
Chimera Programmer's Guide

The Programmer's Guide is under construction.

A working knowledge of Python is required for the Programmer's Guide to be useful.
The Python Tutorial is recommended for programmers who want a quick
introduction to Python. Non-programmers should consult the Beginner's Guide to
Python for some suggestions on where to begin.

If all you want to do is loop through a series of data files and perform a series of
Chimera commands on them (possibly including writing out results), this extremely
basic primer covers how to do that. For anything more complicated please keep
reading.

The Chimera Programmer's Guide main component is an Examples section
demonstrating various useful Chimera programming interfaces. There are also
example scripts for performing various tasks that you may be able to use as a
jumping off point for developing your own script. We recommend starting with the
Examples, and then either using an example script or examining the Chimera source
code for an extension that does something similar to what you want to do and
working from there. You can also use Chimera's IDLE programming shell with the dir
(obj) and help(obj) functions to find out more about the attributes and methods of
particular objects. The FAQ (below) can also be helpful and questions to the chimera-
dev mailing list are usually quickly answered.

Also provided:

● For convenience, the help() output for the main Chimera classes:
�❍ Molecule
�❍ Residue
�❍ Atom
�❍ Bond

● an FAQ with brief answers to common programming questions
● how to create surface models
● making tools scene- and animation-aware

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/index.html (1 of 2) [6/4/13 4:16:39 PM]

http://www.python.org/
http://docs.python.org/tutorial/index.html
http://wiki.python.org/moin/BeginnersGuide
http://wiki.python.org/moin/BeginnersGuide
http://plato.cgl.ucsf.edu/trac/chimera/wiki/Scripts
http://www.rbvi.ucsf.edu/chimera/1.8/docs/feedback.html#developers
http://www.rbvi.ucsf.edu/chimera/1.8/docs/feedback.html#developers

Chimera Programmer's Guide

● Chimera's C++ source code online in the SVN repository or packaged for
download.

● Handouts from the summer 2008 Chimera programming class describing how
to write MD Movie scripts and custom MultAlign Viewer headers and detailing
the most generically useful molecular data attributes and Chimera module
functions.

● a set of guidelines for Chimera menu/widget text

Please see the Chimera documentation index and Chimera home page for other
types of information.

This locally installed Chimera documentation can be searched using "Search
Documentation" in the Chimera Help menu.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/index.html (2 of 2) [6/4/13 4:16:39 PM]

http://plato.cgl.ucsf.edu/trac/chimera/browser/trunk
http://www.cgl.ucsf.edu/chimera/sourcecode.html
http://www.cgl.ucsf.edu/chimera/sourcecode.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/index.html
http://www.cgl.ucsf.edu/chimera/index.html

Very Basic Chimera Programming Primer

Looping Through Data Files and Running Chimera
Commands on Them
...and not much else

Scenario

This primer covers the scenario where you have a set of data files in a folder and want to perform a
series of Chimera commands on each one in turn, writing out some kind of results file (e.g. image;
structure measurements; modified data file) for each. Though this primer provides all the Python
code needed to carry out the scenario tasks, it would still be beneficial (though not strictly
necessary) for you to read the Python Tutorial (at least the first few sections) in order to
understand the code better and to be able to modify it if needed in ways this primer doesn't cover.

Broad Outline

You will take the code below, modified for your needs, and place it in a file ending with a '.py'
suffix. The '.py' suffix will indicate to Chimera that the file should be interpreted as Python code.
You could then run the Python code by opening the file with Chimera's File→Open dialog or with
the open command. If you want to suppress the Chimera interface from appearing during your
script processing, you can start Chimera using the --nogui option (e.g. chimera --nogui
processData.py). Note that if your script creates images then you must start the Chimera
interface unless you've downloaded the "headless" version of Chimera (see the download page).

An important fact to know is that any Chimera command can be executed in Python using the
runCommand() call. For instance, to color all models red and surface them:

from chimera import runCommand
runCommand("color red")
runCommand("surf")

This makes it simple to perform actions in your Python script as long as you know the equivalent
Chimera command.

Scripting Approach

The general scheme used in the script will be to enter the folder containing your data files, gather
the names of the files, and then loop through them one by one, performing a series of commands
on each. In the example below the data files are PDB files (suffix: .pdb), each of which has a ligand
and a receptor. The script focuses on the ligand, attempts to ensure that the receptor isn't
obscuring the ligand, surfaces the receptor, and saves an image.

The Script

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/basicPrimer.html (1 of 2) [6/4/13 4:16:40 PM]

http://docs.python.org/tutorial/index.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/opensave.html#opendialog
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/open.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/startup.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/options.html#nogui
http://www.cgl.ucsf.edu/chimera/download.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/framecommand.html

Very Basic Chimera Programming Primer

There are a lot of comments in the script describing the code. Python comments are introduced by
the # character (as long as it's not inside a quoted string of course).

import os
from chimera import runCommand as rc # use 'rc' as shorthand for runCommand
from chimera import replyobj # for emitting status messages

change to folder with data files
os.chdir("/Users/pett/data")

gather the names of .pdb files in the folder
file_names = [fn for fn in os.listdir(".") if fn.endswith(".pdb")]

loop through the files, opening, processing, and closing each in turn
for fn in file_names:
 replyobj.status("Processing " + fn) # show what file we're working on
 rc("open " + fn)
 rc("align ligand ~ligand") # put ligand in front of remainder of molecule
 rc("focus ligand") # center/zoom ligand
 rc("surf") # surface receptor
 rc("preset apply publication 1") # make everything look nice
 rc("surftransp 15") # make the surface a little bit see-through
 # save image to a file that ends in .png rather than .pdb
 png_name = fn[:-3] + "png"
 rc("copy file " + png_name + " supersample 3")
 rc("close all")
uncommenting the line below will cause Chimera to exit when the script is done
#rc("stop now")
note that indentation is significant in Python; the fact that
the above command is exdented means that it is executed after
the loop completes, whereas the indented commands that
preceded it are executed as part of the loop.

Actual Script File

Here is a link to an actual file containing the script so that you can download it and use it as a
starting point for your own script — and save yourself some typing.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/basicPrimer.html (2 of 2) [6/4/13 4:16:40 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/open.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/align.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/focus.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/surface.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/preset.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/surftransparency.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/copy.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/close.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/stop.html

Example FrameSet

Introduction to
Examples

● Chimera's Object
Model

● Molecular Editing
Using Python

● Toolbar Buttons
● Packaging an

Extension
● Working with the

Chimera
Extension
Manager

● Adding
Command-line
Commands

● Extension-
Specific User
Interface

● Colors and Color
Wells

● Trigger
Notifications

● Selections
● Session Saving
● Preferences
● Help
● Textures and

Surfaces
● Registering

Selectors
● Atomic

Measurements

Introduction to Examples
The Examples section of the Chimera Programmer's Guide
consists of a series of example code, with associated
description, that illustrate how to use various Python
interfaces exported by Chimera. The target audience for
the section is users who are familiar with Python
programming; users who wish to learn more about Python
can start with the Python Beginner's Guide.

The list of examples includes:

● Chimera's Object Model
● Molecular Editing Using Python
● Creating Molecules Using Python
● Toolbar Buttons
● Packaging an Extension
● Working with the Chimera Extension Manager
● Adding Command-line Commands
● Extension-Specific User Interface
● Colors and Color Wells
● Trigger Notifications
● Selections
● Session Saving
● Preferences
● Help
● Textures and Surfaces
● Registering Selectors
● Atomic Measurements
● Running a Background Process
● Writing a C/C++ extension

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/index.html (1 of 2) [6/4/13 4:16:41 PM]

http://www.python.org/
http://wiki.python.org/moin/BeginnersGuide

Example FrameSet

● Running a
Background
Process

● Writing a C/C++
Extension

Each example starts with a short description of the
functionality that it demonstrates, followed by sample
code and detailed commentary, and ends with instructions
on how to execute the sample code.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/index.html (2 of 2) [6/4/13 4:16:41 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

Help on class Molecule in module _molecule:

class Molecule(_chimera.Model)
 | Molecule() -> Molecule
 |
 | Method resolution order:
 | Molecule
 | _chimera.Model
 | _chimera.Selectable
 | libwrappy2.WrapPy
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __hash__(...)
 | x.__hash__() <==> hash(x)
 |
 | __init__(...)
 | x.__init__(...) initializes x; see help(type(x)) for signature
 |
 | addPDBHeader(...)
 | addPDBHeader(k: unicode, h: unicode)
 |
 | allRings(...)
 | allRings(crossResidues: bool, allSizeThreshold: int) -> set of Ring
 |
 | atomCoordinatesArray(...)
 | atomCoordinatesArray() -> object
 |
 | atomGroups(...)
 | atomGroups(numAtoms: int) -> list of list of Atom
 |
 | computeIdatmTypes(...)
 | computeIdatmTypes()
 |
 | computeSecondaryStructure(...)
 | computeSecondaryStructure(energyCutoff: float = -0.5, minHelixLength: int =
3, minStrandLength: int = 3, info: __unknown__ = None)
 |
 | decrHyds(...)
 | decrHyds()
 |
 | deleteAtom(...)
 | deleteAtom(element: Atom)
 |
 | deleteBond(...)
 | deleteBond(element: Bond)
 |
 | deleteCoordSet(...)
 | deleteCoordSet(element: CoordSet)
 |
 | deleteResidue(...)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (1 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 | deleteResidue(element: Residue)
 |
 | findAtom(...)
 | findAtom(i: int) -> Atom
 |
 | findBond(...)
 | findBond(i: int) -> Bond
 |
 | findBondRot(...)
 | findBondRot(bond: Bond) -> BondRot
 |
 | findCoordSet(...)
 | findCoordSet(i: int) -> CoordSet
 |
 | findResidue(...)
 | findResidue(i: int) -> Residue
 | findResidue(rid: MolResId, type: (str|None) = None) -> Residue
 |
 | incrHyds(...)
 | incrHyds()
 |
 | indexedAtoms(...)
 | indexedAtoms(indices: object) -> list of Atom
 |
 | loadAllFrames lambda self
 |
 | metalComplexGroup = _getMetalPbg(mol, **kw)
 |
 | minimumRings(...)
 | minimumRings(crossResidues: bool = false) -> set of Ring
 |
 | moveResAfter(...)
 | moveResAfter(from: Residue, to: Residue)
 |
 | newAtom(...)
 | newAtom(n: unicode, e: Element) -> Atom
 |
 | newBond(...)
 | newBond(a0: Atom, a1: Atom) -> Bond
 |
 | newCoordSet(...)
 | newCoordSet(key: int) -> CoordSet
 | newCoordSet(key: int, size: int) -> CoordSet
 |
 | newResidue(...)
 | newResidue(t: unicode, rid: MolResId, neighbor: (Residue|None) = None,
after: bool = true) -> Residue
 | newResidue(t: unicode, chain: unicode, pos: int, insert: str, neighbor:
(Residue|None) = None, after: bool = true) -> Residue
 |
 | numHyds(...)
 | numHyds() -> int

