is
an integer which specifies the number of coordinate sets to be drawn. F1 is an integer which specifies the
type of draw function to be performed. Valid values for f1 are:

DISNEW (=0) Disjoint lines from new position.
DISCUR (=1) Disjoint lines from current position.
CONNEW (=2) Connected lines from new position.
CONCUR (=3) Connected lines from current position.
DOTTED (=4) Dot at each point.

F2 is an integer which specifies the mode in which the coordinates are interpreted. Valid values for f2 are:

FIRSTABS (=0) Absolute-relative-relative-relative-etc.
RELATIVE (=1) Relative always.

ABSOLUTE (=2) Absolute always.

SETBASE (=3) Set base-offset-offset-offset-etc.
OFFSET (=4) Offset always.

SEE ALSO
draw2d(3G), draw3d(3G)

Tth Edition local 1

DRAWOB (3G) UNIX Programmer’s Manual DRAWOB (3G)

NAME
drawob — output a Linear Display List

SYNOPSIS
drawob(array)
ps_t *array;

DESCRIPTION
The drawob subroutine is called to output a Linear Display List, previously prepared by the makeob sub-
routine, to the Picture Processor. When this routine is called, the Picture System is placed in a mode such
that the entire command/data list is processed in a single DMA operation.

Array is a user-supplied array in which the Linear Display List previously accumulated by makeob is
located.

SEE ALSO
makeob(3G)

7th Edition local 1

DRAWPS (3G) UNIX Programmer’s Manual DRAWPS (3G)

NAME
drawps — draw an object stored in Picture System 2 memory

SYNOPSIS
drawps(name)
int name;

DESCRIPTION
This routine is called to process a structured display list previously stored in Picture Memory. The Picture
Processor is set to active input mode and starts reading data from the beginning address in Picture Memory
where the specified object resides.

Name is the object identifier.

SEE ALSO
makeps(3G)

7th Edition local

ERRCHECK (3GU) UNIX Programmer’s Manual ERRCHECK (3GU)

NAME
errcheck — correct for roundoff errors in rotation matrices

SYNOPSIS
errcheck(mat);
ps_t mat[4][4];

DESCRIPTION

Errcheck adjusts the given Picture System matrix so that the first three rows and columns (the portion of
the matrix which applies to rotation of the image) are unitary. The rows and columns are alternately nor-
malized.

A matrix which is the result of repeated Matrix Arithmetic Processor operations will accumulate roundoff
error. If this subroutine is called at regular intervals (such as every tenth time the matrix is changed using
the Matrix Arithmetic Processor), the roundoff error will be prevented from having an effect on the shape
or scale of a picture displayed using that matrix.

SEE ALSO
dist3(3GU)

DIAGNOSTICS
If the matrix is not a Picture System rotation matrix, the results will be unpredictable. If all the elements of
any row or column are zero, a divide check will occur,

7th Edition local 1

FSWITCH (3G) UNIX Programmer’s Manual ESWITCH(3G)

NAME
fswitch — read Function Switches

SYNOPSIS
unsigned fswitch([group])
int group;

DESCRIPTION
The fswitch function returns the 16-bit value read from a particular group of Picture System 2 Function
Switches. Group is an integer which specifies which group of Function Switches is to be read. If the group
number is omitted, Function Switch set 1 is assumed. Valid values for group are:

1 = Function Switch & Light Group 1.
2 = Function Switch & Light Group 2.
3 = Function Switch & Light Group 3.
4 = Function Switch & Light Group 4.

SEE ALSO
iswset(3G), lights(3G), setlit(3G)

7th Edition local

FULSUB (3GU) UNIX Programmer’s Manual FULSUB (3GU)

NAME
fulsub — subroutine to output segmented Picture System objects

SYNOPSIS
extern char *_obname;
#idefine OBLNGTH 256
ps_t ob|[OBLNGTH];
int obl;
int fulsub();

_obname = ‘“myfile’’;

makeob(ob, OBLNGTH, &obl, fulsub);

DESCRIPTION
Fulsub is a useful argument for the makeob(3G) and rbsmem(3G) Picture System routines. When used
with makeob, it permits the object buffer in memory to be small and writes a disk file which can be read as
a single array and passed directly to drawob(3G), just as if it were originally assembled into a single large
object array. When used with rbtmem, the disk file can be used as an argument to pscopy(1G).

The global character pointer ‘‘_obname’’ must be initialized with the name of the output file somewhere in
the source program. If this is not done the name ‘‘copy.tmp” will be used by default. If the file already
exists the new data will be appended to the current file. This is meaningful to pscopy (since each data set
will be treated as a separate plot), but drawob does not understand about multiple objects.

FILES
copy.tmp

SEE ALSO
pscopy(1G)

DIAGNOSTICS
Reports if the file cannot be created.

7th Edition local 1

GETCHR (3G) UNIX Programmer’s Manual GETCHR (3G)

NAME
getchr — read from Picture System 2 keyboard

SYNOPSIS
getchr([bufp, size])
char *bufp;
int size;
extern char _pskbrd[];
extern char _pskbchr;
extern int _pskblen;
extern int _ignornull;

DESCRIPTION
The getchr subroutine is called to return characters typed in on the Picture System 2 keyboard. Although it
is similar in spirit to the E&S subroutine of the same name, it is NOT compatible. The optional arguments
to the UNIX version are bufp and size which are the address and length, respectively, of a user supplied
buffer.

Normally getchr returns a zero value indicating no new input has occurred since the previous call. Getchr
returns a negative value when it receives a new character (other than a terminating character) or when the
currently buffered command line has changed due to erase or kill processing (see below). If a terminator
character [carriage return (=015), line feed (=012), form feed (=014), or escape (=033)] is entered, getchr
will return the number of characters entered since the previous terminator character (again dependent on
erase and kill processing).

Currently, only one character is processed on each call to getchr so that this routine must usually be called
several times to form a complete command string. The array _pskbrd is available and contains both the
characters which have been entered since the last terminator and a blinking underscore character at the next
available character position. This is useful as an argument to a fext call and will display the currently
entered keyboard characters and blinking cursor.

The following technique can be used to efficiently read characters from the keyboard:

Within the display update loop of the program make a call to getchr; if the routine returns a zero
value nothing involving this portion of the display has changed since the previous call to getchr. If
getchr returns a non-zero value then the buffered command line has changed in some way (either by
typing a valid character or through internal erase/kill processing) and at a minimum a text(_pskbrd)
and a nufram call must be made to accurately reflect the new contents of the character buffer. In
addition, if the value returned was positive then some user processing of the command line must usu-
ally be performed.

A global (type ‘int’) variable _ignornull is also available and defaults to a non-zero value. This
causes gelchr to ignore two successive terminating characters. This will prevent false command
string processing by the user program as the result of a hardware glitch which occurs somewhat fre-
quently. Setting _ignornull to zero will cause getchr to return a non-zero value even if there were no
other characters entered between two successive terminator characters.

In any event, the last character entered from the keyboard (including the terminator character) is
available for inspection in the variable _pskbchr, as is the current number of characters in the buffer
in the variable _pskblen. If the bufp and size arguments are supplied, this buffer is used instead of
_pskbrd.

Lastly, getchr does character-erase (=ctrl h or rubout), word-erase (=ctrl w), and kill (=ctrl u) processing on
the entered characters similar to standard UNIX processing.

SEE ALSO
charsz(3G), text(3G)

7th Edition local 1

GETKNOB (3GU) UNIX Programmer’s Manual GETKNOB (3GU)

NAME
getknob — get values of interactive knobs

SYNOPSIS
getknob(chan, mode);
int chan, mode;

DESCRIPTION
Getknob provides access to the interactive knobs and joysticks of the Picture System. It returns the value
associated with the knob or joystick numbered chan, calculated by the method specified with mode.

A mode of zero causes the values of all channels from all devices to be read into core. This must be done
initially and at regular intervals in order to obtain updated values from the devices.

A mode of 1 causes getknob to return the absolute knob position of the specified channel.

A mode of 2 returns the relative amount the knob setting has changed since the previous call.

A mode of 3 zeroes the absolute positions of all the knobs (i.e. sets the current position as the new ‘‘home’’
position).

The possible values of chan and the associated devices are:

Channel Device
0-7 Interactive Knobs
8 Joystick #1, X
9 Joystick #1, Y
10 Joystick #1, Z
11-13 Joystick #2
14-15 Unused
SEE ALSO
analog(3G)
FILES
/dev/ps.cdj
DIAGNOSTICS

same as those reported by analog.

7th Edition local 1

GETROT (3G) UNIX Programmer’s Manual GETROT (3G)

NAME
getrot, setrot — build a rotation transformation

SYNOPSIS
getrot(array, angle, axis)
ps_t array[4][4];
int angle, axis;

and

setrot(psmemloc, angle, axis)
psaddr_t psmemloc[4][4];
int angle, axis;

DESCRIPTION
The getrot and setrot subroutines are called to build a rotation transformation based on the angle and axis
of rotation specified in the parameter list. The transformation is then returned in the user-supplied 16-
element matrix buffer, array, or in the case of the serrot, stored in Picture System 2 memory.

Array is a 16-element array of type ‘ps_t’ in which the 4x4 rotation transformation is to be returned.
Psmemloc is the 16-element array location in Picture Memory. Angle is an integer which specifies the
angle of rotation. The angle is given by dividing a circle into 2*¥16 equal parts, with zero being equal to
zero degrees and 2**15-1 equaling 180 degrees. Two’s complement addition, ignoring overflow causes
the angle to increase counter-clockwise through 360 degrees, when viewed along the specified axis in the
positive direction. Axis is an integer which specifies the axis of rotation. Valid values for axis are:

XAXIS (=1) rotation about x axis.
Y AXIS (=2) rotation about y axis.
ZAXIS (=3) rotation about z axis.

