
Wrappy — a Python Wrapper Generator for C++ Classes

Gregory S. Couch
Conrad C. Huang
Thomas E. Ferrin

University of California
Computer Graphics Laboratory
San Francisco, CA 94143-0446

gregc@cgl.ucsf.edu

ABSTRACT

Wrappy generates a Python extension module from annotated C++ header files.
Wrappy’s power comes from how it translates C++ features to Python features: standard
C++ container classes are mapped to Python lists and dictionaries; C++ classes are con-
verted to Python types (or a Python-subclassable extension class [Ful98]); public member
data and accessor member functions are mapped to attributes; C++ exceptions are
mapped to Python exceptions; overloaded functions are supported; function argument
names are used for Python keyword arguments. Annotating C++ header files is neces-
sary to designate output arguments in functions and to choose how C++ classes are
wrapped. Some C++ source code modifications are necessary to harmonize C++ and
Python object semantics and to work around limitations in wrappy.

The impetus behind wrappy was to generate wrapper code for our (growing) C++
molecular graphics library with 500 member functions in 30 classes. Writing and main-
taining wrapper code by hand for that many functions was unappealing. We also found
that existing wrapper generators didn’t support all the C++ features we use. Wrappy
generates code that is similar to hand-crafted wrapper code, but more robust. The C++
header files generate about 30 times their ‘‘weight’’ in Python interface code (in our
case, from 850 lines in C++ header files to over 25,000 lines of Python interface code).

1. Introduction

Wrappy is a programming tool that gen-
erates the wrapper code needed for a C++ library
to be accessible from a Python interpreter. When
combined, the wrapper code plus the C++ library
become a Python extension module. In this paper
we will discuss the reasons why we wrote this
tool and how we mesh Python and C++ seman-
tics.

1.1. A Bit of History

In the spring of 1997, we had a prototype of
our next generation molecular modeling system
that was written in C++ using Motif, OpenInven-
tor, and OpenGL libraries. It was fast but
cumbersome for prototyping work. Then we
discovered Python and Tk.

By the spring of 1998, we had another pro-
totype that was written in Python with Tk,
OpenGL, and a thin custom C++ library (5
classes, 29 member functions, 4 global functions).
It was easy to prototype new molecular modeling
tools, but it was slower than the earlier prototype
and at least 10 times slower than our previous
generation of modeling software. We sped up the
program by profiling the code and rewriting parts
in C++ (especially I/O), but it was still too slow.

The challenge was to speed up the program
dramatically while preserving the ease of proto-
typing that Python provides. Consequently, we
increased the size of the the custom C++ library.
The initial rewrite produced 30 C++ classes, ∼500
member functions, and 3 global functions.
Unlike the previous version of the C++ library, it



- 2 -

was not reasonable to write the Python wrapper
code by hand. In the print of 1999, we wrote the
wrappy program, an automated tool for wrapping
C++ code with a Python interface in the spring of
1999.

2. Other Wrapper Generators

2.1. SWIG

Many people have worked on integrating
C++ code with Python, which is a complex task
as suggested by the continued presence of the
Python Special Interest Group for C++[C++-
SIG97]. Currently the most commonly used
wrapping tool is SWIG 1.1[Bea97] from David
Beazley at the University of Chicago. SWIG
builds C/C++ extensions for several scripting
languages. Although not designed specifically for
C++ nor for Python, it works well with them.

SWIG supports many C/C++ features (sim-
ple class definitions, public constructors and des-
tructors, virtual functions, public inheritance, glo-
bal variables). However, SWIG does not support
several C++ features that we use: function over-
loading, operator overloading, exceptions,
namespaces, private destructors, standard C++
strings and containers.

Another problem with SWIG is that it gen-
erates inefficient code. SWIG uses a ‘‘shadow
class’’ technique to export a C++ class into
Python. For a C++ class, all member functions,
including the constructors and destructors, are
made into Python extension module functions.
Those functions are encapsulated into a Python
class by a companion Python script, thus shadow-
ing the original C++ class. The advantage of sha-
dow classes is that they are a simple means of
allowing C++ classes to subclassed in Python.
The disadvantages are that you need the compan-
ion script in addition to the extension module, and
that class method invocation goes through a dou-
ble dispatch before the C++ function is called.
The double dispatch is costly as there is a
significant overhead for the extra Python function
call.

2.2. PYFFLE

Another wrapping tool that deserves special
mention is PYFFLE[Mil98] from Patrick Miller
at Lawrence Livermore National Laboratory.
PYFFLE understands C++ better than SWIG. Its
failings, for our purposes, were that it doesn’t
parse C++ declarations to figure out what to wrap,

that it is missing support for C++ exceptions and
namespaces, and that it requires smart pointers
for C++ resource management.