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (2 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 |
 | primaryAtoms(...)
 | primaryAtoms() -> list of Atom
 |
 | printComponents(...)
 | printComponents(os: writable file-like)
 |
 | pruneShortBonds(...)
 | pruneShortBonds()
 |
 | pseudoBondMgr(...)
 | pseudoBondMgr(cs: (CoordSet|None) = None) -> PseudoBondMgr
 |
 | reorderResidues(...)
 | reorderResidues(residues: list of Residue)
 |
 | residueAfter(...)
 | residueAfter(r: Residue) -> Residue
 |
 | residueBefore(...)
 | residueBefore(r: Residue) -> Residue
 |
 | ribbonCoordinates(...)
 | ribbonCoordinates(a: Atom) -> chimera.Point
 |
 | rootForAtom(...)
 | rootForAtom(a: Atom, ignoreBreakPoints: bool) -> Root
 |
 | roots(...)
 | roots(ignoreBreakPoints: bool) -> list of Root
 |
 | sequence = getSequence(molecule, chainID, **kw)
 | Get the Sequence of the specified chain
 |
 | Uses the getSequences function (below) and accepts the same
 | keywords. Throws KeyError if the specified chain isn't found,
 | and AssertionError if there are multiple chains with the
 | specified ID.
 |
 | sequences = getSequences(molecule, asDict=False)
 | return all non-trivial sequences in a molecule
 |
 | This function is also available as molecule.sequences(...)
 |
 | returns a list of sequences for the given molecule, one sequence per
 | multi-residue chain. The sequence name is "Chain X" where X is
 | the chain ID, or "Principal chain" if there is no chain ID.
 |
 | The 'residues' attribute of each sequence is a list of the
 | residues for that sequence, and the attribute 'resmap' is a
 | dictionary that maps residue to sequence position (zero-based).
 | The 'residues' attribute will self-delete if the corresponding
 | model is closed.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (3 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 |
 | If 'asDict' is true, return a dictionary of Sequences keyed on
 | chain ID (can throw AssertionError if multiple chains have same ID),
 | otherwise return a list.
 |
 | setAllPDBHeaders(...)
 | setAllPDBHeaders(hs: dict of (unicode, list of unicode))
 |
 | setPDBHeader(...)
 | setPDBHeader(k: unicode, v: list of unicode)
 |
 | traverseAtoms(...)
 | traverseAtoms(root: Root) -> list of Atom
 |
 | traverseBonds(...)
 | traverseBonds(root: Root) -> list of Bond
 |
 | updateRibbonData(...)
 | updateRibbonData() -> bool
 |
 | useAsRoot(...)
 | useAsRoot(newRoot: Atom)
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 |
 | activeCoordSet
 | CoordSet
 |
 | aromaticColor
 | chimera.Color
 |
 | aromaticDisplay
 | bool
 |
 | aromaticLineType
 | int
 |
 | aromaticMode
 | int
 |
 | atoms
 | list of Atom
 |
 | atomsMoved
 | set of Atom
 |
 | autochain
 | bool
 |
 | ballScale

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (4 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 | float
 |
 | bonds
 | list of Bond
 |
 | coordSets
 | dict of (int, CoordSet)
 |
 | idatmValid
 | bool
 |
 | lineType
 | int
 |
 | lineWidth
 | float
 |
 | lowerCaseChains
 | bool
 |
 | mol2comments
 | list of unicode
 |
 | mol2data
 | list of unicode
 |
 | numAtoms
 | unsigned int
 |
 | numBonds
 | unsigned int
 |
 | numResidues
 | unsigned int
 |
 | pdbHeaders
 | dict of (unicode, list of unicode)
 |
 | pdbVersion
 | int
 |
 | pointSize
 | float
 |
 | residueLabelPos
 | int
 |
 | residues
 | list of Residue
 |
 | ribbonHidesMainchain
 | bool
 |

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (5 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 | ribbonInsideColor
 | chimera.Color
 |
 | ribbonSmoothing
 | int
 |
 | ribbonStiffness
 | float
 |
 | ribbonType
 | int
 |
 | showStubBonds
 | bool
 |
 | stickScale
 | float
 |
 | structureAssigned
 | bool
 |
 | surfaceColor
 | chimera.Color
 |
 | surfaceOpacity
 | float
 |
 | vdwDensity
 | float
 |
 | wireStipple
 | (int, int)
 |
 | --
 | Data and other attributes defined here:
 |
 | CentroidAll = 0
 |
 | CentroidBackbone = 1
 |
 | Circle = 0
 |
 | DefaultBondRadius = 0.20000000298023224
 |
 | DefaultOffset = -1e+99
 |
 | Disk = 1
 |
 | PrimaryAtom = 2
 |
 | RSM_COIL = 2
 |
 | RSM_STRAND = 1

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (6 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 |
 | RT_BSPLINE = 0
 |
 | RT_CARDINAL = 1
 |
 | __new__ =
 | T.__new__(S, ...) -> a new object with type S, a subtype of T
 |
 | --
 | Methods inherited from _chimera.Model:
 |
 | __str__ = _labelFunc(item)
 |
 | addAssociatedModel(...)
 | addAssociatedModel(model: Model, propagateAttrs: bool = true)
 |
 | associatedModels(...)
 | associatedModels() -> list of Model
 |
 | bbox(...)
 | bbox() -> bool, BBox
 |
 | bsphere(...)
 | bsphere() -> bool, Sphere
 |
 | destroy(...)
 | destroy()
 |
 | frontPoint(...)
 | frontPoint(p1: Point, p2: Point) -> bool, float
 |
 | intersects(...)
 | intersects(p: Plane) -> bool
 |
 | removeAssociatedModel(...)
 | removeAssociatedModel(model: Model)
 |
 | --
 | Data descriptors inherited from _chimera.Model:
 |
 | clipPlane
 | Plane
 |
 | clipThickness
 | float
 |
 | color
 | Color
 |
 | display
 | bool
 |
 | id

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (7 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html

 | int
 |
 | name
 | unicode
 |
 | openState
 | OpenState
 |
 | subid
 | int
 |
 | useClipPlane
 | bool
 |
 | useClipThickness
 | bool
 |
 | --
 | Data and other attributes inherited from _chimera.Model:
 |
 | selLevel = 1
 |
 | --
 | Methods inherited from _chimera.Selectable:
 |
 | oslChildren(...)
 | oslChildren() -> list of Selectable
 |
 | oslIdent(...)
 | oslIdent(start: int = SelDefault, end: int = SelDefault) -> unicode
 |
 | oslLevel(...)
 | oslLevel() -> int
 |
 | oslParents(...)
 | oslParents() -> list of Selectable
 |
 | oslTestAbbr(...)
 | oslTestAbbr(a: OSLAbbreviation) -> bool
 |
 | --
 | Static methods inherited from _chimera.Selectable:
 |
 | count(...)
 | count() -> int
 |
 | --
 | Data descriptors inherited from libwrappy2.WrapPy:
 |
 | __destroyed__
 | true if underlying C++ object has disappeared

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html (8 of 8) [6/4/13 4:16:42 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html

Help on class Residue in module _molecule:

class Residue(_chimera.Selectable)
 | Not instantiable from Python
 |
 | Method resolution order:
 | Residue
 | _chimera.Selectable
 | libwrappy2.WrapPy
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __cmp__(...)
 | x.__cmp__(y) <==> cmp(x,y)
 |
 | __eq__(...)
 | x.__eq__(y) <==> x==y
 |
 | __ge__(...)
 | x.__ge__(y) <==> x>=y
 |
 | __gt__(...)
 | x.__gt__(y) <==> x>y
 |
 | __hash__(...)
 | x.__hash__() <==> hash(x)
 |
 | __le__(...)
 | x.__le__(y) <==> x<=y
 |
 | __lt__(...)
 | x.__lt__(y) <==> x x!=y
 |
 | __str__ = _labelFunc(item)
 |
 | addAtom(...)
 | addAtom(element: Atom)
 |
 | atomNames(...)
 | atomNames() -> set of unicode
 |
 | bestAltLoc(...)
 | bestAltLoc() -> str
 |
 | bondedResidues(...)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html (1 of 6) [6/4/13 4:16:44 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html

 | bondedResidues() -> list of Residue
 |
 | bondedTo(...)
 | bondedTo(r: Residue) -> bool
 |
 | currentLabelOffset(...)
 | currentLabelOffset() -> chimera.Vector
 |
 | findAtom(...)
 | findAtom(name: unicode) -> Atom
 | findAtom(name: unicode, altLoc: str) -> Atom
 |
 | findRangeAtoms(...)
 | findRangeAtoms(name: unicode) -> dict of (unicode, list of Atom))
 |
 | hasRibbon(...)
 | hasRibbon() -> bool
 |
 | hasSurfaceCategory(...)
 | hasSurfaceCategory(category: unicode) -> bool
 |
 | labelCoord(...)
 | labelCoord() -> chimera.Point
 |
 | removeAtom(...)
 | removeAtom(element: Atom)
 |
 | ribbonBinormals(...)
 | ribbonBinormals() -> GeometryVector
 |
 | ribbonCenters(...)
 | ribbonCenters() -> GeometryVector
 |
 | ribbonFindStyle(...)
 | ribbonFindStyle() -> RibbonStyle
 |
 | ribbonFindStyleType(...)
 | ribbonFindStyleType() -> int
 |
 | ribbonFindXSection(...)
 | ribbonFindXSection(mode: int) -> RibbonXSection
 |
 | ribbonNormals(...)
 | ribbonNormals() -> GeometryVector
 |
 | --
 | Static methods defined here:

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html (2 of 6) [6/4/13 4:16:44 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html

 |
 | getDefaultRibbonStyle(...)
 | getDefaultRibbonStyle(ss: int) -> RibbonStyle
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 |
 | altLocs
 |
 | atoms
 | list of Atom
 |
 | atomsMap
 | dict of (unicode, list of Atom))
 |
 | chi1
 |
 | chi2
 |
 | chi3
 |
 | chi4
 |
 | fillColor
 | chimera.Color
 |
 | fillDisplay
 | bool
 |
 | fillMode
 | int
 |
 | hasNucleicAcidSugar
 | bool
 |
 | heavyAtomCount
 | int
 |
 | id
 | MolResId
 |
 | isHelix
 | bool
 |
 | isHet

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html (3 of 6) [6/4/13 4:16:44 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html

 | bool
 |
 | isIsolated
 | bool
 |
 | isMetal
 | bool
 |
 | isSheet
 | bool
 |
 | isStrand
 | bool
 |
 | kdHydrophobicity
 | object
 |
 | label
 | unicode
 |
 | labelColor
 | chimera.Color
 |
 | labelOffset
 | returns 3-tuple (or None if not set)
 | accepts 3-tuple, Vector, or None
 |
 | molecule
 | Molecule
 |
 | numAtoms
 | int
 |
 | phi
 |
 | psi
 |
 | ribbonColor
 | chimera.Color
 |
 | ribbonData
 | RibbonData
 |
 | ribbonDisplay
 | bool
 |
 | ribbonDrawMode

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html (4 of 6) [6/4/13 4:16:44 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html

 | int
 |
 | ribbonResidueClass
 | RibbonResidueClass
 |
 | ribbonStyle
 | RibbonStyle
 |
 | ribbonXSection
 | RibbonXSection
 |
 | ssId
 | int
 |
 | type
 | unicode
 |
 | uniprotIndex
 |
 | --
 | Data and other attributes defined here:
 |
 | RS_ARROW = 3
 |
 | RS_HELIX = 1
 |
 | RS_NUCLEIC = 4
 |
 | RS_SHEET = 2
 |
 | RS_TURN = 0
 |
 | Ribbon_2D = 0
 |
 | Ribbon_Custom = 3
 |
 | Ribbon_Edged = 1
 |
 | Ribbon_Round = 2
 |
 | Thick = 1
 |
 | Thin = 0
 |
 | __new__ =
 | T.__new__(S, ...) -> a new object with type S, a subtype of T
 |

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html (5 of 6) [6/4/13 4:16:44 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html

 | selLevel = 2
 |
 | --
 | Methods inherited from _chimera.Selectable:
 |
 | oslChildren(...)
 | oslChildren() -> list of Selectable
 |
 | oslIdent(...)
 | oslIdent(start: int = SelDefault, end: int = SelDefault) -> unicode
 |
 | oslLevel(...)
 | oslLevel() -> int
 |
 | oslParents(...)
 | oslParents() -> list of Selectable
 |
 | oslTestAbbr(...)
 | oslTestAbbr(a: OSLAbbreviation) -> bool
 |
 | --
 | Static methods inherited from _chimera.Selectable:
 |
 | count(...)
 | count() -> int
 |
 | --
 | Data descriptors inherited from libwrappy2.WrapPy:
 |
 | __destroyed__
 | true if underlying C++ object has disappeared

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html (6 of 6) [6/4/13 4:16:44 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html