NOTE
The Picture System 2 software is designed for a left-handed coordinate system.

SEE ALSO
gettrn(3G), getscl(3G), makeob(3G), makeps(3G), rot(3G)

Tth Edition local 1

GETSCL(3G) UNIX Programmer’s Manual GETSCL(3G)

NAME
getscl, setscl — build a scaling transformation

SYNOPSIS
getscl(array, sx, sy, sz [,w])
ps_t array[4][4];
int sx, sy, 5z, w;
and
setscl(psmemloc, sx, sy, sz [,w])
psaddr_t psmemloc[4][4];
int sx, sy, 5z, w;

DESCRIPTION
The getscl and setscl subroutines are called to build a scaling transformation based on the X, Y and Z scal-
ing terms specified in the parameter list. The transformation is then returned in the user-supplied 16-
element matrix buffer, array, or, in the case of setscl, stored in Picture Memory.

Array is a 16-element array of type ‘ps_t’ where the 4x4 scaling transformation is to be returned. Psmenm-
loc is the 16-element array location in Picture System 2 memory. Sx, sy and sz are integers which specify
the X, Y and Z scale values. W is an integer which specifies the factor used to scale the scaling definition
values. If the scale factor is omitted or given as zero, it is treated as 32767.

SEE ALSO
getrot(3G), gettrn(3G), makeob(3G), makeps(3G), scale(3G)

7th Edition local 1

GETTRN (3G) UNIX Programmer’s Manual GETTRN(3G)

NAME
gettrn, settrn — build a translation transformation

SYNOPSIS
gettrn(array, tx, ty, tz [,w])
ps_t array[4](4];
int tx, ty, tz, w;
and
settrn(psmemloc, tx, ty, tz [,w])
psaddr_t psmemloc([4][4];
int tx, ty, tz, w;

DESCRIPTION
The gettrn and settrn subroutines are called to build a translation transformation based on the X, Y and Z
translational values specified in the parameter list. The transformation is then returned in the user-supplied
16-element matrix buffer array, or, in the case of serirn, stored in Picture System 2 memory.

Array is a 16-element array of type ‘ps_t’ where the 4x4 translation transformation is to be returned.
Psmemloc is the 16-element array location in Picture Memory. T, ty and 1z are integers which specify the
scaled X, Y and Z translation values. W is an integer which specifies the factor used to scale the transla-
tional values. If the scale factor is omitted or given as zero, it is treated as 32767.

SEE ALSO
getrot(3G), getscl(3G), makeob(3G), makeps(3G), tran(3G)

7th Edition local 1

HITTAG(3G) UNIX Programmer’s Manual HITTAG (3G)

NAME
hittag, hitset, hitclr — display list hit testing

SYNOPSIS
hittag(id)
int id;
hitset(x, y, size [,w])
int X, y, size, ;

hitclr()

DESCRIPTION

This set of routines implements a strategy for performing ‘‘hit’ testing on objects stored as untransformed
display lists (either in Picture System memory or PDP-11 memory). Identification “‘tags’ are used to
denote various sections within a display list. Each timie hirrag() is called a new identifier is stored in the
current display list. After display list generation is complete, hitset() is called to specify a hit window and
enable hit processing. Drawps(3G) or drawob(3G) then processes the specified display list(s) and the
Matrix Arithmetic Processor determines if any data within this display list passes within the given hit win-
dow. Hitclr() is called to disable hit testing and determine if any hits have occured; if there has been a hit it
returns a non-zero value corresponding to the tag identifying the relevent section of the display list.

When specifing the hit window, x and y are integers which specify the hit window X and Y coordinates.
These values should be in the approximate range of +32700. Normally these values are obtained from the
X and Y position coordinates of the data tablet cursor. Size is an integer which specifies the hit window
half size. This parameter is used to determine whether lines pass within a given distance (size) of the
specified point (x, y). W is an integer used to scale the hit window parameters. If the scale factor is omitted
or given as zero, it is treated as 32767.

The hittaglhitset/hitclr mechanism allows complete display lists to be processed as single units in an
efficient manner. In summary, the important steps are:

1. Generate the display list, tagging the relevent parts of the untransformed object with hirtag
identifiers.

2. Call hitset to set up the desired hit window and enable hit processing.
Call drawps or drawob to process the display list.

4. Call hirclr to disable hit processing. A non-zero return from hirclr corresponds to the tag of the
“‘hit’’* object.

SEE ALSO
hitwin(3G), hitest(3G), makeps(3G), makeob(3G)

BUGS
Only the first identifier is returned for each hit in a display list; this is a limitation of the PS2 hardware.

7th Edition local 1

HITEST (3G) UNIX Programmer’s Manual HITEST (3G)

NAME
hitest — hit testing

SYNOPSIS
hitest(status)
int status;

DESCRIPTION
The hitest function is called to determine if any data has passed within a prespecified hit window (see
hirwin(3G)). The procedure for this test is of the form:

1. Call hinwin to set up the desired hit window.

2. Draw data (draw2d, draw3d, etc.) for comparison against that window.
3. Call hitest to determine if there was a ‘hit’,
4

Repeat steps 2 and 3 as often as necessary, setting the hitest status argument to a nonzero value
on the last call.

Hitest returns a zero value if there has been no hit, and a non-zero value if there has been a hit. Sramusis an
integer supplied by the user which indicates whether the hit testing has been completed. Status = 0 indi-
cates an intermediate hit test and srarus + 0 indicates the final hit test for this set of data.

SEE ALSO
hitwin(3G)

7th Edition local : 1

HITWIN (3G) UNIX Programmer’s Manual HITWIN (3G)

NAME
hitwin — specify a hit window

SYNOPSIS
hitwin(x, y, size [,w])
int x, y, size, w;

DESCRIPTION
The hitwin procedure is called to specify a window through which data will be drawn and tested for a ‘hit’.
A window transformation of the specified size and coordinates is created and preconcatenated with the
current transformation in the Picture Processor after first saving the original transformation matrix. The
Picture Processor status is set to prohibit data from being stored into the refresh buffer while hit testing is in
progress. A call to hitest with a non-zero argument restores the onginal transformation matrix and resets
the Picture Processor status to its previous state.

X and y are integers which specify the hit window X and Y coordinates. These values should be in the
approximate range of $32700. Normally these values are obtained from the X and Y position coordinates
of the data tablet cursor. Size is an integer which specifies the hit window half size. This parameter is used
to determine whether lines pass within a given distance (size) of the specified point (x, y). W is an integer
used to scale the hit window parameters. If the scale factor is omitted or given as zero, it is treated as
32767.

SEE ALSO
hitest(3G), tablet(3G)

7th Edition local 1

HUESAT (3G) UNIX Programmer’s Manual HUESAT (3G)

NAME
huesat — specify color and saturation

SYNOPSIS
huesat(hue [,sat])
int hue, sat;

DESCRIPTION

Huesat is called to specify the color for all subsequently drawn data. The parameters passed represent the
hue (or color value) and optionally the saturation. When full saturation is selected (sar=7), the hue value
alone selects the desired color. As the value of the hue parameter changes from 0 though 32, the color will
range from green (hue=0) to cyan (hue=8) to blue (hue=16) to magenta (hue=24) to red (hue=32). As the
value of the hue parameter changes from 32 though 63, the color will range from red (hue=32) to yellow
(hue=48) to almost green (hue=63). As the saturation is reduced from the maximum value (sar=7 to
sar=0) each color will become more pastel. For both hue = 0 and sar = 0 white is displayed.

Hue is an integer which specifies the color in which all subsequent data is displayed (0-63).

0 = Green
16 = Blue
32 =Red
48 = Yellow

63 = almost Green

Sat is an integer which specifies saturation (0-7). If this parameter is omitted full saturation is assumed.
0 = White
7 = Full saturation

NOTE
The Line Generator is automatically set to half speed when Ahuesat is called. This is a requirement for the
color monitor.

SEE ALSO
speed(3G)

7th Edition local 1

INST(3G) UNIX Programmer’s Manual INST(3G)

NAME
inst — generate instancing transformations

SYNOPSIS
inst(nl, nr, nb, nt [,w])
int nl, nr, nb, nt, w;
and
inst(nl, nr, nb, nt, nh, ny [,w])
int nl, nr, nb, nt, nh, ny, w;

DESCRIPTION

The inst subroutine concatenates a two- or three-dimensional instancing transformation to the Picture Pro-
cessor Transformation Matrix. This subroutine is used, in conjunction with the master subroutine, to pro-
duce multiple instances of an object or symbol. For each desired appearance of the object, the inst subrou-
tine is called to specify the location (and implicitly the size) of that appearance; then the user-supplied rou-
tine describing the object is called to display the object previously defined within a two-dimensional or
three-dimensional enclosure. The inst subroutine pushes the initial Transformation Matrix onto the
Transformation Stack before concatenating the instancing transformation. In this way the original
transform may be restored (POPped) by the user after the object has been drawn.

NI, nr, nb, nt, nh and ny are integers which specify the scaled instance left, right, bottom, top, hither, and
yon boundaries, respectively, in definition space coordinates (range = +32767). For two-dimensional
instancing, the window front, or hither, boundary is 0 and the rear, or yon, boundary is equal to w. W is an
integer used to scale the instance boundaries. If this scale factor is omitted or given as zero it is treated as
32767.

