
The Integration of A Priori Knowledge

into a Go Playing Neural Network

Markus Enzenberger

markus.enzenberger@physik.uni-muenchen.de

September 1996

Abstract

The best current computer Go programs are hand crafted expert sys-

tems. They are using conventional AI technics such as pattern matching,

rule based systems and goal oriented selective search. Due to the increas-

ing complexity of managing this kind of knowledge representation by hand,

the playing strength of these programs is still far from human master level.

This article describes methods for integrating expert Go knowledge into a

learning arti�cial neural network. These methods are implemented in the

programNeuroGo. The network learns by playing against itself using tem-

poral di�erence learning and backpropagation. The expert knowledge that

is implemented at present in NeuroGo is simple compared with a conven-

tional computer Go program. Despite of this, NeuroGo is able to achieve

a playing strength which is equal to a conventional program playing at a

medium level.

1 Introduction

The oriental game of Go is probably the most complex of all board games.

However, its rules are simple. There are two players. Both alternately place

stones of their colour (Black or White) on a board with 19�19 intersections

(smaller sizes are possible). Black begins. The goal is to surround more territory

than the opponent. Adjacent stones of the same colour form strings. A string

can be captured if all its adjacent empty intersections, its liberties, are occupied

by the opponent. An important pattern in Go is an eye. This is an empty

intersection surrounded by a single string. The opponent can only play there

if he captures the string and gains liberties by removing it. A string with two

eyes is safe from capture, it is said to be unconditionally alive.

Despite of the success of computers in chess, the best current Go programs

are still weak. Because of the large number of allowed moves, brute force search

is not feasible. In addition, Go positions are di�cult to evaluate. The security

of strings from capture is often not clear, but can decide the outcome of the

game. Conventional Go programs rely mainly on positional analysis. They use

databases which contain thousands of patterns and rules. Some tactical sub-

problems are solved by search. This approach becomes more di�cult to handle,

1

the bigger the programs become. Side e�ects of newly integrated knowledge and

unforeseen interaction of rules are a problem.

Therefore a hybrid approach which combines heuristic knowledge with ma-

chine learning is appealing. Schraudolph, Dayan and Sejnowski [5] have shown

that a neural network can learn to beat a commercial Go program at a low

level if special care is given to reect the translational and colour symmetries

of the pattern recognition task in the architecture of the network. However,

they did not integrate any expert knowledge into the system which is inherent

in conventional Go programs.

Evaluation

Expert
Relation

Expert
Feature

Expert
External

Transformed Go Position

Figure 1: System architecture. The position is transformed into a set of strings

and empty intersections. The feature expert calculates the network's input.

The relation expert determines its connectivity. The external expert adds more

knowledge, which is allowed to override the output of the network.

2 System Architecture

In the following the system architecture will be described. From an outside

point of view, the system is given a board position and produces an evaluation

for every intersection on the board. The evaluation is interpreted as the prob-

ability that this intersection will belong to Black at the end of the game. The

architecture of the system is shown in �gure 1. The board position is trans-

2

formed in two ways. The system contains a neural network with one hidden

layer and sigmoid activation functions. A priori knowledge is integrated by

three di�erent expert modules.

Transformations of the Position

The �rst transformation is that Black is always to move. If it is White's turn,

the colours of all stones are exchanged. The second transformation is motivated

by the fact that there is a strong correlation between the stones which belong to

the same string. If the string is safe, all its stones will belong to the player at the

end of the game. If it can be captured, then in most cases all the intersections

that are occupied by its stones will become territory of the opponent. Therefore

the given board position is not divided into intersections, but transformed into

a set of strings and empty intersections. From now on, strings and empty

intersection are called units.

Network

Because of the second transformation, the number of neurons in the input,

hidden and output layer of the network depends on the board position. A

static connectivity of the neurons is no longer possible. This is no handicap,

the decision how to connect the neurons can be used for integrating more a

priori knowledge, as will be described in the following section. In the network,

there is one neuron per unit in the output layer and an arbitrary number of

neurons per unit in the input and in the hidden layer.

