The Computational Impact of Genomics on Biotechnology R&D (sort of...)

John "Scooter" Morris, Ph.D. Genentech, Inc.

Scooter Morris, Genentech, Inc. (scooter@gene.com)

Biotechnology?

Means many things to many people

- Genomics
- Gene therapy
- Proteomics
- Diagnostics
- Drug delivery
- etc.

Biopharma – the use of biotechnology to produce pharmaceuticals

Genentech

"Genentech is a pharmaceutical company dedicated to applying recombinant DNA technologies to unmet medical needs."

Founded 25 years ago

9 Marketed Products

- Human Growth Hormone Products
 - Protropin[®], Nutropin[®], NutropinAQ[®], NutropinDepot[™]
- Activase[®]
- TNKase[®]
- Pulmozyme[®]
- Rituxan[®]
- Herceptin®

Clinical Development of Drugs

Discovery	Development	Marketing and Line Expansion
Idea for new chemical	Compound elevated to project status	Post marketing studies
Synthesis and testing	IND plan established and initiated	New clinical indications pursued
Chemical lead found	IND filed	New dosage forms and formulations developed
Additional compounds are made	Clinical studies initiated Place NDA prepared	Safety surveillance
chosen and additional	NDA prepared and submitted	V
tests run	NDA approved	
	Drug launched	

From Craig Venter's slides:

Discovery won't wait

At Genentech, it will wait, but it will cost you... \$1 million / day

Scooter Morris, Genentech, Inc. (scooter@gene.com)

Discovery

I'm going to focus on sequence analysis

Other aspects to Genentech's discovery program

- Basic research in diseases and disease states
- Animal models
- Clinical research
- "Humanized" Monoclonal Antibodies
- Protein structure determination
- Process sciences

All of these have their own computational needs

"Recombinant" Discovery (old)

"Recombinant" Discovery (old)

Process is very time consuming

Months of experimentation and refining

Process is error prone

- Assay development is expensive
- Assays may not specific enough
- Might get ambiguity from probe
- Might not get full length clone

Sequence database use

- Test against known proteins / DNA
- Help establish intellectual property

"Recombinant" Discovery (newer)

Comparison

Step	Get Protein	Get DNA	Full-Length Clone
OLD	Lab/Assay	Lab	Lab
	Months-years	Weeks-months	Weeks-months
NEW*	Select from database	Run program	Order for \$25- \$30
	Minutes	Minutes-hours	Minutes

* May still need to extend with PCR to get full length clone. Also still need to assay and express

Scooter Morris, Genentech, Inc. (scooter@gene.com)

Growth of Genbank

Similarity Searching

Proteins with similar function are similar

• Usually, this means the DNA is similar

Proteins with known function can be used as *probes* into database

- Provides similar proteins, additional members of protein families
- Example: serine proteases

Main tool: blast

Blast

homo sapi Score = 76	Urokinase-type plasminogen activator precursor /pid=CAA26268.1 – s (431 aa) [2 segs] (299 bits), Expect = 5e-80 [UROK_HUMAN, seg 1/2] 162/389 (41%), Positives = 214/389 (54%), Gaps = 30/389 (7%), at 189,50-561,42	24
tpa	89 WCYVFKAGKYSSEFCSTPACSEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKV ** * * * ** *** *** * * ******	
UROK_HUMAN	50 WCNCPKKFGGQHCEIDKSKTCYEGNGHFYRGKASTDTMGRPCLPWNSATVLQQT	
tpa	49 YTAQNPSAQALGLGKHNYCRNPDGDAKPWCHVLKNRRLTWEYCDVPSCS	
UROK_HUMAN	04 YHAHRSDALQLGLGKHNYCRNPDNRRRPWCYVQVGLKPLVQECMVHDCADGKKPSSPPEE	
tpa	98TCGLRQYSQPQFRIKGGLFADIASHPWQAAIFAKHRRSPGERFLCGGILISSCWILS ***.*.* ** * * . ** **** ******	
UROK_HUMAN	64 LKFQCG-QKTLRPRFKIIGGEFTTIENQPWFAAIYRRH-RGGSVTYVCGGSLMSPCWVIS	
tpa	55 AAHCFQERFPPHHLTVILGRTYRVVPGEEEQKFEVEKYIVHKEFDDDTYDNDIALLQL * *** . * **** * ***** *.** ** . ******	
UROK_HUMAN	22 ATHCFIDYPKKEDYIVYLGRSRLNSNTQGEMKFEVENLILHKDYSADTLAHHNDIALLKI	
tpa	13 KSDSSRCAQESSVVRTVCLPPADLQLPDWTECELSGYGKHEALSPFYSERLKEAHVRLYP .* **** **.*** * ***	
UROK_HUMAN	82 RSKEGRCAQPSRTIQTICLPSMYNDPQFGTSCEITGFGKENSTDYLYPEQLKMTVVKLIS	
tpa	73 SSRCTSQHLLNRTVTDNMLCAGDTRSGGPQANLHDACQGDSGGPLVCLNDGRMTLVGIIS * * ********************************	
UROK_HUMAN	42 HRECQQPHYYGSEVTTKMLCAADPQWKT-DSCQGDSGGPLVCSLQGRMTLTGIVS	
tpa	33 WGLGCGQKDVPGVYTKVTNYLDWIRDNMR ** ** ** ******.** ***	
UROK_HUMAN	96 WGRGCALKDKPGVYTRVSHFLPWIRSHTK	