SEE ALSO
master(3G), pop(3G)

Tth Edition local 1

ISPCHD (3G) UNIX Programmer’s Manual ISPCHD (3G)

NAME
ispchd — is pen changed?

SYNOPSIS
ispchd([penadr])
int *penadr;

DESCRIPTION
Ispchd is a function which may be used to determine whether the status of the data tablet cursor (pen) has
changed in relation to the last time this routine was called. This facilitates the testing for pen transitions
(i.e., up to down, down to up), a function often required in tablet interaction.

Penadr is the address of an integer variable which contains the pen information returned by the fablet sub-
routine. If omitted, the default external variable _ipen is used. Values returned by ispchd are:

PIUWU (=0) if pen is up and was up last call.
PIDWU (=1) if pen is down and was up last call.
PIDWD (=2) if pen is down and was down last call.
PIUWD (=3) if pen is up and was down last call.

SEE ALSO
tablet(3G)

Tth Edition local 1

ISWSET (3G) UNIX Programmer’s Manual ISWSET(3G)

NAME
iswset — is switch set?

SYNOPSIS
iswset(n)
int n;
DESCRIPTION
Iswset (Is SWitch SET) is a function which may be used to determine whether a particular switch of the
Picture System 2 Function Switches is set. Iswser returns 1 if the switch is set and zero if it’s not set.

N is an integer which specifies the switch number that is to be tested.

N = 0-15 for 1 set of Function Switches & Lights

N = 0-31 for 2 sets of Function Switches & Lights
N = 0-47 for 3 sets of Function Switches & Lights
N = 0-63 for 4 sets of Function Switches & Lights

SEE ALSO
fswitch(3G), setlit(3G), lights(3G)

NOTA BENE
Iswset is acceptable efficiency-wise if one or two switches are being tested, but fswitch(3G) is much more
efficient if several switches must be tested within the same display loop.

7th Edition local 1

JOYSTICK (3GU) UNIX Programmer’s Manual JOYSTICK (3GU)

NAME
joystick — simulated interactive joystick device

SYNOPSIS
joystick(x, y, size, xval, yval, xret, yret, flag [, label [, mkob]])
int x, y;
int size;
int xval, yval;
int *xret, *yret;
int flag;
char *label;
int mkob;

DESCRIPTION _
Joystick provides a simulation of a two-dimensional joystick device. The simulation makes use of a
defined area on the Picture System to represent two analog variables and uses the tablet for interaction with
those variables. A ‘‘star-shaped’’ object is drawn to describe the location and center of the area.

The parameters used during the subroutine call specify a ‘‘joystick area’” of size size and location x, y
(upper left comer), and arrange for the return of a pair of differential values (pointed to by xret and yret)
dependent upon the tablet cursor location within the joystick area and whether or not the cursor button is
depressed. Optionally, (depending on the flag variable) a marker may be displayed at location xval, yval
within the joystick area.

Size has the value 1 or 2; 1 indicates an area of 4K X 4K, and 2 an area of 8K X 8K (in absolute Picture
System coordinates). The variables pointed to by xret and yrer will be nonzero only if the cursor is within
the limits of the joystick area and the cursor button is depressed. Their values represent the distances of the
cursor from the center of the joystick area (in the X and Y directions).

Label points to a character string which is displayed just below the joystick area on the screen. If this argu-
ment is omitted no label is drawn,

The joystick and the marker (if displayed) become noticeably brighter when the cursor is inside the
joystick’s boundaries. This verifies a *‘hit’’.

The mkob parameter is used when the joystick is part of a PS2 display list. It should have a non-zero value
when joysrick is called during display list generation, and a zero value during normal display updates. The
label parameter must be supplied if the mkob flag is used. If mkob is omitted, the entire joystick image is
redrawn for each frame update.

The automatic cursor feature should be used in conjunction with this subroutine. This subroutine should be
called once in each display loop. It does not call the tablet subroutine of the Picture System software
directly, but assumes that it has been called in another part of the display loop.

SEE ALSO
pot(3GU), tablet(3G), cursor(3G)

BUGS
There is no way to distinguish the condition of the cursor being outside the joystick image area as opposed
to located exactly over the center of the joystick.

The intensification of the joystick image when the cursor is over it depends on the setting of the contrast
controls and on the Picture System viewport.

7th Edition local 1

JUMPPS (3G) UNIX Programmer’s Manual JUMPPS (3G)

NAME
jumpps — jump to another Picture Memory object

SYNOPSIS
jumpps(name)
int name;

DESCRIPTION
This routine functions similar to stopps(3G), but in addition causes the current object to ‘jump’ to the
object specified, thus causing both objects to be output as a single unit.

Name is the object identifier.

SEE ALSO
makeps(3G), stopps(3G)

7th Edition local 1

LIGHTS (3G) UNIX Programmer’s Manual LIGHTS (3G)

NAME
lights — set lights on Function Switches

SYNOPSIS
lights(value [,group])
int value, group;

DESCRIPTION
The lights subroutine is called to store a 16-bit value into a particular group of lights on the Picture System
2 Function Switches & Lights peripheral. Value is an integer which specifies the 16-bit value to be placed
into the lights. Group is an integer which specifies which set of Picture System 2 Function Switches &
Lights is to be used. If the group parameter is omitted Function Switch & Light group 1 is assumed. Valid
values for group are:
1 for 1 set of Function Switches & Lights
1-2 for 2 sets of Function Switches & Lights
1-3 for 3 sets of Function Switches & Lights
1-4 for 4 sets of Function Switches & Lights
SEE ALSO
setlit(3G), fswitch(3G), iswset(3G)

7th Edition local 1

LINE (3G) UNIX Programmer’s Manual LINE(3G)

NAME
line — draw a line in relative space

SYNOPSIS
line(x, y, [,2])
int x, y, z;

DESCRIPTION
The line subroutine is called to draw a line in the present line mode, specified during initialization or by a
previous call to txture or blink, from the current position to the 2D relative X, Y coordinates or the 3D rela-
tive X, Y, Z coordinates specified. If z is not specified a line is drawn to the 3-space coordinate (x, y, 0).

SEE ALSO
lineto(3G)

7th Edition local 1

LINETO (3G) UNIX Programmer’s Manual LINETO(3G)

NAME
lineto — draw a line in absolute space

SYNOPSIS
lineto(x, y, [,z])
int x, y, z;

DESCRIPTION
The lineto subroutine is called to draw a line in the present line mode from the current position to the 2D
absolute X, Y coordinates or the 3D absolute X, Y, Z coordinates specified. If z is not specified a line is
drawn to the 3-space point (x, y, 0).

NOTE
Lineto draws the line with the homogeneous coordinate (IW) = 32767.

SEE ALSO
line(3G)

7th Edition local 1

LOOKAT (3GU) UNIX Programmer’s Manual LOOKAT (3GU)

NAME
lookat — produce lookat operators

SYNOPSIS
lookat(mat, matinv, a, b [,iw]);
int mat[4][4], matinv[4][4);
int a[3], b[3]);
int iw;

DESCRIPTION
Lookat takes the three-dimensional vector a-b and produces a Picture System style transformation matrix,
mat, which is equivalent to translating the point a to the origin and then rotating the vector a-b isometri-
cally to the positive Z-axis. Rotation is performed first about the Y-axis to the Y-Z plane, and then about
the X-axis to the X-Z plane. Matinv, the inverse of mat, is also produced.

Iw is an integer used to scale the coordinate data. If the scale factor is omitted it is treated as 32767.

If matinvy is the inverse of mat, and Z(n) is an isometric rotation about the Z-axis by n degrees, it happens
that the compound operator

mat e Z(n) e matinv

is equivalent to rotating n degrees about the vector a-b.

7th Edition local |

MAKEOB (3G) UNIX Programmer’s Manual MAKEOB (3G)

NAME
makeob — create a Linear Display List

SYNOPSIS
makeob(array, max, lenp [,fulsub])
ps_t *array;
int max;
int *lenp;
int fulsub();

DESCRIPTION
The makeob subroutine is called to initiate a mode in which all commands and data directed to the Picture
Processor are intercepted and accumulated in a user-supplied main memory array in the form of a Linear
Display List. The commands and data accumulated in this array may later be output to the Picture System
as a single unit (or object), thus saving preparation time and other overhead. Most of the graphics subrou-
tines described int this manual section (3G) may be used in creating a Linear Display List.

Array is a user-supplied array. Max is an integer which specifies the maximum number of elements in
array. Lenp is the address of an integer variable where the number of array elements actually used will be
maintained. This variable is set to 1 when makeob is called and again by each call to fulsub (see below). It
may be (carefully) modified by the user if desired. Fulsub is a subroutine which, if specified, is called
when array becomes full. If supplied, the fulsub calling sequence will be

fulsub(array, *lenp, flag),
The flag variable is zero for all but the final (terminating) call to fulsub.
The lenp parameter may serve as an extremely valuable tool where the array buffer is large enough to con-
tain the entire object in one piece. In this case, if the value of lenp is saved immediately preceding the call
to any Picture System 2 graphics subroutine, and the saved value incremented by one, it will serve as an
array subscript pointing to the generated command word. If it is again incremented, it then points to the
object data itself.