Help on class Atom in module _molecule:

class Atom(_chimera.Selectable)
 | Not instantiable from Python
 |
 | Method resolution order:
 | Atom
 | _chimera.Selectable
 | libwrappy2.WrapPy
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __hash__(...)
 | x.__hash__() <==> hash(x)
 |
 | __str__ = _labelFunc(item)
 |
 | addBond(...)
 | addBond(element: Bond)
 |
 | addPseudoBond(...)
 | addPseudoBond(element: PseudoBond)
 |
 | allLocations(...)
 | allLocations() -> list of Atom
 |
 | allRings(...)
 | allRings(crossResidues: bool = false, sizeThreshold: int = 0) -> list of Ring
 |
 | associated(...)
 | associated(otherAtom: Atom, category: unicode) -> bool
 |
 | associations(...)
 | associations(category: unicode, otherAtom: (Atom|None) = None) -> list of
PseudoBond
 |
 | clearVdwPoints(...)
 | clearVdwPoints()
 |
 | connectsTo(...)
 | connectsTo(a: Atom) -> Bond
 |
 | coord(...)
 | coord() -> chimera.Point
 | coord(cs: CoordSet) -> chimera.Point
 |
 | coordination(...)
 | coordination(valueIfUnknown: int = 0) -> int
 |
 | currentLabelOffset(...)
 | currentLabelOffset() -> chimera.Vector

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html (1 of 6) [6/4/13 4:16:47 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html

 |
 | findBond(...)
 | findBond(a: Atom) -> Bond
 |
 | findPseudoBond(...)
 | findPseudoBond(i: int) -> PseudoBond
 |
 | haveBfactor(...)
 | haveBfactor() -> bool
 |
 | haveOccupancy(...)
 | haveOccupancy() -> bool
 |
 | labelCoord(...)
 | labelCoord() -> chimera.Point
 |
 | minimumRings(...)
 | minimumRings(crossResidues: bool = false) -> list of Ring
 |
 | primaryBonds(...)
 | primaryBonds() -> list of Bond
 |
 | primaryNeighbors(...)
 | primaryNeighbors() -> list of Atom
 |
 | removeBond(...)
 | removeBond(element: Bond)
 |
 | removePseudoBond(...)
 | removePseudoBond(element: PseudoBond)
 |
 | revertDefaultRadius(...)
 | revertDefaultRadius()
 |
 | rootAtom(...)
 | rootAtom(ignoreBreakPoints: bool) -> Atom
 |
 | setCoord(...)
 | setCoord(c: chimera.Point)
 | setCoord(c: chimera.Point, cs: CoordSet)
 |
 | shown(...)
 | shown() -> bool
 |
 | shownColor(...)
 | shownColor() -> chimera.Color
 |
 | traverseFrom(...)
 | traverseFrom(ignoreBreakPoints: bool) -> Atom
 |
 | vdwPoints(...)
 | vdwPoints() -> list of tuple(chimera.Point, chimera.Vector)
 |

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html (2 of 6) [6/4/13 4:16:47 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html

 | xformCoord(...)
 | xformCoord() -> chimera.Point
 | xformCoord(cs: CoordSet) -> chimera.Point
 |
 | --
 | Static methods defined here:
 |
 | getIdatmInfoMap(...)
 | getIdatmInfoMap() -> dict of (unicode, Atom.IdatmInfo)
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 |
 | altLoc
 | str
 |
 | anisoU
 | object
 |
 | bfactor
 | float
 |
 | bonds
 | list of Bond
 |
 | bondsMap
 | dict of (Atom, Bond)
 |
 | color
 | chimera.Color
 |
 | coordIndex
 | unsigned int
 |
 | defaultRadius
 | float
 |
 | display
 | bool
 |
 | drawMode
 | int
 |
 | element
 | Element
 |
 | hide
 | bool
 |
 | idatmIsExplicit
 | bool

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html (3 of 6) [6/4/13 4:16:47 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html

 |
 | idatmType
 | unicode
 |
 | label
 | unicode
 |
 | labelColor
 | chimera.Color
 |
 | labelOffset
 | returns 3-tuple (or None if not set)
 | accepts 3-tuple, Vector, or None
 |
 | minimumLabelRadius
 | float
 |
 | molecule
 | Molecule
 |
 | name
 | unicode
 |
 | neighbors
 | list of Atom
 |
 | numBonds
 | unsigned int
 |
 | occupancy
 | float
 |
 | pseudoBonds
 | list of PseudoBond
 |
 | radius
 | float
 |
 | residue
 | Residue
 |
 | serialNumber
 | int
 |
 | surfaceCategory
 | unicode
 |
 | surfaceColor
 | chimera.Color
 |
 | surfaceDisplay
 | bool
 |

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html (4 of 6) [6/4/13 4:16:47 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html

 | surfaceOpacity
 | float
 |
 | vdw
 | bool
 |
 | vdwColor
 | chimera.Color
 |
 | --
 | Data and other attributes defined here:
 |
 | Ball = 3
 |
 | Dot = 0
 |
 | EndCap = 2
 |
 | IdatmInfo =
 | IdatmInfo() -> IdatmInfo
 | IdatmInfo(_x: Atom.IdatmInfo) -> IdatmInfo
 |
 | Ion = 0
 |
 | Linear = 2
 |
 | Planar = 3
 |
 | Single = 1
 |
 | Sphere = 1
 |
 | Tetrahedral = 4
 |
 | UNASSIGNED = 4294967295
 |
 | __new__ =
 | T.__new__(S, ...) -> a new object with type S, a subtype of T
 |
 | selLevel = 3
 |
 | --
 | Methods inherited from _chimera.Selectable:
 |
 | oslChildren(...)
 | oslChildren() -> list of Selectable
 |
 | oslIdent(...)
 | oslIdent(start: int = SelDefault, end: int = SelDefault) -> unicode
 |
 | oslLevel(...)
 | oslLevel() -> int
 |

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html (5 of 6) [6/4/13 4:16:47 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html

 | oslParents(...)
 | oslParents() -> list of Selectable
 |
 | oslTestAbbr(...)
 | oslTestAbbr(a: OSLAbbreviation) -> bool
 |
 | --
 | Static methods inherited from _chimera.Selectable:
 |
 | count(...)
 | count() -> int
 |
 | --
 | Data descriptors inherited from libwrappy2.WrapPy:
 |
 | __destroyed__
 | true if underlying C++ object has disappeared

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html (6 of 6) [6/4/13 4:16:47 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html

Help on class Bond in module _molecule:

class Bond(_chimera.Selectable)
 | Not instantiable from Python
 |
 | Method resolution order:
 | Bond
 | _chimera.Selectable
 | libwrappy2.WrapPy
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __hash__(...)
 | x.__hash__() <==> hash(x)
 |
 | __str__ = _labelFunc(item)
 |
 | allRings(...)
 | allRings(crossResidues: bool = false, sizeThreshold: int = 0) -> list of Ring
 |
 | contains(...)
 | contains(a: Atom) -> bool
 |
 | currentLabelOffset(...)
 | currentLabelOffset() -> chimera.Vector
 |
 | findAtom(...)
 | findAtom(i: int) -> Atom
 |
 | labelCoord(...)
 | labelCoord() -> chimera.Point
 |
 | length(...)
 | length() -> float
 |
 | minimumRings(...)
 | minimumRings(crossResidues: bool = false) -> list of Ring
 |
 | otherAtom(...)
 | otherAtom(a: Atom) -> Atom
 |
 | shown(...)
 | shown() -> bool
 |
 | sqlength(...)
 | sqlength() -> float
 |
 | traverseFrom(...)
 | traverseFrom(ignoreBreakPoints: bool) -> Bond
 |
 | --

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html (1 of 3) [6/4/13 4:16:49 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html

 | Data descriptors defined here:
 |
 | __dict__
 |
 | atoms
 | 2-tuple of Atom
 |
 | color
 | chimera.Color
 |
 | display
 | int
 |
 | drawMode
 | int
 |
 | halfbond
 | bool
 |
 | label
 | unicode
 |
 | labelColor
 | chimera.Color
 |
 | labelOffset
 | returns 3-tuple (or None if not set)
 | accepts 3-tuple, Vector, or None
 |
 | molecule
 | Molecule
 |
 | radius
 | float
 |
 | --
 | Data and other attributes defined here:
 |
 | Always = 1
 |
 | Never = 0
 |
 | Smart = 2
 |
 | Spring = 2
 |
 | Stick = 1
 |
 | Wire = 0
 |
 | __new__ =
 | T.__new__(S, ...) -> a new object with type S, a subtype of T
 |

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html (2 of 3) [6/4/13 4:16:49 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html

 | selLevel = 4
 |
 | --
 | Methods inherited from _chimera.Selectable:
 |
 | oslChildren(...)
 | oslChildren() -> list of Selectable
 |
 | oslIdent(...)
 | oslIdent(start: int = SelDefault, end: int = SelDefault) -> unicode
 |
 | oslLevel(...)
 | oslLevel() -> int
 |
 | oslParents(...)
 | oslParents() -> list of Selectable
 |
 | oslTestAbbr(...)
 | oslTestAbbr(a: OSLAbbreviation) -> bool
 |
 | --
 | Static methods inherited from _chimera.Selectable:
 |
 | count(...)
 | count() -> int
 |
 | --
 | Data descriptors inherited from libwrappy2.WrapPy:
 |
 | __destroyed__
 | true if underlying C++ object has disappeared

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html (3 of 3) [6/4/13 4:16:49 PM]

Chimera Programming FAQ

Chimera Programming Frequently Asked Questions
Last updated May 10, 2010. The most recent copy of the FAQ is at http://www.cgl.ucsf.edu/chimera/
docs/ProgrammersGuide/faq.html

1. Where is the programming documentation?
2. How to emulate command-line functionality.
3. Passing arguments to scripts.

�❍ Turning scripts into programs.
�❍ Installing Python packages into Chimera.

4. How to rotate/translate the camera.
5. How to rotate/translate individual models.
6. How to save the current view as an image.
7. Some attributes return a copy of an object.
8. Explanation of transparency for Surface_Model, MSMSModel and VRMLModel.
9. Transparency displayed incorrectly when 2 or more models are transparent.

10. Explanation of openState attribute.
11. Memory leaks in scripts.
12. Getting the size of a volume data set.
13. How to write out a PDB file containing the crystal unit cell.
14. How to access files within the Chimera app on Macs.

1) Where is the programming documentation?

The Programming Examples are a good source of information. More information can be gleamed
from the C++ header files for the Chimera objects. Those header files are available in the source code
download. Another source of object info is the help() function in the Chimera's IDLE Python
shell (under General Controls). For example, help(chimera.Atom) will show (C++) methods and
attributes of Atom objects. Even more information is available via chimera developer's mailing list,
chimera-dev@cgl.ucsf.edu. The archived mailing list is at http://www.cgl.ucsf.edu/pipermail/chimera-
dev.

2) How to emulate command-line functionality.

Commands available at the type-in command line are almost all implemented in the Midas module's
__init__.py file. You can use the commands for convenience in implementing the same functionality
in your extension. For example, to color iron atoms red:

import Midas
Midas.color('red', '@/element=Fe')

A few commands related to processing command text (e.g. handling files of commands) are in Midas.
midas_text. One in particular, makeCommand(), allows you to use command-line syntax directly instead
of determining the proper arguments to a Midas module function. So the above example of
coloring atoms red would look like this using runCommand():

from chimera import runCommand

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (1 of 8) [6/4/13 4:16:54 PM]

http://www.cgl.ucsf.edu/chimera/docs/ProgrammersGuide/faq.html
http://www.cgl.ucsf.edu/chimera/docs/ProgrammersGuide/faq.html
http://www.cgl.ucsf.edu/chimera/sourcecode.html
mailto:chimera-dev@cgl.ucsf.edu
http://www.cgl.ucsf.edu/pipermail/chimera-dev/
http://www.cgl.ucsf.edu/pipermail/chimera-dev/

Chimera Programming FAQ

runCommand("color red @/element=Fe")

Note that if the command text may contain errors (e.g. it is based on user input), runCommand()
can raise MidasError (defined in the Midas module) so in such cases you may want to embed the
runCommand() in a try/except block.