3. Making C++ Code Accessible from Python

3.1. Python and C++ Compatibility

One design goal was to get as much Python
behavior out of our of C++ code as possible.
Standard C++ and Python have many features in
common. We were able to convert C++ excep-
tions to Python exceptions; convert standard C++
container classes to and from Python containers
(by value); use C++ function argument names for
Python function keyword arguments; convert
C++ member data to Python class/type attributes;
return C++ output function argument in Python
tuples; etc. We also map C++ accessor member
functions into Python type attributes, which
makes the Python interface simpler than the C++
interface.

Where C++ and Python don’t match, the
Python functionality is generally a subset of the
C++ functionality. For instance, Python has no
concept of a constant object. Here, wrappy
depends on the compiler to give an error when it
tries to compile the wrapper code.

3.1.1. Example: Accessor Functions as Attri-
butes

An accessor function in C++ is a function
that gets or sets the value of private member data.
They are used to track changes in the member
data and to keep a backwards-compatible inter-
face during class design changes. For example,
given the two C++ member functions:

std::string name() const;
void setName(

const std::string &n);

Those two functions are combined into the
Python attribute name. Getting the attribute’s
value invokes the C++ name function, and setting
the value invokes the C++ setName function.

3.2. Basic Ideas

As hinted above, the basic idea behind
wrappy is that a C++ class should be made into a
Python type. A Python type is different from a
Python class: it is not subclassable. We can’t
generate a Python class, because the Python class
methods could not be C functions (no longer true
in Python 1.5.2!). There is a third-party extension



- 3 -

to Python, Extension Class[Ful98] from Jim Ful-
ton at Digital Creations, that provides the missing
functionality. Wrappy optionally generates code
that uses Extension Class if a C++ class needs to
be subclassable in Python.

One advantage that the Python class
mechanism has over the Python type mechanism
is that the class methods are found by hashing and
the type methods are found by linear search. For
the Python primitive types, this has not been a
problem because the number of methods is small,
and they are placed in most commonly used order
as determined by profiling. For the Python types
that we generate from C++ classes, the number of
methods is large (averaging 17 methods per C++
class), so we use a publicly available near-perfect
hash generator, gperf[Sch98], to speed up method
lookup.

Another basic idea is that wrappy should
decide what Python interface to generate by pars-
ing C++ declaration syntax. The C++ declara-
tions are optionally annotated with special com-
ments. For example, annotations are needed to
designate output function arguments. These
annotations don’t work well for bulk removal of
sections that should not be wrapped (e.g., some
member functions shouldn’t be accessible to
Python). The solution is to use only a subset of
the the C++ header files, or embed ifdef’s and use
the C preprocessor to pipe the input to wrappy.

3.2.1. Example: Function Output Arguments

Sometimes a function returns information
through some of its arguments. Often it is
because it needs to return more than one value.
Output arguments are annotated with an OUT
comment. For example, the C++ function:

void bounds(const
std::vector<int> &list,
/*OUT*/ int *min,
/*OUT*/ int *max);

is converted into a single argument Python func-
tion that returns a 2-tuple (min, max). The argu-
ment is checked to confirm that it is a sequence of
integers and if not, an exception is raised.

4. Object Lifetimes (Reference Counting)

A difficult problem with wrapping C++
with Python is the dangling reference problem —
insuring that C++ objects don’t go away while
there is a Python object that refers to it. Some-
times that is not possible, but we can prevent the

dangling reference from crashing the Python
interpreter.

Python avoids dangling references for its
own objects by maintaining a reference count.
When the reference count goes to zero, it is safe
to remove the object. In C++, it is not so simple.
Reference counting (via smart pointers) often is
not used because the overhead is deemed to be
unnecessary. Without reference counting, pro-
grammers depend on the documentation to deter-
mine how long objects are intended to stay
around. Wrappy depends on annotations and
code modifications to do the right thing.

4.1. Graph Example

Graph

Edge
2Vertex1 Vertex

Figure 1

To illustrate some of the issues in wrapping
C++ classes, consider a Graph class that
manages Vertexes and Edges (Figure 1). When a
Graph goes away, all its Vertexes and Edges
should be deleted as well. In C++, the way a
class controls the lifetime of another class’
objects is to allocate them on the heap. That res-
triction is enforced by the C++ compiler if the
Vertex and Edge destructors are private, with the
Graph class being a friend of Vertex and Edge, so
it can call their destructors. Making these three
classes available in Python requires careful
management of Python references counts and
C++ object lifetimes.

4.2. Class Wrapping Methods

Wrappy has two methods for associating a
C++ object with a Python object. The first
method is to put the C++ object inside a Python
object by value. Here the C++ object and the
Python object have identical lifetimes. When the
Python object’s reference count goes to zero, the
C++ object is removed along with the Python
object. This method works for any C++ class
with a copy constructor, and works especially
well for simple C++ objects that are passed by



- 4 -

value to other C++ functions.