SEE ALSO
drawob(3G), getrot(3G), gettrn(3G), getscl(3G), makeps(3G), fulsub(3GU), bldcon(3G)

7th Edition local 1

MAKEPS (3G) UNIX Programmer’s Manual MAKEPS (3G)

NAME
makeps, maksps — create a Picture Memory display list

SYNOPSIS

makeps(name,lenp [,fulsub])
int name;

int *lenp;

int fulsub();

and

maksps(name,lenp [,fulsub])
int name;

int *lenp;

int fulsub();

DESCRIPTION

This routine is called to initiate a mode in which commands directed to the Picture Processor are inter-
cepted and stored in Picture System 2 memory, along with their associated data. The resulting ‘object’
may later be directed as a single unit to the PS2 matrix arithmetic processor via the drawps(3G) subroutine
(for an object made by makeps) or invoked from another display list via the subps(3G) subroutine (for a
sub-object made with maksps). This saves a significant amount of object preparation time and other system
overhead. The Picture System must first have been initialized for makeps/imaksps calls by means of the
setps(3G) subroutine.

Name is an object identifier. Its legal range of values consists of any positive quantity up to 16 bits, includ-
ing ASCII characters. If the object already exists it will be overwritten. There are restrictions on the
length of the new object in this case (see below). Lenp is a pointer to an integer variable where the number
of Picture Memory words actually used (by all such objects) will be maintained. When makeps or maksps
is called, this variable is initially set to the location-1 in Picture Memory where the newly created object is
to be stored.

The lenp parameter may serve as an extremely valuable tool. If the value of lenp is saved immediately
preceding the call to any graphics subroutine, and the saved value incremented by one, it will serve as an
index into Picture Memory for the ‘RSR’ command word. If it is again incremented, it then points to the
command’s object data. This value can be used to update the data via the setror, settrn and setscl routines.

Fulsub is the address of a subroutine that is called if the space available for the current Picture Memory
object becomes filled. This can occur for either of two reasons; if all objects stored in Picture Memory
have exhausted the total available space allocated in the serps call, or, if an object is being re-written and
has exhausted its local available space because another object is stored immediately after it. In the latter
case, the current object cannot expand even though there may be memory available elsewhere (objects can-
not be relocated).

Fulsub is called with two arguments. The arguments are the locations of the beginning and end of the
current object in Picture Memory. The purpose of this subroutine call is to allow rational error recovery.
The suggested course of action is to stop drawing and find more space.

As commands and data are collected in Picture Memory the maximum nesting of matrix pushes and pops is
maintained in counters, and is included as part of the structure. In this way, it may be determined in
advance if the display of an object will cause a matrix stack overflow or underflow, since software exten-
sion of the 8-deep matrix stack is not possible.

SEE ALSO
drawps(3G), getrot(3G), gettrn(3G), getscl(3G), makeob(3G), bldcon(3G)

7th Edition local 1

MASTER (3G) UNIX Programmer’s Manual MASTER (3G)

NAME
master — generate master transformations

SYNOPSIS
master(ml, mr, mb, mt [,w])
int ml, mr, mb, mt, w;
and
master(ml, mr, mb, mt, mh, my [,w])
int ml, mr, mb, mt, mh, my, w;

DESCRIPTION
The master subroutine concatenates a two-dimensional or three-dimensional master transformation to the
Picture Processor Transformation Matrix. This subroutine is used in conjunction with the inst subroutine
for instancing of data. The master transformation is constructed from the values specified in the parameter
list.

MI, mr, mb, mt, mh and my are integers which specify the scaled master left, right, bottom, top, hither and
yon boundaries in definition space coordinates (range = +32767). For a two-dimensional master, the front,
or hither, boundary is 0, and the rear, or yon, boundary is equal to w. W is the value used to scale the master
boundaries. If the scale factor is omitted or given as zero, it is treated as 32767.

SEE ALSO
inst(3G)

7th Edition local 1

MENU (3GU) UNIX Programmer’s Manual MENU (3GU)

NAME
menuset, menucheck, menu_box — Picture System menu package
SYNOPSIS
#include <ps.h>
int x, y; /* upper left corner of the box */
unsigned xsize, ysize; /* box width, box length */
int nx, ny; /* number of windows in x and y directions */
char delim; /* token delimiter within "str2" */
int item_pos; /* index of item hit */
int mkob; /* non-zero during display list generation */
char *str2; /* menu tokens, separated by "delim" */
char #*strl; /* text of hit menu item */
autocur();
for (;3) { /* beginning of display loop */
tablet();
menuset(x, y, xsize, ysize, nx, ny [,delim]);
item_pos = menucheck(strl, str2 [, mkob]);
if (ispchd() == PIUWD) menu_box(item_pos);
nufram();
}
DESCRIPTION

The Picture System menu package provides a method of displaying and using interactive ‘‘light-buttons’
on the Picture System 2. This is implemented by means of items of text, called *‘buttons’’ or “‘menu
words”’, displayed on the face of the CRT, and use of the data tablet and cursor to select these items. In
order to use this package, the program must call the subroutines which set up the menu and which display
and interrogate specific words each time through the display loop.

To reduce overhead and provide for a maximum of flexibility, calls to the tablet-control software (such as
tablet(3G)) are left to the user, as is checking whether the cursor cross-hair button is depressed. Ordinarily
(as in the above example) a particular event, such as releasing the button on the cursor, is used to trigger
recognition of the of the particular menu item. (This recognition is nos performed by the menu software.)
Thus the program may define the menu interaction in any convenient way.

Menuset defines an area on the screen to be used as a menu area by future calls to menucheck. The top left
corner of the area is given by the point (x, y) in absolute Picture System coordinates. The size of the area is
defined as xsize * ysize. Note that these two parameters are of type ‘‘unsigned’’ to allow specification of an
area larger than half the screen in either direction. This area is divided into a number of menu windows
(nx, ny), each of which will contain a single hittable item after menucheck is called. Delim, if supplied,
defines the character which separates the menu words in the call(s) to menucheck to be something other
than a space character.

The positions and sizes in the call to menuser will be used to directly drive the Picture System. Thus,
before the call to menucheck, the screen ‘‘window’’ must be set so that the positions and sizes are mean-
ingful, and the viewport must be set to full-screen. Also note that menuser must be called at least once
before menucheck. It may be called several times in the same picture frame in order to define several menu
areas on the screen.

Menucheck displays the menu words specified by str2 in windows defined by the most recent call to
menuset, and checks whether the tablet cursor is over any of the menu words displayed. If the tablet cursor
is over any item, the index of that item is returned as the value of the menucheck function, and the text of

7th Edition local 1

MENU(3GU) UNIX Programmer’s Manual MENU(3GU)

the word is returned in str]. The index of an item is defined as its position in the string pointed to by s#2;
the first item has a index of zero. If the tablet cursor is not over the any of the items, an index of -1 and a
null string are returned.

The function makes no checks of character size, or string length. If more items are specified than windows
available, the extra items will appear superimposed over the previous items. Menucheck may be called
repeatedly once the initial menuset call is made; the new items will be drawn in the next available window
positions.

The menu word will become noticeably brighter when the cursor is placed over it, providing visual feed-
back to the user.

The mkob parameter is used when the joystick is part of a PS2 display list. It should have a non-zero value
when menucheck is called during display list generation; this will insure that all menu items are drawn at
least once. During normal display updates mkob should have a zero value. Picture System draw com-
mands will then only be output if a item has been hit. If this parameter is omitted, the entire menu image is
redrawn for each frame update.

The returned value from menucheck may be used as an argument to menu_box, which will draw a box the
size of an item window around the specified item. An argument of -1 to menu_box() is ignored.

SEE ALSO
tablet(3G), ispchd(3G)

BUGS

Depth cueing is assumed; also:

menuset:
Makes no check if any of the windows will go off the edge.
Has no idea of the size of characters.

menucheck:
No checks for menu word length are made.
The array pointed to by sl is assumed to be large enough to
receive the menu word hit.
Extra delimiters (such as trailing blanks) will be taken as null items
and will use an extra window.

menu_box:
Allows wrap around (this is a mixed blessing).

7th Edition local 2

MMU (3G) UNIX Programmer’s Manual MMU (3G)

NAME

mmu — Memory Management Unit

SYNOPSIS

#include <ps2.h>

DESCRIPTION

This entry describes the UCSF Computer Graphics Laboratory homebrew memory management unit
(MMU) for the Picture System 2.

The MMU extends the capacity of PS2 memory from 64K words to 256K words by adding an additional
three banks of memory. The amount of memory directly addressable at any moment remains unchanged
however, since the PS2 I/O bus is inherently only 16 bits wide.

The MMU logically consists of eight 2-bit registers. Each of the eight registers is associated with a partic-
ular PS2 device (e.g. MAP input controller) and the two bit value stored in a register determines which of
the four possible memory banks is used in conjuction with memory accesses for this device. The top 256
addresses of all memory banks refer to the PS2 system control block and thus cannot be used for storage of
object data.

When using the MMU, memory is most often partioned so that one bank of memory (bank 0) is used for
refresh memory, and another bank of memory (bank 1) is used to store untransformed display lists. Thus
the DIO port, DMA port and MAP input controller are set to access memory bank 1, while the MAP output
controller and refresh controller are set to access memory bank 0. This allows very large displays to be
generated without exhausting available memory for storage of the untransformed data.

In order to simplify implementation, the MMU physically consists of a single 16 bit register which is both
readable and writable. Pairs of bits in this 16 bit word are associated with each PS2 device, beginning with
the DMA I/O port in the low order bits. The register is cleared during a power up sequence and by a mas-
ter reset of the PS2; this effectively disables the MMU.