Relation Expert

The relation expert uses a priori knowledge for detecting relations between a

pair of units. A graph is constructed using the units as nodes and the relations

as edges. This graph determines the connectivity of the network. There cannot

be more than one relation per direction between two units. If the expert detects

more than one, it must decide which the most important is. Two neurons of

adjacent layers that correspond to two units are connected only if the units are

related. The weights which are used for the connection depend on the type of

the relation (including the type of the units) and the index of the neurons in

the layers. They do not depend on the location of the units on the Go board.

This does not only incorporate translational and rotational invariances of

pattern recognition on the Go board, but also invariances that are speci�c to Go

programming. Go knowledge like \A string with two eyes cannot be captured"

can be easily learned using this architecture, regardless of the form and size of

the string and the location of the eyes. If care is given to identify only important

relations, the relation expert can produce a network which is connected sparsely

and e�ciently.

3

Example

An example of the construction of the network by using the transformed Go

position and the relation expert is shown in �gure 2. A position on a 3�3 board

which contains a single white string and two empty intersections is given.

1

4

2

3

5

w

w

2

3

4

w1 w

Hidden

Input
layer

layer

Output
layer

w = w(EB-adjacent, 4, 5)

w = w(BE-adjacent, 2, 3)

w = w(BB-same, 3, 5)

w = w(EB-adjacent, 4, 5) = w
1

12

3

4

White to move

RAW POSITION

E B E

BE-adjacent

BB-same

EB-adjacent

BE-adjacent

EE-same EE-same

EB-adjacent

E B E

TRANSFORMED POSITION

NETWORK

GRAPH

Figure 2: Example of the construction of the network. The relation expert

recognizes the relations \same" and \adjacent". In this �gure B stands for

black string and E for empty intersection. Only a subset of all connections

between the neurons is shown.

Feature Expert

The second method of integrating a priori knowledge is obvious and frequently

applied in neural computation. Rather than feeding the network with the posi-

tion only, the input is preprocessed by the feature expert. It detects features of a

single unit and calculates the activation of the input neurons which correspond

to this unit.

4

External Expert

The external expert recognizes and evaluates parts of the board completely by

its own. It can be used if there is a simple and correct algorithm for evaluating a

certain class of local positions. There is no need for a learning system then. The

external expert overrides the output of the network. However, since the output

of the system (together with the terminal position) determines the teaching

signal in temporal di�erence learning (see below), the network will learn an

evaluation function with a smooth interface to the evaluation of the external

expert.

Playing and learning

Moves are chosen by playing all allowed moves of a position. The resulting

positions are evaluated by the system. The move with the highest value is picked

then. After the game has ended, the position is scored and played backwards.

The training target is determined by the temporal di�erence algorithm TD(0)

[6]: it is given by the output of the system for the position one move later or

the terminal position if no moves follow. The weight changes are calculated by

the backpropagation rule. Since a weight may occur many times in the network

all weight changes belonging to the same weight are added. The weight changes

are applied instantaneously after each target is presented to the network. All

errors in the evaluation of a string unit are multiplied with its number of stones.

This is necessary for learning to predict the overall score accurately.

3 NeuroGo

NeuroGo is a program which is based on the described architecture. It is par-

ticipating in the Computer Go Ladder [4]. Because of the limited available

computational resources and the need for patterns which are frequently occur-

ing, the implemented knowledge is rather simple compared with conventional

Go programs.

At present the following features are computed by the feature expert:

black or white string empty intersection

number of liberties liberties of Black if he plays here

(1, 2, 3, 4, �5) (1, 2, 3, 4, �5)

number of stones liberties of White if he plays here

(1 or 2, 3, �4) (1, 2, 3, 4, �5)

can be captured in a ladder Black can be captured in a ladder,

if string colour plays �rst if he plays here

can be captured in a ladder White can be captured in a ladder,

if string colour plays second if he plays here

eye for Black, n moves missing

(n = 0; 1; 2;�3)

eye for White, n moves missing

(n = 0; 1; 2;�3)

5

A ladder is a deep tactical sequence during which a string cannot gain more

than two liberties and is eventually captured or saved.