In pre-1.0 build 2107 versions of Chimera, the runCommand() convenience function doesn't exist,
so you'd have to use the functionally identical makeCommand() as follows:

import Midas
from Midas.midas_text import makeCommand
makeCommand("color red @/element=Fe")

3) Passing arguments to scripts.

Use the --script option to invoke a Python script after all of the other arguments have been processed.
If more than than one script option is given, the scripts are executed in the order given. Each script is
executed using the arguments enclosed along with it in quotes. Any data files specified in the
shell command line are opened before the script is called. For example:

chimera --nogui --nostatus --script "script.py -r 2.3 -- -1.pdb" -- -4.pdb

Chimera would open the -4.pdb file, and invoke script.py with the runscript command so sys.argv
would be set to ['script.py', '-r', '2.3', '--', '-1.pdb']. The -- argument terminates the
options list and is only necessary if the next non-option argument has a leading dash.

3a) Turning scripts into programs.

To make your Python script look like any other shell program, you could provide an executable shell
script as shown below. The shell script accepts a subset of chimera options and options for the Python
script, adds in a chimera option to show the Reply Log at startup, then packages the Python script
options into a single chimera option, and invokes chimera with those options.

#!/bin/bash
PYSCRIPT=PATH-TO-PYTHON_SCRIPT.py
CHIMERA=PATH-TO-CHIMERA
Parse arguments to decide which are script arguments
and which are chimera arguments. In this case, --debug,
--stereo, -n, --nogui, --nostatus, and --silent are chimera
arguments. And -r, and --radius are the script arguments.
Note that accepting --argument options in shell scripts
depends on having a newer version of getopt.

if `getopt -T >/dev/null 2>&1` ; [$? = 4]
then
 TEMP=`getopt -o nr: --long radius:,debug,stereo:,nogui,nostatus,silent -n
"$0" -- "$@"`
else
 TEMP=`getopt nr: "$@"`
fi

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (2 of 8) [6/4/13 4:16:54 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/runscript.html

Chimera Programming FAQ

if [$? != 0]
then
 printf "Usage: %s: [-r|--radius value] args\n" $0
 exit 2
fi
eval set -- "$TEMP"

set initial chimera arguments, in this case always show the Reply Log
CHARGS=(--start "Reply Log")
while [$1 != --]
do
 case "$1" in
 -r|--radius)
 PYSCRIPT="$PYSCRIPT $1 '$2'"
 shift 2;;
 -n|--debug|--nogui|--nostatus|--silent)
 CHARGS[${#CHARGS[@]}]=$1
 shift;;
 --stereo)
 CHARGS[${#CHARGS[@]}]=$1
 CHARGS[${#CHARGS[@]}]="$2"
 shift 2;;
 esac
done
shift # skip --
$CHIMERA "${CHARGS[@]}" --script "$PYSCRIPT" "$@"

And the Python script would parse its arguments with:

import getopt
try:
 opts, args = getopt.getopt(sys.argv[1:], 'r:', ['radius='])
except getopt.error, message:
 raise chimera.NonChimeraError("%s: %s" % (__name__, message))
radius = 1.0
for o in opts:
 if o[0] in ("-r", "--radius"):
 radius = o[1]
assert(len(args) == 0)

3b) Installing Python packages into Chimera.

Chimera only includes the default Python packaging mechanisms, so Python packages should be
installed using setup.py as follows:

chimera --nogui --silent --script "setup.py install"

Sometimes the Python package prefers to be installed with easy_install or pip. In those cases, you would
install easy_install first by getting the source code (the setuptools-VERSION.tar.gz file, instead of one of
the .egg files), and installing as shown above. Then to use easy_install, you would:

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (3 of 8) [6/4/13 4:16:54 PM]

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip

Chimera Programming FAQ

chimera --nogui --silent --script "CHIMERA/bin/easy_install install"

To install and use pip, you would first install pip with easy_install as shown above. And then to use pip,
you would analogously:

chimera --nogui --silent --script "CHIMERA/bin/pip install"

4) How to rotate/translate the camera.

Camera always points in -z direction. There is no way to rotate it. Instead, rotate all of the models.

>>> v = chimera.viewer
>>> c = v.camera
>>> print c.center
(5.9539999961853027, -2.186500072479248, 10.296500205993652)
>>> c.center = (3, 2.5, 10) # to translate camera
>>> v.scaleFactor = 1.5 # to zoom camera

5) How to rotate/translate individual models.

The Xform object model.openState.xform retrieves a copy of the rotation and translation transformation
for a model.

>>> om = chimera.openModels
>>> mlist = om.list()
>>> m = mlist[0]
>>> axis = chimera.Vector(1, 0, 0)
>>> angle = 90 # degrees
>>> xf = chimera.Xform.rotation(axis, angle)
>>> print m.openState.xform # 3x3 rotation matrix
 # last column is translation
0.982695 0.121524 0.139793 -1.07064
0.0250348 0.660639 -0.750287 6.83425
-0.183531 0.740803 0.646164 6.35578
>>> m.openState.globalXform(xf)

Another method to change the transform

>>> curxform = m.openState.xform # get copy (not reference)
>>> xf.premultiply(curxform) # changes xf
>>> m.openState.xform = xf # set it

To rotate relative to model's data axes use

>>> m.openState.localXform(xf)

or

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (4 of 8) [6/4/13 4:16:54 PM]

Chimera Programming FAQ

>>> curxform = m.openState.xform # get copy (not reference)
>>> xf.multiply(curxform) # changes xf
>>> m.openState.xform = xf # set it

6) How to save the current view as an image.

import Midas
Midas.copy(file='/home/goddard/hoohoo.png', format='PNG')
format can be 'PNG', 'JPEG', 'TIFF', 'PS', 'EPS'

7) Some attributes return a copy of an object.

>>> xf = model.openState.xform # xf is a copy of the model's Xform matrix.
>>> xf.zRotate(45) # This will not rotate the model.

>>> c = model.atoms[0].color # c is the MaterialColor object for the atom
>>> c.ambientDiffuse = (1,0,0) # The Atom color changes immediately to red.

Some Chimera objects returned as attributes are always copies, some are always references to the
uncopied object. Objects that are always copied include Xform, Vector, Point, Sphere, Element, MolResId,
Coord, Objects that are never copied include Atom, Bond, PseudoBond, CoordSet, Molecule,
Residue, RibbonStyle, Object that can be copied have a __copy__ method. In order to know if
an object type is passed by value is to look at the Chimera C++ header files. Classes without a WrapPy
base class are always copied. This base class is part of the C++ to Python interface generation.

8) Explanation of transparency for Surface_Model, MSMSModel and
VRMLModel.

Volume viewer isosurfaces are Surface_Model objects defined by the _surface.so C++ module. The
Surface_Model interface is given in the surfmodel.h source code file. By default these surfaces use
OpenGL (1,1-alpha) blending. This means the color for a triangle is added to an image plus the
transparency (= 1-alpha) times the color from triangles in back of this one. As the transparency
becomes greater, the brightness of the triangle does not diminish. In fact, more shows through from
behind the triangle so it appears brighter. The specular highlights stay bright even if the triangle is black
and fully tranparent. In Chimera 1730 a Surface_Model attribute transparency_blend_mode was added to
allow the more common (alpha,1-alpha) blend mode. This is like the above mode but the triangle color
is multiplied by alpha before being added to the image. For highly transparent triangles alpha is close to
zero, and the triangle and specular highlights become dim.

MSMS molecular surface models use (alpha, 1-alpha) blending. They also use a 2 pass algorithm which is
faster than sorting all the triangles by depth, but gives the strictly correct appearance only when the
viewer looks through at most 2 surface layers.

VRML models use (alpha,1) blending. That is they multiply triangle color by alpha, but add in all of the
color from triangles further back without reducing it by the transparency factor. This is like complete
transparency, where the triangle colors are just scaled by the alpha value. This is horrible looking unless
you want complete transparency.

9) Transparency displayed incorrectly when 2 or more models are

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (5 of 8) [6/4/13 4:16:54 PM]

Chimera Programming FAQ

transparent.

The Chimera architecture only correctly displays transparency when at most one transparent model is
shown. Any number of opaque models can also be shown. If two transparent models are shown, one will
be drawn after the other. This will make one appear as if it is drawn entirely on top of another even if
they in actuality intersect. The rearmost model, may in fact appear to be in front. This is
because Chimera sorts the triangles by depth within a single model as needed for rendering
transparency, but is not able to sort triangles by depth across multiple models.

10) Explanation of openState attribute.

The openState attribute of a Model controls whether that model is active for motion ('.active'), and
contains the model's transformation matrix ('.xform') and center of rotation ('.cofr'). Since some
models must move in synchrony (e.g. a molecule and its surface), OpenState instances may shared
among multiple models. If you create a model that needs a shared openState with another model, then
when adding your model to the list of open models with chimera.openModels.add(), you should use
the 'sameAs' keyword to specify that other model.

11) Memory leaks in scripts.

In the 1700 release, Chimera uses a substantial amount of memory to hold molecular data, but does not
have any large memory leaks to the best of our knowledge (i.e. as structures are closed their memory
usage will be reclaimed). However, the memory is reclaimed by a task that runs during idle times, so
therefore scripts that loop through many structures, opening and closing them, will have their
memory use grow continuously until the script finishes. This will often cause the script to fail as the
Chimera process runs out of memory.

You can cause the memory-reclamation task to run during your script by calling:

chimera.update.checkForChanges()

You would want to call this after closing models in your script. Since the checkForChanges() routine
also allows triggers to fire, you might want to also put it after any code that opens models. For example,
the code that assigns surface categories to models runs from a trigger callback, so adding a molecular
surface may not work as expected if checkForChanges() is not called after a molecule is opened.

In post-1700 releases and snapshots, checkForChanges() is called automatically when models
are opened or closed, so you will not need to insert these calls into your code.

12) Getting the size of a volume data set.

Here's some code to find the size of a volume data set.

import VolumeViewer
d = VolumeViewer.volume_dialog()
d0 = d.data_sets[0] # There may be more than one data set opened
 # You could look at each one's name (= file name)
 # to find the one you want.
data = d0.data # This is a Grid_Data object defined in
 # VolumeData/griddata.py

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (6 of 8) [6/4/13 4:16:54 PM]

http://www.cgl.ucsf.edu/chimera/docs/ProgrammersGuide/Examples/Main_AtomTrigger.html

Chimera Programming FAQ

xsize, ysize, zsize = data.size

13) How to write out a PDB file containing the crystal unit cell.

Here's code that creates the copies of a PDB molecule needed to fill out a crystallographic unit cell, then
writes all the copies to a new PDB file. This code uses the standard Chimera 1.0 build 1892 PDBmatrices
module, which uses the PDB SMTRY remarks or CRYST1 record to determine the needed transformations.

You can run it without a graphical user interface as follows

% chimera --nogui myfile.pdb writeunitcell.py

where the writeunitcell.py file contains the script given below.

Get the Molecule that has already been opened
import chimera
m = chimera.openModels.list()[0]

Get the symmetry matrices
import PDBmatrices
tflist = PDBmatrices.crystal_symmetry_matrices(m.pdbHeaders)

Get center of bounding box
import UnitCell
center = UnitCell.molecule_center(m)

Get CRYST1 line from PDB headers
cryst1 = m.pdbHeaders['CRYST1'][0]

Getting crystal parameters
from PDBmatrices import crystal
cp = crystal.pdb_cryst1_parameters(cryst1)
a,b,c,alpha,beta,gamma = cp[:6]

Adjust matrices to produce close packing.
cpm = PDBmatrices.close_packing_matrices(tflist, center, a, b, c, alpha, beta, gamma)

Apply transformations to copies of Molecule
mlist = []
from PDBmatrices import matrices
path = m.openedAs[0] # Path to original PDB file
for tf in cpm:
 xf = matrices.chimera_xform(tf) # Chimera style transform matrix
 m.openState.globalXform(xf)
 mlist.append(m)
 m = chimera.openModels.open(path)[0] # Open another copy

Write PDB file with transformed copies of molecule
import Midas
out_path = 'unitcell.pdb'
Midas.write(mlist, None, out_path)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (7 of 8) [6/4/13 4:16:54 PM]

Chimera Programming FAQ

14) How to access files within the Chimera app on Macs.