Currently only banks 0 and 1 of extended memory are implemented. The possible PS2 devices are:

regno mnemonic PS2 device
0 X_DMAPORT | DMA port
1 X_RTI1 Remote terminal interface 1 (unused)
2 X_RTI2 Remote terminal interface 2 (unused)
3 - Spare (unused)
4 X_DIOPORT Direct 1/O port
5 X_REFRESH Refresh controller
6 X_MAPOUT MAP output controller
7 X_MAPIN MAP input controller

SEE ALSO

Extended Memory Multi-Picture System Maintenance Manual

7th Edition local 1

MOVE(3G) UNIX Programmer’s Manual MOVE(3G)

NAME
move — move in relative space

SYNOPSIS
move(dx, dy [,dz])
int dx, dy, dz;

DESCRIPTION
The move subroutine is called to position to the specified 2D relative X, Y coordinates or the 3D relative X,
Y, Z coordinates from the current position. Dx, dy, dz are the relative coordinates. If dz is not specified the
3-space relative coordinate (dx, dy, 0) is used for positioning instead.

SEE ALSO
moveto(3G)

7th Edition local 1

MOVETO(3G) UNIX Programmer’s Manual MOVETO (3G)

NAME
moveto — move in absolute space
SYNOPSIS
moveto(x, y [,z])
intx, y, z;
DESCRIPTION
The moveto subroutine is called to position to the 2D absolute X, Y coordinates or the 3D absolute X, Y, Z
coordinates specified. X, y, z are the absolute coordinates. If z is not specified the 3-space point (x, y, 0) is
used for positioning instead.
NOTE
Moveto positions with the homogeneous coordinate (IW) = 32767.
SEE ALSO

move(3G)

7th Edition local 1

NARGS(3G) UNIX Programmer’s Manual NARGS (3G)

NAME
nargs — argument count

SYNOPSIS
nargs()

DESCRIPTION
Nargs returns the number of actual parameters supplied by the caller of the routine which calls nargs.

Arguments are assumed to be of type “‘int”, and hence the count may have to be adjusted if the actual
parameters are of a different type. On the PDP-11, long counts as two ‘‘int’s”, while floar and double
count as four. On the VAX float and double count as two “‘int’s’’ and everything else as one.

The former restriction of nargs not being able to work with separated 1 and D space on the PDP-11 has
been lifted.

FILES
fusr/lib/libg.a

AUTHOR
Thomas Ferrin, University of California, San Francisco

7th Edition local 1

NUFRAM (3G) UNIX Programmer’s Manual NUFRAM(3G)

NAME

nufram — display new frame data

SYNOPSIS

nufram()
and
rstfram()

DESCRIPTION

The nufram subroutine is called to initiate the change from displaying old frame data to displaying new
frame data. The actual buffer swap does not occur until the appropriate refresh interval has elapsed (see
psinit(3G)). Nufram returns a non-zero value if data for the new display frame has exhausted available
refresh buffer memory (buffer overflow).

Rsifram is used to cancel a partially constructed frame of data. The calling program is suspended until the
appropriate refresh interval has elapsed. This call is useful when there has been no change in the current
display and the user wishes to suspend program execution until the next display update cycle. This frees
the central processor for other functions and is particular efficient in terms of overall system usage.

7th Edition local 1

PGSTACK (3GU) UNIX Programmer’s Manual PGSTACK (3GU)

NAME

pespsh, pgspop, pgsrd — manipulate file stack

SYNOPSIS FOR C USAGE

pgspsh(line);
char *line;

pgspop(line);
char *line;

pgsrd(line, n);
char *line;
int n;

SYNOPSIS FOR FORTRAN USAGE

call pgspsh(line)
character*(*) line

call pgspop(line)
character*(*) line

call pgsrd(line, n)
characterx(x) line
integer n

DESCRIPTION

FILES

Pgspsh, pgspop, & pgsrd are a set of subroutines for manipulating a ‘‘file stack’’. This stack can be used
by more than one program to provide a reasonably straightforward protocol for communicating small
amounts of data. This enables multiple programs to run concurrently with one or more programs supplying
data and doing calculations. Data on the stack are lines of text; no restricions other than a maximum
length of 150 characters are imposed by the stack structure. It is expected that programs which communi-
cate numerical data via the stack will make use of sprintf{3S) or internal files (in the case of F77) to set up
text lines for the stack.

Pgspsh will take the character string in line and push it onto the file ltmpipgstack??, creating the file if it
does not already exist. If the file does exist, it is opened and then unlinked. A file with the same name is
then created and opened for writing. Line is written onto the new file and the contents of the original file
are then appended.

Pgspop removes the last character string pushed onto the stack (corresponding to the first line in the file).
The stack line is returned in lire.

Pgsrd will find the nth element from the top of the stack (the nth line from the beginning of the file) and
copy it into line without changing the stack in any way. If nis 1 the the subroutine acts like pgspop but
without removing the line from the stack.

/tmp/pgstack??

SEE ALSO

printf(3S)

DIAGNOSTICS

The value -1 and an empty string are returned from pgspop and pgsrd if there is nothing in the stack.

7th Edition local 1

POP(3G) UNIX Programmer’s Manual POP(3G)

NAME

Pop — pop the matrix stack
SYNOPSIS

pop()
DESCRIPTION

The pop subroutine is called to pop the top element of the Matrix Stack into the Picture Processor Transfor-
mation Matrix,

SEE ALSO
push(3G), bldcon(3G)

7th Edition local 1

POT(3GU) UNIX Programmer's Manual POT (3GU)

NAME
pot — a simulated potentiometer

SYNOPSIS
int pot(x, y, size, val [,label [,mkob]])
int x, y, size, val;
char *label;
int mkob;

DESCRIPTION

Pot draws a simulation of an interactive potentiometer. This consists of a rectangular area on the CRT
screen drawn to represent a slide potentiometer, calibration marks, and a indicator pointer which represents
the value to which the pot is set. The user may alter the value of the pot by touching the rectangular area
with the tablet cursor. If it is positioned above the centerline and the cursor button is pressed down, the pot
function returns a positive value; if it is touched below the centerline a negative value is returned. The
returned value from por can be used to increment a variable; this variable is typically used as the argument
val on subsequent calls to por.

Arguments to por include the coordinates of the upper left corner of the potentiometer image area (x,y), and
the size of the area. A size value of 1 indicates an area of 4K X 1K, and a size value of 2 indicates an area
of 8K X 2K (in absolute Picture System coordinates). The val parameter is a value (range = +32767) used
for positioning the pot’s indicator marker (‘<-).

Label points to a character string which is displayed in the pot area. This argument is optional; no text is
displayed if it is omitted.

The value returned by por is the distance of the tablet cursor from the pot’s center-line (when the cursor is
within range of the pot and the cursor button is pressed down). Zero is returned when the cursor button is
pressed down exactly over the center-line, when the cursor button is not pressed down at all, or when the
cursor is not within range of the pot.

The pot and indicator marker become noticeably brighter when the cursor is inside the pot image; this
verifies your ‘hit’.

The mkob parameter is used when the joystick is part of a PS2 display list. It should have a non-zero value
when pot is called during display list generation, and a zero value during normal display updates. The
label parameter must be supplied if the mkob flag is used. If this parameter is omitted, the entire poten-
tiometer image is redrawn for each frame update.

Port should be called once in each display loop. It does not call the tabler function of the Picture System
software itself, but assumes that the user has called rable and that the cursor coordinates are up to date.

SEE ALSO
joystick(3GU), tablet(3G)

BUGS
The intensification of the pot when the cursor is over it depends of the setting of the contrast controls and
screen viewport.

7th Edition local 1

PSBUF(3G) UNIX Programmer’s Manual PSBUF(3G)

NAME
psbuf — set refresh buffer mode

SYNOPSIS
psbuf(status)
int status;

DESCRIPTION
The psbuf subroutine is called to set the refresh buffer to single- or double-buffer mode. Once the refresh
buffer has been set to either mode, it may be reset at any time to the opposite mode. The user need only
call this subroutine if the refresh buffer is to be used in single-buffer mode. Psinit, during the initialization
process, sets the refresh buffer to the default double-buffer mode.

Starus is an integer which specifies the new mode of the Refresh Controller. Valid values for srarus are:

1 = single-buffer mode.
2 = double-buffer mode.

SEE ALSO
psinit(3G)

Tth Edition local 1

PSCOPY (1G) UNIX Programmer’s Manual PSCOPY (1G)

NAME
pscopy — hardcopy generator for Picture System 2
SYNOPSIS
lusr/lib/pscopy [[-b] filename]
DESCRIPTION
Pscopy is a utility program which generates a hardcopy ‘plot’ on the Versatec electrostatic printer/plotter
from files of display data produced by Picture System programs.

Filename is the data file; **copy.tmp’’ is the default if none is supplied. This file is automatically deleted
after use. The output is designed to fit on a single sheet of Versatec paper. If the -b flag is specified,
pscopy will include a heavy black border, analogous to the hardcopy from bild(1).

Data in the input files is of the format generated by the Picture System whbtmem(3G) subroutine, operating
in mode 2. The output is produced using the standard Versatec plotting package (version 7).