The relations that are currently implemented in NeuroGo reect mainly

the distance of two units, according to the fact that the correlation of two

units decreases with their distance on the board. Two units have the distance

Dn if the length of the shortest path between them that contains only empty

intersections is n. In addition groups are detected. A group is a set of strings

of the same colour which probably cannot be cut apart by the opponent. They

are likely to form a single string in the game later on and are therefore strongly

correlated. Two strings belong to the same group if they share two liberties or

one liberty where the opponent will be captured in a ladder if he plays there.

The relations are listed in the following table. They are sorted by decreasing

importance.

from black from white from empty

string string intersection

to same D0 or D1 D0 (liberty)

black same group D2 D1

string D1 D0 to group D2

D2 D0 to group

D1 to group D1 to group

to D0 or D1 same D0 (liberty)

white D2 same group D1

string D0 to group D1 D2

D2 D0 to group

D1 to group D1 to group

to D0 D0 same

empty D1 D1 D0

intersection D2 D2 D1

D2

At present there exists one external expert in NeuroGo. Basically it is

D. Benson's algorithm [1] [3] which can detect a certain class of unconditionally

alive strings and territory. The extensions of this algorithm by M. M�uller [3]

are added.

4 Results

In an experiment, the performance of NeuroGo against a conventional Go pro-

gram on a 9�9 board was tested. The size of the hidden layer was varied

between 3 and 24 neurons per unit. The test opponent was the commercially

available program \The Many Faces of Go" [2] (Release 2, Revision 8.03). This

program was also used by N. Schraudolph et al. [5]. They came up with a

network being able to beat this program at a low level (2{3) by using it as a

training partner. To avoid over specialization to a single opponent, NeuroGo

was trained only by playing games against itself. Some noise was introduced

6

-60

-50

-40

-30

-20

-10

0

10

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 r
es

ul
t o

f t
es

t g
am

es

Training games

3 neurons per unit
12 neurons per unit
24 neurons per unit

Figure 3: Training results. After 500 training games a set of 100 test games

was played against the program \The Many Faces of Go" level 8. Networks of

di�erent sizes were trained.

by playing a move m with a probability P depending on the value vm of the

move. P is given by

P (vm) =
1

N
exp(vm=0:35); N =

X

i

exp(vi=0:35)

After a period of 500 training games, a set of 100 games against the opponent

was played without training (50 with black and 50 with white). The medium

playing level 8 (of 20) was chosen at the oppenent program.

As can be seen in �gure 3 the largest network is able to achieve equal level

of play after about 4500 games. It shows a more steady performance against

the opponent than the smaller networks.

5 Conclusion

The test results show that the system architecture is suited to the learning task.

The integrated knowledge is far less sophisticated than that of the opponent

program. Therefore the abilities of the described architecture are not yet ex-

ploited. However, the integration of more expert knowledge will signi�cantly

increase the time of development. Large computational resources are needed

especially if experiments will be performed on the usual 19�19 board. Further-

more it will be necessary to look for a way to integrate the evaluation function

into a (selective) search strategy.

7

References

[1] Benson, D. (1976). Life in the Game of Go. Reprinted in: Computer Games

II, Levy, D. (Editor), Springer, New York, 1988.

[2] Fotland, D. (1993). Knowledge representation in The Many Faces of Go.

Manuscript available by Internet

ftp://bsdserver.ucsf.edu/Go/comp/mfg.Z.

[3] M�uller, M. (1995). Computer Go as a Sum of Local Games: An Application

of Combinatorial Game Theory. Dissertation, ETH Z�urich. Available by

Internet

ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th11006.ps.gz.

[4] Petterson, E. (1994). The Computer Go Ladder. Internet World Wide Web

Page

http://cgl.ucsf.edu/go/ladder.html.

[5] Schraudolph, N., Dayan, P., Sejnowski, T., (1994). Temporal Di�erence

Learning of Position Evaluation in the Game of Go. In: Neural Information

Processing Systems 6, Morgan Kaufmann 1994. Available by Internet

ftp://bsdserver.ucsf.edu/Go/comp/td-go.ps.Z.

[6] Sutton, R. (1988).Learning to predict by the methods of temporal di�erences.

Machine Learning, 3:9-44. Available by Internet

ftp://ftp.cs.umass.edu/pub/anw/pub/sutton/sutton-88.ps.gz.

8