One way to access the Python code and other Chimera files on a Mac is to right-click on the Chimera app
icon and choose "Show Package Contents" from the resulting pop-up menu. Another way is to
use Terminal.app and the command "cd" to navigate into the Chimera.app directory and
its subdirectories. Most files of interest can be found under Contents/Resources/share/.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/faq.html (8 of 8) [6/4/13 4:16:54 PM]

_surface module

Description of _surface module
Chimera version 1.2540 (July 9, 2008)

The _surface module is for displaying surfaces in Chimera. It was developed for displaying
isosurfaces of volume data. Chimera has a second way to display surfaces: VRML models.

The _surface module defines SurfaceModel and SurfacePiece objects that are available from
Python. These objects are defined in the C++ header file surfmodel.h.

Surface Specification

A surface is described as a set of triangles that are defined in two arrays. One array contains the
vertex xyz positions. If there are N vertices the array is of size N by 3. The second array gives 3
indices for each triangle. These are indices into the vertex xyz position array. This method of
representing the surface saves some space since each vertex is used in about 6 triangles in
typical triangulated surfaces.

Here is an example that makes surface model with 2 triangles.

import _surface
m = _surface.SurfaceModel()

Xyz vertex positions.
v = [(0,0,0), (1.5,0,0), (0,1.2,0), (0,0,2.3)]

Define two triangles each defined by 3 indices into vertex list.
vi = [(0,1,2), (3,0,2)]

Color specified as red, green, blue, opacity (0-1), partially transparent red.
rgba = (1,0,0,.5)

m.addPiece(v, vi, rgba)

import chimera
chimera.openModels.add([m])

The vertex position array must contain floating point values. The index array must contain
integer values. The arrays can be nested tuples, or lists, or numpy arrays can be used.

Surface Pieces

A surface model can display several sets of triangles. The sets are called surface pieces. The
SurfaceModel.addPiece() method creates a SurfacePiece. Surface pieces can be individually added
and removed from a SurfaceModel. They do not share vertex xyz arrays or any other properties.
Their original purpose was for showing multiple isosurfaces of volume data in a single Chimera

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Reference/surface.html (1 of 3) [6/4/13 4:16:57 PM]

https://plato.cgl.ucsf.edu/trac/chimera/browser/trunk/contrib/_surface/surfmodel.h

_surface module

model.

Surface Piece Features

A Surface_Piece has methods from controlling its display.

● Show or hide.
● Solid (filled triangles) or Mesh (just edges of triangles) or Dot display styles.
● Single color for whole surface, or separate colors for all the vertices.
● Lighting on/off.
● Two sided or one sided lighting in with Solid style. Mesh style only allows one sided lighting

since that is all that OpenGL provides.
● Surface triangles can be changed.
● Save pieces in session files (Chimera 1.4 and newer).

Caution. When defining a triangulated surface it is important to specify the 3 triangle vertices in a
consistent order, so that the normal vectors all point towards the same side of the surface.
Otherwise the shading produced by lighting will not look right. For volume surfaces, the data
gradient direction is used for lighting normals. In other cases surface normals can be calculated
for each vertex by adding up the normals of the triangles that share that vertex, then scaling to
make the sum have unit length. The orientation of the triangle normals is based on the ordering
of the 3 vertices that make up a triangle, and the normal orientation surface piece attribute.

Example

import _surface
m = _surface.SurfaceModel()

import chimera
chimera.openModels.add([m])

For minimum memory use and maximum speed use NumPy arrays for vertices
and triangles.
from numpy import array, single as floatc, intc

Xyz vertex positions.
v = array(((0,0,0), (1.5,0,0), (0,1.2,0), (0,0,2.3)), floatc)

Define two triangles each defined by 3 indices into vertex list.
vi = array(((0,1,2), (3,0,2)), intc)

Color specified as red, green, blue, opacity (0-1), partially transparent red.
rgba = (1,0,0,.5)

p = m.addPiece(v, vi, rgba) # This returns a Surface_Piece

p.display = False # hide the piece
p.display = True # show the piece

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Reference/surface.html (2 of 3) [6/4/13 4:16:57 PM]

_surface module

p.displayStyle = p.Mesh
p.displayStyle = p.Solid # default

p.color = (0,0,1,1) # change color to blue

Set the 4 vertices to be red, green, blue and white.
These values must be floating point.
This overrides the previous setting of the piece to blue.
p.vertexColors = [(1.,0,0,1),(0,1,0,1),(0,0,1,1),(1,1,1,1)]

Clear the vertex colors. Piece will be blue again.
p.vertexColors = None

p.useLighting = False # Lighting off
p.useLighting = True # Lighting on (default)

p.twoSidedLighting = False # Light one side
p.twoSidedLighting = True # Light both sides (default)

p.save_in_session = True # Include when saving sessions

v2 = array(((1.,0,0), (2,0,0), (0,3,0), (0,0,4)), floatc)
vi2 = array(((0,1,2), (3,1,0)), intc)
p.geometry = v2, vi2 # Change the surface for this piece

v3 = array(((0.,1,2), (0,2,3), (0,5,0), (1,1,0)), floatc)
vi3 = array(((1,0,2), (3,2,0)), intc)
rgba3 = (1,0,1,1)
p3 = m.addPiece(v3, vi3, rgba3) # Make another piece

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Reference/surface.html (3 of 3) [6/4/13 4:16:57 PM]

Making Tools Scene- and Animation-aware

Making Tools Scene- and Animation-aware
Chimera version 1.7 (November 5, 2012)

The Animate package implements both scene and animation functionality. Core
attributes such as model names, residue types and atom positions are handled
automatically by the Animate package. Tools are responsible for saving, restoring
and animating objects and attributes that they introduce. Notification of scene and
animation events happen through the standard Chimera trigger mechanism.

Scene Triggers

There are two triggers associated with scenes:

chimera.SCENE_TOOL_SAVE
This trigger is fired when a scene is created or updated. The core attributes
have already been saved. The trigger data argument to registered handlers is
the scene object.

chimera.SCENE_TOOL_RESTORE
This trigger is fired when a scene is restored (and just before an animation
sequence completes, see below). The core attributes have already been
restored. The trigger data argument to registered handlers is the scene object.

Each scene object has a dictionary, tool_settings, for managing tool-specific
data. Tools are responsible for creating their own keys and values for storing and
accessing data in the dictionary. Singleton tools such as 2DLabels can use fixed
strings such as "2D Labels (gui)" as their keys; multi-instance tools will need to
come up with unique keys and make sure that they are not overwriting data for
some other tool. Typically, data is saved in SCENE_TOOL_SAVE and accessed in
SCENE_TOOL_RESTORE handlers.

Animation Triggers

Animate updates the graphics display during transitions. There are three types of
transitions:

key frame transition
When the user plays the animation, a transition occurs between each
sequential pair of timeline items. If the ending item is a key frame, then a

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Reference/animation.html (1 of 3) [6/4/13 4:17:00 PM]

Making Tools Scene- and Animation-aware

playback transition results. To transform from the starting state to the ending
key frame state, data values are interpolated over the number of steps
associated with the end key frame (the value is stored in the frames attribute
of the key frame). There is a static "transition" for the initial frame if it has a
non-zero frames value.

scene transition
When the user selects a scene (either from the Scenes list or by double-
clicking on a key frame in the time line) , a transition with default parameters
is used. Currently, the "transition" is a one-frame update to the selected
scene.

action transition
When an animation is played and one of the timeline items is an action rather
than a key frame, an action transition results. None of the triggers listed
below are fired for action transitions because the target state is unknown.

There are four triggers associated with key frame and scene transitions:

chimera.ANIMATION_TRANSITION_START
This trigger is fired when a transition from one key frame to the next starts.
No core attributes have been updated yet, so Chimera data represents the
initial state of the transition. The trigger data argument to registered
handlers is the transition object.

chimera.ANIMATION_TRANSITION_STEP
This trigger is fired for each step of the transition from one key frame to the
next. The core attributes have already been updated. The trigger data
argument to registered handlers is the transition object.

chimera.ANIMATION_TRANSITION_FINISH
This trigger is fired after all steps of the transition from one key frame to the
next have been completed. The trigger data argument to registered handlers
is the transition object.

chimera.SCENE_TOOL_RESTORE
This trigger is fired just prior to the ANIMATION_TRANSITION_FINISH. The
purpose for firing this trigger is to simplify writing tools that do not need
step-by-step animation yet want to restore state when a scene state is
reached. These tools can just register for the SCENE_TOOL_RESTORE trigger
and completely ignore the ANIMATION_TRANSITION_* triggers. Tools that
wants to handle both step-by-step animation and scene restoration will need
to avoid getting the SCENE_TOOL_RESTORE trigger twice by deregistering for
it in ANIMATION_TRANSITION_START and reregistering for it in
ANIMATION_TRANSITION_FINISH.

The transition object received by handlers has several useful attributes and

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Reference/animation.html (2 of 3) [6/4/13 4:17:00 PM]

Making Tools Scene- and Animation-aware

methods:

frames
The total number of frames in this transition.

frameCount
The step number of the current frame in the transition. For
ANIMATION_TRANSITION_START, this value should always be zero. For
ANIMATION_TRANSTION_STEP, this value ranges from 1 to frames, inclusive.
For ANIMATION_TRANSITION_FINISH, this value should be the same as
frames.

target()
The end point for this transition, usually an instance of Animate.Keyframe.
Keyframe for movie playback or Animate.Scene.Scene for scene restoration
using the default transition.

scene()
The scene at the end point for this transition, or None if the target is neither
a Keyframe nor a Scene.

tool_settings
A dictionary for managing tool-specific data in the same manner as scene
objects. Unlike the dictionary in scene objects, the tool_settings in
transition objects are transient. When a transition completes, the dictionary is
automatically removed and any stored data will be lost.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Reference/animation.html (3 of 3) [6/4/13 4:17:00 PM]

MD Movie Scripting

1 Bring up script dialog with
Per-Frame➔Define script...

2 Choose scripting language

3 Type in script or read from file

4 Click Apply/OK (executes for current frame)

5 Play/record movie
(may want to disable Loop)

Custom MAV Headers
Static Headers
The ability to add pre-computed headers to your alignment is covered
well in the MultAlign Viewer documentation.

Dynamic Headers
Read MAVHeader/ChimeraExtension.py for example header definitions.
You may also want to look through MultAlignViewer/HeaderSequence.py
for useful methods to use/override.
Create a directory containing a ChimeraExtension.py with your header
definitions. Don't put the directory inside the Chimera distribution since it
will be lost if you upgrade Chimera. To get Chimera to use the headers,
add the directory above the directory you created to the Locations list in
the Tools preference category.
Your header class should subclass from DynamicHeaderSequence or
DynamicStructureHeaderSequence (the latter if your header values
depend on what structures are associated with the alignment). You use
the registerHeaderSequence function to notify Multalign Viewer of the
existence of your header class. The defaultOn keyword arg controls
whether the header defaults to being shown initially.
The alignment sequences will be available as self.mav.seqs .
The one method you absolutely must define yourself is evaluate(pos),
which returns the value of the header at alignment position pos (indexing
starts at zero). The value should be whatever is appropriate for the header,
e.g. Conservation Percentage would be a number in the range 0-100.