Growth of Genbank

Computational Demands

Genbank has grown:

- 21,000X in 20 years
- 22X in the last 5 years

Significant growth in other public databases • e.g. Swissprot, Procite, Blocks, Pfam

• e.g. Swisspiol, Flocile, Diocks, Flai

Advent of private databases

e.g. Incyte, Celera

Other applications

- Sequencing (both DNA and Protein)
- Microarray analysis
- High throughput screening
- Assay results

Computational Demands

Bioinformatics Job Mix

- Blast
 - I/O and integer intensive
 - Embarrassingly parallel
 - Large memory footprint
- Other applications (e.g. microarray analysis)
 - I/O & memory intensive
 - Floating point intensive
- User services
 - Web services
 - Appleshare
 - SAMBA
 - etc.

Bioinformatics Computing Evolution

Bioinformatics Computing

Approach was evolutionary

- Each step was an upgrade or an enhancement to existing computational resource
- Used existing tools whenever possible
- Maintain user expectations
- Minimize impact to discovery process

Current environment

- 1 GS160 (12-processors, 12GB)
- 7 ES40s (4-processors, 8GB)
- Can easily handle current normal blast demands
- Web interfaces to blast and other tools very popular
- Upgrading GS160 to handle additional microarray data
 - Protein-protein interaction studies
 - Floating point, CPU count intensive

Bioinformatics Computing

Why Alpha?

- Long history between Digital (now Compaq) and Genentech
- Wanted to take advantage of 64-bit address space
- Raw per-processor performance leader at the time
- Good I/O and floating point characteristics
- Excellent presence in biotechnology

Why Cluster?

- Substantially reduced database maintenance
 - One copy of the database
- Flexibility
 - Can migrate services as needed
- Ease of administration
 - Lots of users
 - Individual home directories
- Some increase in complexity
 - Getting services and filesystems right has taken some effort

Other Approaches

Large SMP systems

- 64 bit support
- Good I/O performance
- Generally poor price/performance
- Traditionally used at Genentech for computational chemistry and molecular modeling

Linux (IA32) clusters

- Excellent price/performance
- Particularly useful for back-end processing
- Must divide database up for large blast jobs
- Not as good for high I/O or floating point applications
- Pilot deployed at Genentech for ab initio calculations

Custom hardware

- Algorithm in firmware, PLAs, or ASICs
- Excellent performance
- Harder (impossible?) to adapt algorithms for local needs

Futures Needs

Computational needs will continue to increase

- Pharmacogenomics
 - Personalized medicine
 - SNPs Single nucleotide polymorphisms
- Proteomics
- Searches for more distant homologs
 - Human Genome: function of 42% of genes unknown
 - So, what does that 42% of genes code for?

How do we scale to meet future needs?

Bioinformatics Computing – Future?

Conclusions

Genentech's goal is to address unmet medical needs through recombinant DNA technology • Human therapeutics

The availability of genomic data is dramatically reducing the time to discover medically relevant proteins

Quicker time to market

It is also dramatically increasing our computational requirements ...

• ... and increasing competitive pressures

Conclusions

We've met our computing requirements (so far) through an evolutionary approach

Future computational needs will be much greater than today's

- Proteomics
- Pharmacogenomics
- Functional genomics

We hope to still be able to evolve to meet those needs

• But we will meet the needs

Acknowledgements

Colin Watanabe

- Bioinformatics
- Molecular Biology

Carol Morita

Molecular Biology

Questions?

Scooter Morris, Genentech, Inc. (scooter@gene.com)

Bioinformatics Computing

Scooter Morris, Genentech, Inc. (scooter@gene.com)

Bioinformatics Computing

Future directions

- Will look at Linux cluster after McKinley release
 - Still like 64 bit memory address
 - Clear price/performance leader for bioinformatics applications