The second method is to have the Python
object keep a pointer to the C++ object. Here the
C++ class must inherit from a particular base
class known to wrappy. The base class keeps a
pointer to the Python object that the C++ object
belongs to. The Python object is lazily created,
so a C++ object need not have a Python object
associated with it. The works well for the Vertex
and Edge classes above.

In the second method, a pointer from the
C++ object back to the Python object is needed
for two reasons. Every time the C++ object is
converted to a Python object that it should return
the same Python object. Secondly, if the C++
object goes away early, it can tell the Python
object, so the Python object can throw an excep-
tion if it is used. Early removal of the C++ object
should only happen when the C++ object’s life-
time is controlled by the C++ code. Wrappy
detects this case based on annotations and the
presence of a private destructor. Wrappy gives
the Python object an extra reference to prevent
the reference count from going to zero. When the
C++ object is deleted, it decrements the Python
object’s reference count which frees it. This
method also works with private constructors.

4.3. Attribute Caching

There is still a synchronization problem
between cross references among C++ objects and
the reference counts of the corresponding Python
objects. When a Python object’s reference count
goes to zero, it is removed and the memory
reclaimed. The trick to synchronizing the refer-
ence count is to notice when the C++ object is
keeping a reference to another C++ object. The
technique is to cue off accessing attributes and
other annotated functions. Consider the example:

define colorVertex(v):
c = Color("green")
v.color = c

Here a local object, c , is initialized with a new
Python/C++ object and that object is assigned to
an attribute of another hybrid Python object.
Internally, the C++ Vertex object’s color is set to
the C++ Color object. If the reference count of
the Python Color object isn’t incremented by the
assignment, when the local object goes away, its
reference count will go to zero. Python will
delete it and the associated C++ object, and the
C++ Vertex object is left with a a dangling refer-
ence. A similar scenario exists for getting attri-

butes. Consequently, whenever an attribute of
object P is accessed, get or set to Python object
Q , a reference to Q is saved in P . Saving the
reference is known as attributes caching.

5. Future Work

We need to upgrade wrappy for Python
1.5.2 because Python 1.5.2 is a major improve-
ment as a target for wrapper generators. It has
extensive error checks for unimplemented
number methods, so a Python type may imple-
ment only a subset of them. It also has a new N
format for Py_BuildValue that returns a Python
object without incrementing its reference count
— a feature that we are already using. And the
major change in Python 1.5.2, where Python class
methods can be C functions, will enable us stop
using the Extension Class extension. Being able
to use Python classes for C++ classes means that
we should revisit the design decision to use
Python types (we should probably switch to using
Python classes, but C++ classes that overload
number methods or sequence methods might stay
types).

There are other C++ features wrappy
should support. It should be possible to support:

g alternative smart pointer mechanisms
g global variables
g template base classes
g explicitly instantiated template classes
g callback functions written in Python

These will be added as we need them.

6. Conclusion

Wrappy provides better support for stan-
dard C++ than SWIG and PYFFLE. Now, we
can easily build new molecular modeling tools
and get the speed we want. Python is used for the
user interface, scripting, and writing modeling
extensions. Anything speed critical can be
rewritten in C++ and easily reintegrated into
Python via a wrappy-generated extension.

Further information and source code can be
found on the Internet at http://www.cgl.ucsf.edu/-
Research/otf/wrappy/.

Acknowledgements

This work was funded by the NIH NCRR
Resource for Biomolecular Graphics, NIH P41-
RR01081.

This work would not have been possible
without the help of our coworkers: Eric Pettersen,



- 5 -

Al Conde, Heidi Houtkooper, and Tom Goddard.

References

[Bea97] D. M. Beazley, SWIG Users
Manual, Version 1.1, Department
of Computer Science, University
of Utah, Salt Lake City, Utah, June
1997. http://www.swig.org/.

[C++-SIG97] C++-SIG -- SIG for Development
of a C++ Binding to Python,
Corporation for National Research
Initiatives, 1997-1999.
http://www.python.org/sigs/.

[Ful98] J. Fulton, Extension Classes,
Python Extension Types Become
Classes, Digital Creations, Inc.,
1998. http://www.digicool.com/-
releases/ExtensionClass/.

[Mil98] P. Miller, PYFFLE: Provides Your
Fully Functional Logical
Encapsulations, Lawrence
Livermore National Laboratory, 19
March 1998.
http://www.python.org/pipermail/-
c++-sig/1998-March/000071.html.

[Sch98] D. C. Schmidt, ‘‘Gperf: A Perfect
Hash Function Generator,’’ C++
Report, 10(20):35-48, November/-
December 1998.