Two methods that you most likely will want to override are colorFunc(line,
pos) and depictionVal(pos). colorFunc returns the color to use at pos.
The color should be a string that Tk accepts as a color, such as any of the
normal color names in Chimera or an "#rrrgggbbb" string. The line argu-
ment is essentially another copy of self and can be ignored in this context.
The depictionVal method should return a value to use to depict the header
at pos, either a character, a number in the range 0-1, or None. The
histInfinity method can be useful for converting an unbounded range of
numbers to the range 0-1.

Resources
• Programmer's Examples (www.cgl.ucsf.edu/chimera/docs/ProgrammersGuide)

⁃ Example scripts: socrates2.cgl.ucsf.edu/trac/chimera/wiki/Scripts
• IDLE (Tools➔General Controls): help(object), dir(object)
• Python language/modules: www.python.org/doc/current/
• Numpy examples: www.scipy.org/Numpy_Example_List_With_Doc
• Chimera developer mailing list: chimera-dev@cgl.ucsf.edu
• C++ source code: browse SVN atsocrates2.cgl.ucsf.edu/trac/chimera/browser or

download from www.cgl.ucsf.edu/chimera/sourcecode.html
⁃ Python source code included with distribution

Chimera Molecular Data
• chimera.openModels.list(): list of open models

⁃ modeltypes=[chimera.Molecule]: restrict list to Molecules
• m.residues / m.atoms / m.bonds: a Molecule's residues / atoms / bonds

Residues
• type: LYS, HEM, etc.
• id.position / id.chainId / id.insertionCode: number / chain ID / insertion code
• molecule: parent Molecule
• atoms: list of atoms
• atomsMap: dict of atom-name ➔ list of atoms
• isHelix / isStrand: in helix / strand

Atoms
• name: name
• coord() / xformCoord(): untransformed / transformed coordinates
• residue / molecule: parent Residue / Molecule
• bonds: list of bonds
• neighbors: list of bonded atoms
• primaryBonds() / primaryNeighbors(): same as above but only primary altlocs
• bondsMap: dict of bonded-atom ➔ bond
• color: Color
• display: True if shown
• drawMode: one of chimera.Atom.X with X being Dot, Sphere, EndCap, or Ball
• element: chemical element (type chimera.Element, settable with string or number)
• label: label shown in graphics window
• radius: VdW radius

Bonds
• atoms: 2-tuple of atoms
• otherAtom(a): [a is one of the bond's atoms] other atom in bond
• drawMode: one of chimera.Bond.Y with Y being Wire or Stick
• label: label shown in graphics window
• molecule: parent Molecule
• length(): length

Useful Chimera modules/functions

Molecular Measurements
chimera module
functions use Points, which are returned by Atom's coord() or xformCoord() methods
▪distance / sqdistance

⁃ also: a1.coord().[sq]distance(a2.coord()) [similar for xformCoord]
▪angle — in degrees
▪dihedral — in degrees

Molecular Editing
chimera.molEdit module
▪addAtom

⁃ if adding in bulk, make sure to specify optional serialNumber keyword
▪addBond
▪addDihedralAtom – add atom given a bond length / angle / dihedral
look in BuildStructure/__init__.py for examples of creating new Molecules and

Residues

Setting/Querying The Selection
chimera.selection module
▪ currentAtoms / currentBonds / currentResidues / currentMolecules: currently

selected Atoms / Bonds / Residues / Molecules
▪ setCurrent: set current selection to given items
▪addCurrent / addImpliedCurrent: add given items to current selection

⁃ the "implied" version also selects endpoint Atoms of added Bonds and
connecting Bonds of added Atoms

▪ removeCurrent: remove items from current selection, if present

Miscellaneous
chimera module
▪ runCommand: execute any command-line command (arg is a string)

⁃ direct Python equivalent usually in Midas module
chimera.colorTable module
▪getColorByName: get a Color by name
OpenSave module
▪osOpen: open a file or HTTP URL, with or without compression
chimera.extension module
▪manager.instances: running dialogs listed at end of Tools menu

Chimera Menu/Widget Text Guidelines

Chimera
Menu/Widget
Text
Guidelines

I.Goals

II. Font

III. Menus

● Scheme
● Ellipses

IV. Widgets

Chimera Menu/Widget Text
Guidelines
I. Goals

● to promote consistent text usage in Chimera's user interfaces
● to provide guidelines for developers and programmers
● to promote awareness and discussion

II. Font

The default font type and size should be used.

III. Menus

IIIa. General Scheme

Primary (one word, noun or verb, capitalized)
 Secondary (words capitalized as in a title)
 tertiary or lower (numeral or lowercase,
 except proper nouns)

Proper nouns include atom types, elements, and extension (tool)
names.

Examples:

Select
 Chemistry
 element
 other
 Fe-Hg
 Fe
 (etc.)
 Residue
 amino acid category
 aliphatic
 (etc.)
 Selection Mode (replace)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/frameguidelines.html (1 of 4) [6/4/13 4:17:29 PM]

Chimera Menu/Widget Text Guidelines

 append
 (etc.)
Actions
 Atoms/Bonds
 wire width
 1
 (etc.)
 Ribbon
 show
 (etc.)
Tools
 Utilities
 Browser Configuration
 (etc.)

IIIb. Usage of Ellipses

The ellipsis string "..." should indicate a menu item that opens an
additional interface which requires user input to accomplish the
function described by its name (one-shot panels, as opposed to
those intended to be left up for a series of user interactions). For
now, Tools are exempted from this guideline.

We decided that "..." should not indicate a menu item which simply
opens an additional interface, since practically all items would then
require it.

There also needs to be consistency in whether "..." is preceded by a
space; we recommend no space.

Finally, should "..." appear on buttons as well as menu items? If so,
the same criteria should apply.

IV. Widgets (GUIs)

This is the broadest grouping, and thus less amenable to
standardization. It includes panels and dialog boxes generated by
built-in functions as well as extensions to Chimera. General
recommendations:

● Title of Widget
- one or more words to appear on the top bar, capitalized as a
title, no colon or period at the end; should be the same text as

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/frameguidelines.html (2 of 4) [6/4/13 4:17:29 PM]

Chimera Menu/Widget Text Guidelines

the invoking menu item or button (except sans any "...")
● Brief Header for a section

- capitalized as a title, optional colon at the end (but no colon
when sections are treated as "index cards")

● Longer description of a section
- first word capitalized, subsequent words not capitalized
unless proper nouns or acronyms; optional colon at the end,
no period

● Instructive statement
- first word capitalized, subsequent words not capitalized
unless proper nouns or acronyms; no period
Example:
Ctrl-click on histogram to add or delete thresholds in the
Volume Viewer Display panel

● [box] Description next to a checkbox
- first word capitalized, subsequent words not capitalized
unless proper nouns or acronyms; no period or question mark

�❍ exception: when the checkbox indicates a section to be
expanded/compacted, the text may be capitalized as a
title (instead of only the first word being capitalized).

● Item name: [blank, color well, slider, pulldown menu or
checkbox list]
or (especially if there are many of these in the widget)
item name: [blank, color well, slider, pulldown menu or
checkbox list]
- first word of item name optionally capitalized, subsequent
words not capitalized unless proper nouns or acronyms; colon
separating the item name from the value(s); options in a
pulldown menu or checkbox list not capitalized unless proper
nouns or acronyms

�❍ exception: when the item name and pulldown option
together describe a section, both should be capitalized
and the colon is optional
Examples:
Inspect [Atom/etc.] in the Selection Inspector
Category: [New Molecules/etc.] in the Preferences Tool

● Phrase with [blank, color well, pulldown menu, or checkbox
list] embedded
- first word capitalized, no colon, period or question mark; the
blank (etc.) should not start the phrase

● Phrase with [button] embedded
- 1-2 words actually on the button, others trailing and/or
preceding; the first word should be capitalized whether or not

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/frameguidelines.html (3 of 4) [6/4/13 4:17:29 PM]

Chimera Menu/Widget Text Guidelines

on the button; no colon, period or question mark; the button
may start the phrase

● buttons marked OK, Apply, Cancel, Help
- common but optional

● widget-specific buttons
- 1-2 words, each capitalized if the button brings up another
panel, at least the first word capitalized otherwise; if another
panel is evoked, consider using "..."

UCSF Computer Graphics Laboratory / November 2004

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/frameguidelines.html (4 of 4) [6/4/13 4:17:29 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/processData.py

import os
from chimera import runCommand as rc # use 'rc' as shorthand for runCommand
from chimera import replyobj # for emitting status messages

change to folder with data files
os.chdir("/Users/pett/data")

gather the names of .pdb files in the folder
file_names = [fn for fn in os.listdir(".") if fn.endswith(".pdb")]

loop through the files, opening, processing, and closing each in turn
for fn in file_names:
 replyobj.status("Processing " + fn) # show what file we're working on
 rc("open " + fn)
 rc("align ligand ~ligand") # put ligand in front of remainder of molecule
 rc("focus ligand") # center/zoom ligand
 rc("surf") # surface receptor
 rc("preset apply publication 1") # make everything look nice
 rc("surftransp 15") # make the surface a little bit see-through
 # save image to a file that ends in .png rather than .pdb
 png_name = fn[:-3] + "png"
 rc("copy file " + png_name + " supersample 3")
 rc("close all")
uncommenting the line below will cause Chimera to exit when the script is done
#rc("stop now")
note that indentation is significant in Python; the fact that
the above command is exdented means that it is executed after
the loop completes, whereas the indented commands that
preceded it are executed as part of the loop.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/processData.py [6/4/13 4:17:32 PM]

Introduction to Examples

Introduction to Examples
The Examples section of the Chimera Programmer's Guide consists of a series of
example code, with associated description, that illustrate how to use various Python
interfaces exported by Chimera. The target audience for the section is users who
are familiar with Python programming; users who wish to learn more about Python
can start with the Python Beginner's Guide.

The list of examples includes:

● Chimera's Object Model
● Molecular Editing Using Python
● Creating Molecules Using Python
● Toolbar Buttons
● Packaging an Extension
● Working with the Chimera Extension Manager
● Adding Command-line Commands
● Extension-Specific User Interface
● Colors and Color Wells
● Trigger Notifications
● Selections
● Session Saving
● Preferences
● Help
● Textures and Surfaces
● Registering Selectors
● Atomic Measurements
● Running a Background Process
● Writing a C/C++ extension

Each example starts with a short description of the functionality that it
demonstrates, followed by sample code and detailed commentary, and ends with
instructions on how to execute the sample code.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Introduction.html [6/4/13 4:17:34 PM]

http://www.python.org/
http://wiki.python.org/moin/BeginnersGuide

Chimera's Object Model

Chimera's Object Model
Purpose

Provide an introduction to the Chimera's object model.

Introduction

The first step to programming in the Chimera environment is to understand its
object model. Chimera uses a hierarchy of objects to represent actual chemical
components - atoms, bonds, residues, and so on. Most of Chimera is written in
Python, an easy-to-learn, strongly object-oriented scripting language. The use of
Python (for flexibility) in combination with C++ (for speed) has led to a highly
structured, yet easily navigable, object model that simulates all the chemical
components necessitated by a full-featured, intelligent molecular modeling system.
This example will provide a foundation for some of the more complicated
programming examples by explaining both the makeup of Chimera's objects and
their relationship to one another.

The accompanying image illustrates the general relationship between some of
Chimera's fundamental objects - Atoms, Bonds, Residues, and Molecules. While
this diagram shows several attributes for each object, some attributes have been

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (1 of 13) [6/4/13 4:17:51 PM]

http://www.python.org/

Chimera's Object Model

left out for the sake of simplicity. Only the attributes that are discussed in this
tutorial (the basics, and therefore, in some sense the most important) have been
shown. You can always do a

 >>>help(object)

in Chimera's IDLE window (essentially a Python interpreter built in to Chimera) to
see documentation for all the contents of any Chimera object. The attributes
associated with these objects can be divided into roughly two categories: those that
contain chemical/structural information (e.g. Molecule.atoms or Atom.
idAtmType) and those that control the visual representation of the data (e.g.
Molecule.color and Atom.drawMode). The following example will demonstrate
the use of attributes in the first category. A discussion of those in the second
category is saved for another example.