Writing the data file. The following code can be used:
#idefine BUFSIZ 256
short buf[BUFSIZ];
int size;
int fulsub();

wbtmem(2);
[display commands go here]

rbtmem(buf, BUFSIZ, &size, fulsub);

FILES
copy.tmp
fusr/tmp/v* temporary files for Versaplot
SEE ALSO
fulsub(3GU), bild(1), wbtmem(3G)
BUGS
Tilted characters don’t always work right.
There is no way to change plot size.
Due to a Picture System hardware bug, clipped characters are not handled properly.

7th Edition local 1

PSERRS(1G) UNIX Programmer’s Manual PSERRS(1G)

NAME
pserrs — expand cryptic Picture System 2 error messages

SYNOPSIS
pserrs errno subno | —s [objfil [corefil]]]

DESCRIPTION
Pserrs is a shell-script that provides more meaningful information than the simple

"Error x detected in graphics subroutine y"

message that is produced by the Picture System 2 Graphics Subroutine Package. The message is still terse,
but indicates both the type of error and the subroutine name causing the error.

If the -s flag is specified, then a stack trace is produced using objfil as the executable program file. The
default for objfil is a.out. Corefil is the core image file produced after executing the objfil. The default for
corefil is core.

SEE ALSO
Picture System 2 User’s Manual, Chapter 6, especially section 6.2 (page 6-75).

7th Edition local 1

PSFINI(3G) UNIX Programmer’s Manual PSFINI(3G)

NAME
psfini — close all open Picture System 2 files

SYNOPSIS
psfini()

DESCRIPTION
When this routine is called, all open files associated with the Picture System will be closed. This provides
a convenient way of insuring that only one process is trying to use the Picture System at any one time (by
calling psfini in the child process after a fork) and also a means to re-initialize the Picture System (psfini
followed by psinit).

FILES
/dev/ps.*

SEE ALSO
psinit(3G)

7th Edition local 1

PSINIT (3G)

NAME

UNIX Programmer’s Manual PSINIT (3G)

psinit — initialize the Picture System 2

SYNOPSIS

psinit([ftime, nrfsh])
int ftime, nrfsh;
DESCRIPTION

The psinit subroutine is called to initialize the Picture System 2 hardware and software. The initialization
process includes the following:

The Picture System 2 is set to provide refresh of the old frame and timing for frame updates at the
intervals specified by the calling argument list.

All variables are assigned their default values. All registers used in the Picture Processor are initial-
ized for two-dimensional drawing mode. The Picture Processor is set to display data unrotated,
untranslated, at full brightness, within a viewport which just fills the display screen.

A window is set to include the entire definition space (+32767).

The Refresh Controller is set to double-buffer mode with an initial null frame. The Picture Genera-
tor status is initialized to solid line texture and to display characters of .68 cm (.27 inches) character
size in horizontal character mode.

Ftime is an integer used to designate the number of 1/120 second intervals per frame refresh. The refresh
rates that may be obtained are:

Ftime = 1 for 120 frames per second.
Ftime = 2 for 60 frames per second.
Frime = 3 for 40 frames per second.
Frime = 4 for 30 frames per second.
Ftime = 5 for 24 frames per second.

Nifsh is an integer which specifies the number of frame refreshes which must be completed before a frame
update will be recognized. If Nrfsh contains a value less than or equal to zero, then frame updates will be
allowed upon the next refresh interval after a new frame has been requested. The default values for frime
and nrfsh are 2 and 4, respectively.

FILES

fdev/ps.*

DIAGNOSTICS
‘Warning: frame update rate reset ..." if the user requests a frame update rate greater than 20 frames/second
and is not the superuser or a member of the group r+.
‘Picture System busy’ if in use by another process.
‘Error x detected in graphics subroutine y’ for runtime errors.

SEE ALSO

intro(3G), dowrbuf(3G), pserrs(1G), rtp(3GU)

Tth Edition

local 1

PSRESET (1G) UNIX Programmer’s Manual PSRESET(1G)

NAME
psreset — reset the Picture System 2 in time of crisis

SYNOPSIS
psreset

DESCRIPTION
Psreset is designed to be used in those rare instances when a process using the Picture System 2 somehow
‘hangs’ and cannot be killed by the usual means. It is a practical alternative to rebooting the system.

Psreser sends signal #9 (kill) to whatever process is currently using the Picture System and then forces a
reset of the Picture System 2 hardware. In addition, mail is sent to the system administrator detailing
selected hardware status and the user id of whoever invoked the command. This information can be useful
in tracking down software bugs. Since this command runs as setuid root, even processes owned by other
users can be effectively terminated (this is considered a feature).

SEE ALSO
kill(1)

BUGS
Since process ownership is not checked, this command can be abused by the malicious user. Such misuse
will be dealt with severly by the administration.

AUTHOR
Thomas Ferrin, University of California, San Francisco

7th Edition local 1

PSSTAT(1) UNIX Programmer’s Manual PSSTAT (1)

NAME

psstat — report Picture System statistics

SYNOPSIS

psstat [—s] [interval [count] |

DESCRIPTION

FILES

Psstar delves into the system and reports on (usually in an iterative fashion) certain statistics kept about
Picture System 2 activity. If given a —s argument, it prints the contents of the cn structure, giving the total
number of several kinds of PS2 related events which have occurred since the last system reboot. The
optional interval argument causes psstat to report once each interval seconds. *‘Psstat 5°* will print what
the PS2 is doing every five seconds; this is a good choice of printing interval. If a count is given, the statis-
tics are repeated count times. The fields are:

Interrupts: detailing the number of different PS2 interrupts per second.

rtc real time clock
Sys system control
dev device control
dma direct memory access

Rqsts: information about the last recorded system & device control requests.

sys ““R,M,H"" for refresh stopped, map output stopped & halt requested
dev “‘S,K™" for stereo image alternator & keyboard

I/O: information about the number of i/o operations and transfer rate.

dma direct memory access transfers
kbps dma kilobytes transfered per second
pio programmed i/o transfers

kbps pio kilobytes transfered per second

Ps2: breakdown of PS2 usage

map percentage matrix arithmetic processor busy
idl percentage ps2 idle

Cpu: breakdown of percentage usage of CPU time

us user time for normal processes

ni user time for low priority processes
sy system time

id cpu idle

/dev/kmem, /unix

SEE ALSO

Picture System 2 Hardware Reference Manual

AUTHOR

Thomas Ferrin

7th Edition local 1

PUSH (3G) UNIX Programmer’s Manual PUSH(3G)

NAME

push — push the matrix stack
SYNOPSIS

push()

DESCRIPTION
The push subroutine is called to push the current Picture Processor Transformation Matrix onto the Matrix
Stack. Note that the Matrix Stack can store a maximum of 8 matrices before overflow.

SEE ALSO
pop(3G), bldcon(3G)

7th Edition local 1

RDTC (3G) UNIX Programmer’s Manual RDTC(3G)

NAME
rdtc — read transformed coordinate data

SYNOPSIS
rdtc(ps2loc, pdploc)
psaddr_t ps2loc;
ps_t *pdploc;

DESCRIPTION
The rdtc (ReaD Transformed Coordinates) subroutine is an alternative to the rbtmem(3G) subroutine
specifically implemented to read back selected transformed coordinate data. By calculating the relative
addresses in Picture Memory of only the specific transformed data one is interested in, (X, Y, Z, W) qua-
druplets of selected coordinates can be quickly and easily extracted from large pictures. Thus, the MAP
can be used as a general purpose arithmetic processor for arrays of picture oriented data.

Ps2loc is the location in Picture Memory to begin reading coordinate data (this is the offset from the first
datum stored in Picture Memory after wbtmem was called and is unusual in that it specifies a WORD [not
byte!] offset). Pdploc is a pointer to a location in PDP11 memory in which to store the (X, Y, Z, W) values
retrieved from the refresh buffer.

SEE ALSO
wbtmem(3G)

7th Edition local 1

ROT(3G) UNIX Programmer’s Manual ROT(3G)

NAME
rot — build a rotation matrix

SYNOPSIS
rot(angle, axis)
int angle, axis;

DESCRIPTION

The rot subroutine is called to build a rotation transformation based on the angle and axis of rotation
specified in the parameter list. The transformation is then concatenated to the Picture Processor Transfor-
mation Matrix. Angle is an integer which specifies the angle of rotation. The angle is given by dividing a
circle into 2#x16 equal parts, with zero being equal to zero degrees and 2+*15 equal to 180 degrees. Two's
complement addition, ignoring overflow, causes the angle to increase counter-clockwise through 360

~degrees when viewed along the specified axis in the positive direction. Axis is an integer which specifies
the axis of rotation. Valid values for axis are:

XAXIS (=1) rotation about X axis.
YAXIS (=2) rotation about Y axis.
ZAXIS (=3) rotation about Z axis.

NOTE
The Picture System 2 software is designed for a left-handed coordinate system.

SEE ALSO
scale(3G), tran(3G), getrot(3G)

7th Edition local 1

RSETPS (3G) UNIX Programmer’s Manual RSETPS (3G)

NAME
rsetps — reset Picture Memory Display Lists

SYNOPSIS
rsetps()

DESCRIPTION
The rsetps routine is called to reset the Display List Control Table so display lists may be recreated in Pic-
ture Memory. The effect of this call is to cause all current Picture Memory-resident display lists to cease to
exist.

SEE ALSO
setps(3G)

7th Edition local 1

SCALE(3G) UNIX Programmer’s Manual SCALE(3G)

NAME
scale — build a scaling matrix

SYNOPSIS
scale(sx, sy, sz [,iw])
int sx, sy, sz, iw;

DESCRIPTION
The scale subroutine is called to build a scaling transformation based on the X, Y, Z scaling values
specified in the parameter list. The resulting transformation matrix is then concatenated with the current
Picture Processor Transformation Matrix. Sx, sy and sz are the X, Y and Z scaling parameters. The object
scaling factor is determined by dividing these parameters by the homogeneous coordinate iw. If the iw
parameter is omitted or given as zero, it is treated as 32767.

As an example, to proportionally scale an object by 1/2 about the x, y and z axes, the scale routine could be
called with the sx, sy and sz parameters equal to 16384 (16384/32767 = 1/2). To proportionally scale an
object to twice its normal size, the scale routine could be called with sx, sy and sz parameters equal to
32767 and the iw parameter equal to 16384 (32767/16384 = 2). To provide for variable scaling which is
capable of both increasing and decreasing the size of an object, sx, sy and sz could be fixed at 8192 and iw
could be varied from 32767 to 1. This would provide for an object that varied from 1/4 its normal size to
8197 times its normal size.

SEE ALSO
rot(3G), tran(3G), setscl(3G)

7th Edition local 1

SCOPES(3G) UNIX Programmer’s Manual SCOPES (3G)

NAME
scopes — select Picture System Display

SYNOPSIS
scopes(value)
int value;

DESCRIPTION
The scopes subroutine is called to select or de-select the Picture Display to which output will be directed.

Value is an integer which specifies which Picture Display are to be selected or de-selected. Value is inter-
preted as a 6-bit binary value where each bit that is set will select the corresponding scope and each bit that
is not set will deselect the corresponding scope. Thus, the value 1 will select scope 0; 2, scope 1; 4, scope
2; 8, scope 3; 16, scope 4; 32, scope 5. The values are additive so that 1+2+4+8+16+32=63 will select all

scopes for display.

7th Edition local 1

SETLIT (3G) UNIX Programmer’s Manual SETLIT(3G)

NAME
setlit — set lights on Function Switches

SYNOPSIS
setlit(n, status)
int n, status;

DESCRIPTION
The setlir subroutine is called to set or clear an individual light on the Picture System 2 Function Switches
& Lights peripheral, dependent upon the parameters specified to the subroutine. N is an integer which
specifies the light number that is to be set or cleared. Valid values are:

N = 0-15 for 1 set of Function Switches & Lights

N =0-31 for 2 sets of Function Switches & Lights
N = 0-47 for 3 sets of Function Switches & Lights
N = 0-63 for 4 sets of Function Switches & Lights

Status is an integer which specifies whether the light is to be set or cleared. Starus equal to zero clears an
individual light; for all other values the light is set.

SEE ALSO
lights(3G), fswitch(3G), iswset(3G)

NOTA BENE
Serlit is acceptable efficiency-wise if one or two lights are being set, but lights(3G) is much more efficient
if several lights must be set within the same display loop.

7th Edition local 1

SETPS (3G) UNIX Programmer’s Manual SETPS(3G)

NAME
setps — initialize for Picture Memory Display Lists

SYNOPSIS
setps(limit [,nobs, array])
psaddr_t limit;
int nobs;
int *array;

DESCRIPTION
This routine is called to set the initial lower limit for the Picture Memory refresh buffer. The beginning
portion of Picture System memory, up to this limit, is then set aside for storage of structured ‘display list’
object definitions. This routine must be called AFTER psinit is called.

Limit is the lower limit to be established for the refresh buffer. Nobs indicates the maximum number of
Picture System memory objects. Control information for these objects will be stored in the user supplied
PDP-11 memory space pointed to by array. Each element is size PSOBSIZE (defined in ps.h). If no user
memory space is provided, an array large enough to hold 5 objects will be provided by default.

SEE ALSO
makeps(3G), rsetps(3G)

Tth Edition local 1

SIA(3G) UNIX Programmer’s Manual SIA(3G)

NAME
sia, left, right — stereo image alternator routines

SYNOPSIS
sia(state)
int state;

right()
and
left()

DESCRIPTION
The sia subroutine is called to start or stop the synchronization of the Baush & Lomb stereo image alterna-
tor with the Picture System Refresh Controller.

State is an integer which enables or disables synchronization. Valid values for state are:

state = 0, synchronization off
state + 0, synchronization on

The left and right subroutines are called to specify that subsequent data should be displayed for the left or
right eye, respectively. When generating pictures, the right eye image should always be displayed prior to
the left eye image.

SEE ALSO
siasync(1G)

7th Edition local 1

SIASYNC(1G) UNIX Programmer’s Manual SIASYNC(1G)

NAME
siasync — synchronize stereo image alternator

SYNOPSIS
siasync

DESCRIPTION
Siasync facilitates periodic adjustment of the phase relationship between the displayed Picture System
image and the Bausch & Lomb stereo viewing shutter. The display consists of a series of letters
“LLLLLL RRRRRR"’ drawn across the face of the CRT screen.

Each letter of the left eye (respectively right eye) pattern is drawn 0.6 ms apart. If the motor housing on
the right-side of the stereo viewer is grasped gently but firmly and rotated with respect to the stationary
portion of the viewer, phase changes can be seen as a horizontally varying ‘‘band’’ of intensity for each
eye’s image.)

The phase is correct when each eye sees its, and only its, row of characters displayed at equal intensity.

FILES
/dev/ps.map

SEE ALSO
sia(3G)

7th Edition local

SPEED (3G) UNIX Programmer’s Manual SPEED(3G)

NAME
speed — set the Line Generator drawing speed

SYNOPSIS
speed(speed)
int speed;
DESCRIPTION
This subroutine sets the Line Generator drawing speed according to the parameter specified.

Speed is an integer which specifies the Line Generator speed. Valid values for speed are:

0 = Full speed
1 =1/2 speed
2 = 1/4 speed
3 =1/8 speed

7th Edition local 1

STOPOB (3G) UNIX Programmer’s Manual STOPOB (3G)

NAME
stopob — terminate a Linear Display List

SYNOPSIS
stopob()

DESCRIPTION
The stopob subroutine is called to terminate the creation of a Linear Display List previously initiated by a
call to the makeob(3G) subroutine. The termination of makeob mode causes the Picture System 2 software
to revert to the normal mode of operation so that all subsequent data ‘drawn’ will be output to the Picture
Processor. A call to the fulsub subroutine will also be invoked at this time, providing one was specified by
the user in the call to makeob.

SEE ALSO
makeob(3G)

7th Edition local 1

STOPPS (3G) UNIX Programmer’s Manual STOPPS(3G)

NAME
stopps — terminate a Picture Memory Display List

SYNOPSIS
stopps()

DESCRIPTION
This routine is called to terminate the creation of a Picture Memory-resident display list initiated by a pre-
vious call to the makeps, maksps or apndps subroutines. The termination of makeps mode causes the Pic-
ture System software to revert to the normal mode of operation so that all subsequent data ‘drawn’ will be
output to the Picture Processor.

SEE ALSO
makeps(3G), apndps(3G)

7th Edition local 1

STOPWB (3G) UNIX Programmer’s Manual STOPWB (3G)

NAME
stopwb — terminate write back mode

SYNOPSIS
stopwhb()

DESCRIPTION
The stopwb subroutine is called to terminate the write-back to memory mode of operation initiated by a
previous call to the whrmem(3G) subroutine. The termination of wbrmem mode causes the Picture System
2 software to revert to the normal mode of operation so that all subsequent data output to the Picture Pro-
cessor will be transformed and output to Picture Memory for display. A call to the fulsub subroutine will
also be invoked at this time, provided one was specified by the user in the call to wbtmem.

SEE ALSO
wbtmem(3G)

7th Edition local 1

SUBPS(3G) UNIX Programmer’s Manual SUBPS (3G)

NAME
subps — display list structuring

SYNOPSIS
subps(name)
int name;

DESCRIPTION
This routine causes a subroutine jump (PUSHJ) to object name. The jump instruction is placed into the
display list currently being created in Picture Memory. This serves to introduce a structure into an other-
wise linear list. Hence, a display list generated by the makeob routine is termed a ‘Linear Display List’,
while one created by makeps is sometimes called a ‘Structured Display List’, even though it need not con-
tain structuring,.
Note that a call to this subroutine is only valid when the Picture System software is in makeps mode. Also,
display list name must already reside in Picture Memory.

Subobjects may be nested up to 16 levels deep (no overflow checking is done).
Name is the object identifier.

SEE ALSO
makeps(3G)

7th Edition local 1

TABLET (3G) UNIX Programmer’'s Manual TABLET(3G)

NAME
tablet — retrieve data tablet cursor position

SYNOPSIS
tablet([x, y, pen])
int *x, *y, *pen;

DESCRIPTION
Tablet retrives the current cursor switch status and position information from the data tablet. X and y are
addresses of integers which are updated with the current pen position. Pen is the address of an integer
which is updated with the current pen information. Bit 4 will be set if the pen is down and bits 2-0 will be
zero if the pen is within proximity of the tablet surface. All pen bits are mnemonically defined in ps.h. If
the x, y and pen arguments are omitted, the default external variables _iv, _iy and _ipen will receive the
tablet information.

Tablet returns a non-zero value if the cursor sense switch is currently depressed.

SEE ALSO
cursor(3G), ispchd(3G), /usr/include/ps.h

BUGS

Changing the tablet size from the normal 11"x11" model requires changing parameter values in the device
driver.