Note on semantics for the following examples:

● In general, anything written in this font (fixed width) is referring specifically to
some element of code.

● There is sometimes a need to talk specifically about either an instance of an object,
or its class. To distinguish between these two situations, lowercase is used to refer
to an instance ("atom") and uppercase is used to refer to the class ("Atom"). If the
reference to an object is not written in this font, then the implication is obvious
enough and/or there is no need to make this distinction.

● When discussing the color of a component, there can be some confusion
differentiating between the color an object appears to be (how it appears on the
screen), and what is assigned to that object's color attribute (on the programmatic
level). "color" will be used when referring to the former, and "color" will be used in
dealing with the latter. Example: "Due to Chimera's color hierarchy, the color of an
atom (the color it appears to be) may not always reflect its color attribute (the
color assigned to that atom in the code)"

● Unlike Atoms and Bonds, Residues are not actually visible in and of themselves. It
is only when they are drawn as ribbons that they are visible in a model. Thus, when
residue color or display is mentioned in the following discussion, it is actually
referring to the color/display of the ribbon portion which represents that residue.

Examples in this guide are typically laid out as a downloadable link to a Python
script followed by a line-by-line explanation of the script. You may want to read
through the explanation in its entirety, or look through the script and refer back to
the detailed explanation for the parts you don't understand.

To execute the script, either open the script file with the File→Open menu item or

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (2 of 13) [6/4/13 4:17:51 PM]

http://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/idle/idle.html
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/opensave.html#opendialog

Chimera's Object Model

with the open command.

Example writeMol2.py

Import Chimera modules used in this example.
import chimera

First, we'll open up a model to work with. This molecule (4fun) is very small,
comprised of just a couple residues, but it is perfect for illustrating some important
components of Chimera's object model. For more information on how to open/
close models in Chimera, see the "Basic Model Manipulation" Example in the
Programmer's Guide (coming soon). For now, just understand that this code opens
up any molecules stored in the file 4fun.pdb and returns a list of references to
opened models. (Put 4fun.pdb on your desktop or change the path in the command
below.)
opened = chimera.openModels.open('~/Desktop/4fun.pdb')

Because only one molecule was opened, opened is a list with just one element. Get
a reference to that element (which is a Molecule instance) and store it in mol
mol = opened[0]

Now that we have a molecule to work with, an excellent way of examining its data
structures is to flatten it out and write it to a file. We'll write this file in the mol2
format, a free-format ascii file that describes molecular structure. It is not
necessary to have any prior knowledge of the mol2 format to understand this
example, just a basic comprehension of file formats that use coordinate data.
Check out the finished product. It should serve as a good reference while you're
going through the example. Get a reference to a file to write to:
f = open("4fun.mol2", 'w')

mol2 uses a series of Record Type Indicators (RTI), that indicate the type of
structure that will be described in the following lines. An RTI is simply an ASCII
string which starts with an asterisk (@), followed by a string of characters, and is
terminated by a new line. Here, we define some RTI's that we will use througout the
file to describe the various parts of our model:

MOLECULE_HEADER = "@MOLECULE"
ATOM_HEADER = "@ATOM"
BOND_HEADER = "@BOND"
SUBSTR_HEADER = "@SUBSTRUCTURE"

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (3 of 13) [6/4/13 4:17:51 PM]

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/open.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.pdb

Chimera's Object Model

The chimera2sybyl dictionary is used to map Chimera atom types to Sybyl atom
types. See section below on writing out per-atom information.
chimera2sybyl = {

'C3' : 'C.3', 'C2' : 'C.2', 'Car' : 'C.ar', 'Cac' : 'C.2',
'C1' : 'C.1', 'N3+' : 'N.4', 'N3' : 'N.3', 'N2' : 'N.2',
'Npl' : 'N.pl3', 'Ng+' : 'N.pl3', 'Ntr' : 'N.2', 'Nox' : 'N.4',
'N1+' : 'N.1', 'N1' : 'N.1', 'O3' : 'O.3', 'O2' : 'O.2',
'Oar' : 'O.2', 'O3-' : 'O.co2', 'O2-' : 'O.co2', 'S3+' : 'S.3',
'S3' : 'S.3', 'S2' : 'S.2', 'Sac' : 'S.O2', 'Son' : 'S.O2',
'Sxd' : 'S.O', 'Pac' : 'P.3', 'Pox' : 'P.3', 'P3+' : 'P.3',
'HC' : 'H', 'H' : 'H', 'DC' : 'H', 'D' : 'H',
'P' : 'P.3', 'S' : 'S.3', 'Sar' : 'S.2', 'N2+' : 'N.2'

}

Writing Out per-Molecule Information

The "<TRIPOS>MOLECULE" RTI indicates that the next couple of lines will contain
information relevant to the molecule as a whole. First, write out the Record Type
Indicator (RTI):
f.write("%s\n" % MOLECULE_HEADER)

The next line contains the name of the molecule. This can be accessed through the
mol.name attribute. (Remember, mol is a reference to the molecule we opened). If
the model you open came from a pdb file, name will most often be the name of the
file (without the .pdb extension). For this example, mol.name is "4fun".
f.write("%s\n" % mol.name)

Next, we need to write out the number of atoms, number of bonds, and number of
substructures in the model (substructures can be several different things; for the
sake of simplicity, the only substructures we'll worry about here are residues). This
data is accessible through attributes of a molecule object: mol.atoms, mol.bonds,
and mol.residues all contain lists of their respective components. We can
determine how many atoms, bonds, or residues this molecule has by taking the len
of the appropriate list. save the list of references to all the atoms in mol:
ATOM_LIST = mol.atoms

save the list of references to all the bonds in mol:
BOND_LIST = mol.bonds

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (4 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

save the list of references to all the residues in mol:
RES_LIST = mol.residues

f.write("%d %d %d\n" % (len(ATOM_LIST), len(BOND_LIST), len
(RES_LIST)))

type of molecule
f.write("PROTEIN\n")

indicate that no charge-related information is available
f.write("NO_CHARGES\n")

f.write("\n\n")

Writing Out per-Atom Information

Next, write out atom-related information. In order to indicate this, we must first
write out the atom RTI:
f.write("%s\n" % ATOM_HEADER)

Each line under the ATOM RTI consists of information pertaining to a single atom.
The following information about each atom is required: an arbitrary atom id
number, atom name, x coordinate, y coordinate, z coordinate, atom type, id of the
substructure to which the atom belongs , name of the substructure to which the
atom belongs.

You can look at each atom in the molecule by looping through its atoms attribute.
Remember, ATOM_LIST is the list of atoms stored in mol.atoms. It's more efficient
to get the list once, and assign it to a variable, then to repeatedly ask for mol.
atoms.
for atom in ATOM_LIST:

Now that we have a reference to an atom, we can write out all the necessary
information to the file. The first field is an arbitrary id number. We'll just use
that atom's index within the mol.atoms list.
f.write("%d " % ATOM_LIST.index(atom))

Next, we need the name of the atom, which is accessible via the name
attribute.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (5 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

f.write("%s " % atom.name)

Now for the x, y, and z coordinate data. Get the atom's xformCoord object.
This is essentially a wrapper that holds information about the coordinate
position (x,y,z) of that atom. xformCoord.x, xformCoord.y, and
xformCoord.z store the x, y, and z coordinates, respectively, as floating
point integers. This information comes from the coordinates given for each
atom specification in the input file
coord = atom.xformCoord()
f.write("%g %g %g " % (coord.x, coord.y, coord.z))

The next field in this atom entry is the atom type. This is a string which
stores information about the chemical properties of the atom. It is accessible
through the idatmType attribute of an atom object. Because Chimera uses
slightly different atom types than SYBYL (the modeling program for which .
mol2 is the primary input format), use a dictionary called chimera2sybyl
(defined above) that converts Chimera's atom types to the corresponding
SYBYL version of the atom's type.
f.write("%s " % chimera2sybyl[atom.idatmType])

The last two fields in an atom entry pertain to any substructures to which the
atom may belong. As previously noted, we are only interested in residues for
this example. Every atom object has a residue attribute, which is a reference
to the residue to which that atom belongs.
res = atom.residue

Here, we'll use res.id for the substructure id field. res.id is a string which
represents a unique id for that residue (a string representation of a number, i.
e. "1" , which are sequential, for all the residues in a molecule).
f.write("%s " % res.id)

The last field to write is substructure name. Here, we'll use the type attribute
of res. the type attribute contains a string representation of the residue type
(e.g. "HIS", "PHE", "SER"...). Concatenate onto this the residue's id to make a
unique name for this substructure (because it is possible, and probable, to
have more than one "HIS" residue in a molecule. This way, the substructure
name will be "HIS6" or "HIS28")
f.write("%s%s\n" % (res.type, res.id))

f.write("\n\n")

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (6 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

Writing Out per-Bond Information

Now for the bonds. The bond RTI says that the following lines will contain
information about bonds.
f.write("%s\n" % BOND_HEADER)

Each line after the bond RTI contains information about one bond in the molecule.
As noted earlier, you can access all the bonds in a molecule through the bonds
attribute, which contains a list of bonds.
for bond in BOND_LIST:

each bond object has an atoms attribute, which is list of length 2, where each
item in the list is a reference to one of the atoms to which the bond connects.
a1, a2 = bond.atoms

The first field in a mol2 bond entry is an arbitrary bond id. Once again, we'll
just use that bond's index in the mol.bonds list
f.write("%d " % BOND_LIST.index(bond))

The next two fields are the ids of the atoms which the bond connects. Since
we have a reference to both these atoms (stored in a1 and a2), we can just
get the index of those objects in the mol.atoms list:
f.write("%s %s " % (ATOM_LIST.index(a1), ATOM_LIST.index(a2)))

The last field in this bond entry is the bond order. Chimera doesn't currently
calcuate bond orders, but for our educational purposes here, this won't be a
problem. The mol2 format expects bond order as a string: "1" (first-order),
"2" (second-order), etc., so just write out "1" here (even though this may not
be correct).
f.write("1\n")

f.write("\n\n")

Writing Out per-Residue Information

Almost done!!! The last section contains information about the substructures (i.e.
residues for this example) You know the drill:
f.write("%s\n" % SUBSTR_HEADER)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (7 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

We've already covered some of these items (see above):
for res in RES_LIST:

residue id field
f.write("%s " % res.id)

residue name field
f.write("%s%s " % (res.type, res.id))

the next field specifies the id of the root atom of the substructure. For the
case of residues, we'll use the alpha-carbon as the root. Each residue has an
atomsMap attribute which is a dictionary. The keys in this dictionary are atom
names (e.g. C, N, CA), and the values are lists of references to atoms in the
residue that have that name. So, to get the alpha-carbon of this residue:
alpha_carbon = res.atomsMap['CA'][0]

and get the id of alpha_carbon from the mol.atoms list
f.write("%d " % ATOM_LIST.index(alpha_carbon))

The final field of this substructure entry is a string which specifies what type
of substructure it is:
f.write("RESIDUE\n")

f.write("\n\n")
f.close()

And that's it! Don't worry if you didn't quite understand all the ins and outs of the
mol2 file format. The purpose of this exercise was to familiarize yourself with
Chimera's object model; writing out a mol2 file was just a convenient way to do
that. The important thing was to gain an understanding of how Chimera's atoms,
bonds, residues, and molecules all fit together.

Display Properties

The goal of any molecular modeling system is to enable researchers to visualize
their data. Equally important as the attributes that describe chemical structure, are

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (8 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

those that control how the structures are actually represented on-screen. In fact, an
extensive object model is worthless unless the objects can be represented in a
suitable manner! The display of Chimera's core objects is governed by a few key
concepts:

Color Hierarchy

Chimera uses a hierarchical system to color fundamental chemical components.
This hierarchy is composed of two levels: 1) individual atoms/bonds/residues and
2) the model as a whole. The color assigned to an individual atom/bond/residue
will be visible over the color assigned to the model as a whole. When a model is
initially opened, each atom/bond/residue color is set to None, and the model-
level color is determined by a configurable preference (by default, Chimera
automatically assigns a unique model-level color to each new molecule that is
opened). Because all the components' (atoms/bonds/residues) color attributes are
initially set to None, they (visually) inherit their color from the model-level color.
However, setting any particular atom's color, or issuing a command such as 'color
blue' (which is the same as setting each individual atom's color to blue) will result
in the model appearing blue (because either of those actions affect an individual
atoms' color, which takes visual precedence over the model-level color). See here
for more information.