7th Edition local 1

TEXT (3G) UNIX Programmer’s Manual TEXT (3G)

NAME
text — display text

SYNOPSIS
text([count,] string)
int count;
char *string;

DESCRIPTION
The rext subroutine is called to display the text string specified in the parameter list. The display of the text
will be from the current position and at the intensity associated with the last information displayed on the
screen. Psinit initializes the character status; it may be updated by calling the charsz subroutine. Count is
an optional argument which specifies the number of characters to be displayed. String is a pointer to the
array of characters to be displayed.

If count is omitted, then the characters from the beginning of string up to the first null or non-ASCII char-
acter will be displayed.

SEE ALSO
charsz(3G), psinit(3G), getchr(3G)

7th Edition local 1

TRAN(3G) UNIX Programmer's Manual TRAN (3G)

NAME
tran — build a translation matrix

SYNOPSIS
tran(x, y, z [,w])
int x, y, z, w;
DESCRIPTION
The tran subroutine is called to build a translation transformation based on the X, Y, Z translational values
specified in the parameter list. The transformation is then concatenated to the Picture Processor Transfor-

mation Matrix. X, y and z are the scaled translation values. W is the factor used to scale the translational
values. If the scale factor is omitted or given as zero, it is treated as 32767.

SEE ALSO
rot(3G), scale(3G), gettrn(3G)

7th Edition local 1

TRANSPOSE (3GU) UNIX Programmer’s Manual TRANSPOSE (3GU)

NAME

transpose, trpose — transpose of a Picture System matrix
SYNOPSIS

transpose(func, mat);

int func;

int mat[4][4];

and
trpose(mat, xtrans);
int mat[4][4], xtrans[4][4];

DESCRIPTION
Transpose calculates the transpose of a Picture System transformation matrix supplied in mar and passes
the result to bldcon(3G) along with the specified function type func.

Trpose calculates the transpose of mar and places the result in xfrans.
If the matrix mat is a strict rotation operator, then the transpose of mat is equal to the inverse rotation.

SEE ALSO
Evans and Sutherland Picture System IT User’s Manual, Section 4.2.3

7th Edition local 1

TXTURE(3G) UNIX Programmer’s Manual TXTURE(3G)

NAME
txture — set line texture

SYNOPSIS
txture(status [,cont])
int status, cont;

DESCRIPTION
The xture subroutine is called to set the Line Generator status such that all subsequent lines will be drawn
in the selected mode. Srarus specifies the line mode to be selected:

0 = solid lines.

1 = lines consisting of short dashes.

2 = lines consisting of medium-short dashes.

3 = lines consisting of medium-long dashes.

4 = lines consisting of long dashes.

5 = lines consisting of long-short dashes (centerline).
6 = lines consisting of long-short-short dashes.

Cont, if specified and non-zero, enables continuous texture mode for the Line Generator (see Picture Sys-
tem 2 reference manual, section 2.4.3b).

7th Edition local 1

UNIT (3GU) UNIX Programmer’s Manual UNIT (3GU)

NAME
unit — load a unit matrix into the Picture System MAP

SYNOPSIS
unit ([iw]);
int iw;

DESCRIPTION
Unit replaces the current transformation in the Picture System’s Matrix Arithmetic Processor (MAP) with a
unit matrix. The level of the MAP stack is not affected and the transformation in the MAP when unir is
called is lost.

If iw is specified, it is used as the value of the diagonal elements in the transformation. If it is omitted, the
value 16384 is used.

SEE ALSO
bldcon(3G)

7th Edition local 1

VV3(3GU) UNIX Programmer’s Manual VV3(3GU)

NAME
vv3, vxv3 — dot and cross product of two 3-dimensional vectors

SYNOPSIS FOR C USAGE
double vv3(a,b);
double a[3],b[3];
and
vxv3(c,a,b);
double a[3],b[3],c[3];
SYNOPSIS FOR FORTRAN USAGE
real vv3(a,b)
real a(3),b(3)
and
call vxv3(c,a,b)
real a(3),b(3),c(3)
DESCRIPTION
Vv3 returns the inner (dot) product of two three-dimensional vectors.

Vxv3 calculates the cross-product of the three-dimensional vectors @ and b, and places the result in vector
c.

SEE ALSO
dist3(3GU)

7th Edition local 1

VWPORT (3G) UNIX Programmer’s Manual VWPORT (3G)

NAME
vwport — set screen viewport

SYNOPSIS
VW'POH(L r,b,t, hy)
int,r,b,t,h,y;

DESCRIPTION
The vwport subroutine is called to set a viewport as specified by the calling parameters. L, r, b and t are
respectively the left, right, bottom and top boundaries. The normal range for these values is -2048 to 2047.
H and y specify the display intensity are at hither and yon clipping planes. The normal range for these
values is 255 for full intensity to O for no intensity.

SEE ALSO
window(3G), psinit(3G)

7th Edition local 1

WBTMEM (3G) UNIX Programmer’s Manual WBTMEM (3G)

NAME

wbtmem, rbtmem — write back to memory
SYNOPSIS

whbtmem(type)

int type;

and
rbtmem(array, size, lenp [,fulsub])
ps_t *array;
int size;
int *lenp;
int fulsub();

DESCRIPTION
The wbrmem (Write-Back To MEMory) subroutine is called to initiate a mode of operation whereby all
data written out to the Picture System 2 is formatted in a manner different than the usual ‘display’ mode of
operation. A subsequent call to rbrmem will then store this transformed data in a user supplied buffer and
restore the Picture System to its status just prior to the whemem call. (The routine stopwb may also be
called to restore the original status any time write-back mode is active.)

Type is an integer which specifies the type of data transformation that is to occur. Valid values are:

1 = data transformed only.
2 = data transformed and clipped.

Array is the address of a user supplied buffer which will hold the write-back data. Size is an integer which
specifies the number of elements in the buffer. Lenp is a pointer to an integer variable where the number of
buffer elements actually used will be maintained. Fulsub is the address of a subroutine to be called if the
available buffer space becomes exhausted.

If supplied, the C calling sequence will be:
fulsub(array, len, flag);

When called, the user’s subroutine should empty the write-back buffer and then return. Flag will be non-
zero on the last call to fulsub, that is, when the contents of the write-back area of PS2 memory have been
exhausted. When whmmem is called, and then other graphic subroutines are subsequently called, the data is
transformed by the MAP according to fype and then stored in Picture System 2 refresh buffer. A call to
rbtmem will then transfer this data to the user buffer area in one of two formats. The formats are:

For type = 1 and all ‘FSM2’ values:
X-coordinate (1 word)
Y-coordinate (1 word)
Z-coordinate (1 word)
W-coordinate (1 word)
<repeat>

For type = 2:
Command Code (1 word)
Data (3 words)
<repeat>

Where command code is:
0 = MOVETO
1 =DRAWTO
2 =TEXT
3=STATUS DATA
-1 = End Of Frame

7th Edition local 1

WBTMEM (3G) UNIX Programmer’s Manual WBTMEM (3G)

and ‘data’ is:
(For command codes 0 and 1)
X-coordinate (1 word)

Y-coordinate (1 word)
Z-coordinate (1 word)

(For command code 2)
character 1 (1 byte)
character 2 (1 byte)
character 3 (1 byte)
character 4 (1 byte)
--- 0 --- (1 word)

(For command code 3)
Line Generator Status (2 words)
---0--- (1 word)

For text strings which are longer than 4 characters, additional command code and data sequences will be
output. The end of text is indicated by a null byte or a command code != 2.

SEE ALSO
1dtc(3G), fulsub(3GU), pscopy(3GU), Picture System 2 reference manual (section 2.3.3)

BUGS
Due to a hardware design botch, the sign of the transformed data may not be correct. To correctly reflect
the true sign bit the transformed data must also be normalized; however, this gives inconsistent results for
different values of the ‘FSM2’ bit field of the draw command. In practice, few sign-bit errors have actually
been encountered.

7th Edition local 2

WINDOW (3G) UNIX Programmer’s Manual WINDOW (3G)

NAMES
window — set window

SYNOPSIS
window(l, r, b, t [,w])
intl, r, b, t, w;
and
window(l, r, b, t, h, y [,eye [,w]])
intl,r, b, t, h, y, eye, w;

DESCRIPTION
The window subroutine concatenates a two-dimensional or three-dimensional windowing transformation to
the Picture Processor Transformation Matrix. This subroutine can be used to perform two-dimensional
windowing, orthographic projection or a true perspective transformation of data. The windowing transfor-
mation is constructed from the arguments specified in the parameter list.

L, r, b and ¢ are respectively the left, right, bottom and top scaled window boundaries in definition space
coordinates. H and y are the hither and yon boundaries. For two-dimensional windowing, the window
front, or hither, boundary is 0; the window rear, or yon, boundary is equal to w. For three-dimensional win-
dowing, if y equals w the yon boundary is positioned at infinity on the side of the hither clipping plane
opposite the eye so that no yon clipping will be performed. Eye is an integer which, if specified, is the
scaled Z position of the eye. If this parameter is omitted or equals w, the eye is positioned at minus infinity
which produces an orthographic view of the data. W is an integer used to scale the window boundaries and
eye position. If the scale factor is omitted or given as zero, it is treated as 32767.

SEE ALSO
vwport(3G), psinit(3G)

7th Edition local 1

XERRORS(3G) UNIX Programmer’s Manual XERRORS (3G)

NAME
xerrors — expanded format for error printout

SYNOPSIS
xerrors()

DESCRIPTION
This routine enables the expanded form of error printout as described in intro(3G).

SEE ALSO
intro(3G), pserrs(1G)

7th Edition local 1