Display Hierarchy

Each of Chimera's objects has an attribute which determines if it is displayed
(visible) or not. For atoms, bonds, and molecules this is called display, while
residues have a ribbonDisplay attribute (residues are represented visually as
ribbons). A value of True means that the component is displayed, while False
means it is not displayed. An atom/bond/residue will only be displayed if the
model to which it belongs is displayed. This means that even if an atom/bond/
residue's respective display attribute is set to True, if the molecule to which that
atom belongs is undisplayed (i.e. the molecule's display is set to False), then that
atom/bond/residue will still not be visible. See here for more information.

Draw Modes

Each Chimera object can be drawn in one of several representations ('draw modes'),
specific to that object. atoms and bonds each have an attribute named drawMode
that controls this characteristic, while residues' (because they are represented as
ribbons) corresponding attribute is called ribbonDrawMode. The value of this
attribute is a constant which corresponds to a certain type of representation

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (9 of 13) [6/4/13 4:17:51 PM]

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/preferences.html#New%20Molecules
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/hierarchy.html
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/hierarchy.html#displevels

Chimera's Object Model

specific to that object. For example, chimera.Atom.Dot, chimera.Atom.
Sphere, chimera.Atom.EndCap and chimera.Atom.Ball are constants that each
define a different draw mode for atoms. There is a different set of constants that
define draw modes for bonds and residues (see below for more information).

Example displayProp.py

import chimera

open up a molecule to work with:
opened = chimera.openModels.open('3fx2', type="PDB")
mol = opened[0]

Molecule Display Properties

the color attribute represents the model-level color. This color can be controlled
by the midas command modelcolor. The color assigned to a newly opened model
is determined by a configurable preference (see discussion above).
Programmatically, the model color can be changed by simply assigning a
MaterialColor to molecule.color. Molecules also have a display attribute,
where a value of True corresponds to being displayed, and a value of False means
the molecule is not displayed. So to make sure the molecule is shown (it is by
default when first opened):
mol.display = True

To color the molecule red, get a reference to Chimera's notion of the color red
(returns a MaterialColor object)
from chimera.colorTable import getColorByName
red = getColorByName('red')

and assign it to mol.color.
mol.color = red

Note that the model will appear red at this point because all the atoms/bonds/
residues color attributes are set to None

Atom Display Properties

Each atom in a molecule has its own individual color, accessible by the color
attribute. Upon opening a molecule, each atom's color is set to None; it can be

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (10 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

changed by assigning a new MaterialColor to atom.color. So, if we wanted to
color all the alpha-carbon atoms blue, and all the rest yellow, get references to the
colors:
blue = getColorByName('blue')
yellow = getColorByName('yellow')

get a list of all the atoms in the molecule
ATOMS = mol.atoms
for at in ATOMS:

check to see if this atom is an alpha-carbon
if at.name == 'CA':

at.color = yellow
else:

at.color = blue

Now, even though mol.color is set to red, the molecule will appear to be blue and
yellow. This is because each individual atom's color is visible over mol.color.

Like molecules, atoms also have a display attribute that controls whether or not
the atom is shown. While atom.display controls whether the atom can be seen at
all, atom.drawMode controls its visual representation. The value of drawMode can
be one of four constants, defined in the Atom class. Acceptable values for drawMode
are chimera.Atom.Dot (dot representation), chimera.Atom.Sphere (sphere
representation), chimera.Atom.EndCap (endcap representation), or chimera.Atom.
Ball (ball representation). So, to represent all the atoms in the molecule as "balls":
for at in ATOMS:

at.drawMode = chimera.Atom.Ball

Bond Display Properties

Bonds also contain color, and drawMode attributes. They serve the same purposes
here as they do in atoms (color is the color specific to that bond, and drawMode
dictates how the bond is represented). drawMode for bonds can be either chimera.
Bond.Wire (wire representation) or chimera.Bond.Stick (stick representation).
The bond.display attribute accepts slightly different values than that of other
objects. While other objects' display can be set to either False (not displayed) or
True (displayed), bond.display can be assigned a value of chimera.Bond.Never

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (11 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

(same as False - bond is not displayed), chimera.Bond.Always (same as True -
bond is displayed), or chimera.Bond.Smart which means that the bond will only
be displayed if both the atoms it connects to are displayed. If not, the bond will not
be displayed. The heuristic that determines bond color is also a little more
complicated than for atoms. Bonds have an attribute called halfbond that
determines the source of the bond's color. If halfbond is set to True, then the
bond derives its color from the atoms which it connects, and ignores whatever
bond.color is. If both those atoms are the same color (blue, for instance), then the
bond will appear blue. If the bonds atoms are different colors, then each half of the
bond will correspond to the color of the atom on that side. However, if bond.
halfbond is set to False, then that bond's color will be be derived from its color
attribute, regardless of the colors of the atoms which it connects (except in the
case bond.color is None, the bond will derive its color from one of the atoms to
which it connects). To set each bond's display mode to "smart", represent it as a
stick, and turn halfbond mode on, get a list of all bonds in the molecule
BONDS = mol.bonds
for b in BONDS:

b.display = chimera.Bond.Smart
b.drawMode = chimera.Bond.Stick
b.halfbond = True

Residue Display Properties

Residues are not "displayed" in the same manner that atoms and bonds are. When
residues are displayed, they are in the form of ribbons, and the attributes that
control the visual details of the residues are named accordingly: ribbonDisplay,
ribbonColor, ribbonDrawMode. The values for ribbonDrawMode can be chimera.
Residue.Ribbon_2D (flat ribbon), chimera.Residue.Ribbon_Edged (sharp
ribbon), or chimera.Residue.Ribbon_Round (round/smooth ribbon). If a residue's
ribbonDisplay value is set to False, it doesn't matter what ribbonDrawMode is -
the ribbon still won't be displayed! Residues have three attributes that control how
the ribbon is drawn. isTurn, isHelix, and isSheet (same as isStrand) are set to
either True or False based on secondary structure information contained in the
source file (if available). For any residue, only one of these can be set to True. So,
to display only the residues which are part of an alpha-helix, as a smooth ribbon,
get a list of all the residues in the molecule
RESIDUES = mol.residues
for r in RESIDUES:

only for residues that are part of an alpha-helix

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (12 of 13) [6/4/13 4:17:51 PM]

Chimera's Object Model

if r.isHelix:

r.ribbonDisplay = True
r.ribbonDrawMode = chimera.Residue.Ribbon_Round

This leaves us with a very colorful (if a little scientifically useless) model!!

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_ObjectModel.html (13 of 13) [6/4/13 4:17:51 PM]

Molecular Editing Using Python

Molecular Editing Using Python
Nearly all data in a Chimera session may be accessed using the Python interface. In
particular, molecular data is arranged as instances of Atom, Bond, Residue and
Molecule classes in the chimera module. Instance attributes may be modified and
the changes are automatically reflected in the main graphical window.

The code below illustrates how to show protein backbone while hiding all other
atoms and bonds. The graphical window renders atoms (and associated bonds)
whose display attribute is set to true. Thus, all that is needed to show or hide
atoms (and bonds) is to set the display attribute to true or false, respectively.

Example MolecularEditing.py

Import system modules used in this example.
import re

Import Chimera modules used in this example.
import chimera

Define a regular expression for matching the names of protein backbone atoms (we
do not include the carbonyl oxygens because they tend to clutter up the graphics
display without adding much information).
MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

Do the actual work of setting the display status of atoms and bonds. The following
for statement iterates over molecules. The function call chimera.openModels.
list(modelTypes=[chimera.Molecule]) returns a list of all open molecules;
non-molecular models such as surfaces and graphics objects will not appear in the
list. The loop variable m refers to each model successively.
for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):

The following for statement iterates over atoms. The attribute reference m.
atoms returns a list of all atoms in model m, in no particular order. The loop
variable a refers to each atom successively.
for a in m.atoms:

Set the display status of atom a. First, we match the atom name, a.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/Pr...ersGuide/Examples/Main_MolecularEditing.html (1 of 2) [6/4/13 4:17:54 PM]

Molecular Editing Using Python

name, against the backbone atom name regular expression, MAINCHAIN.
The function call MAINCHAIN.match(a.name) returns an re.Match
object if the atom name matches the regular expression or None
otherwise. The display status of the atom is set to true if there is a
match (return value is not None) and false otherwise.
a.display = MAINCHAIN.match(a.name) != None

By default, bonds are displayed if and only if both endpoint atoms are
displayed, so therefore we don't have to explicitly set bond display modes;
they will automatically "work right".

Code Notes

The code indiscriminately hides atoms whose names do not match protein
backbone atom names, so any non-protein molecules will be completely hidden.

Running the Example

You can execute the example code by downloading the linked Python script and
opening it with the File→Open menu item or with the open command. Note that
the .py extension is required for the open dialog/command to recognize that the
file is a Python script.

You could also execute the example code by typing it in, line by line, into the main
window of the Python Interactive DeveLopment Environment extension (IDLE, for
short). To display the IDLE window, activate the Tools menu and roll over the
General Controls submenu to select IDLE. Alternatively, the example code may
be saved in a disk file, e.g., ~/Desktop/backbone.py (.py suffix still required) and
executed from Chimera's Python command line by typing:

execfile("~/Desktop/backbone.py")

Note that the code in backbone.py could also have been executed via the import
statement (e.g. import backbone), but only if the directory containing backbone.
py is on your Python path. Also, since modules are only imported once, the code
could not have been executed again if desired. Using execfile allows multiple
executions.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/Pr...ersGuide/Examples/Main_MolecularEditing.html (2 of 2) [6/4/13 4:17:54 PM]

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/opensave.html#opendialog
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/open.html

Toolbar Buttons

Toolbar Buttons
The toolbar is a user interface component that appears in the main Chimera
window, typically on the left-hand side. The purpose of the toolbar is to hold
buttons that invoke commonly used functionality (e.g., displaying protein
backbone) and sets of buttons that comprise the entire interface to an extension (e.
g., playing molecular dynamics movies).

There are four items associated with the button: an icon,, a Python function, a short
description, and an URL to a full description. The icon is displayed in the button,
and determines the size of the button. The Python function is called when the
button is pressed. The description appears as balloon help text. The full
description is displayed when context help is invoked.

The code below illustrates how to a button on the toolbar. The code must be
executed from a file (i.e., it cannot be typed in via the Python command line in the
main Chimera window). The icon associated with the button is an image file named
ToolbarButton.tiff in the same directory as the Python source code. The short
description is ``Show Main Chain''. The Python function displays protein backbone
and hides all other atoms and bonds, and the code in the body of the function is
explained in greater detail in Molecular Editing Using Python.

Example ToolbarButton.py

Function mainchain sets the display status of atoms and requires no arguments.
The body of the function is identical to the example described in Molecular Editing
Using Python.
def mainchain():

Note that due to a fairly arcane Python behavior, we need to import modules
used by a (script) function inside the function itself (the local scope) rather
than outside the function (the global scope). This is because Chimera
executes scripts in a temporary module so that names defined by the script
don't conflict with those in Chimera's main namespace. When the temporary
module is deleted, Python sets all names in the module's global namespace to
None. Therefore, by the time this function is executed (by the toolbar button
callback) any modules imported in the global namespace would have the
value None instead of being a module object.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_ToolbarButton.html (1 of 3) [6/4/13 4:17:57 PM]

Toolbar Buttons

The regular expression module, re, is used for matching atom names.
import re

Import the object that tracks open models and the Molecule class from the
chimera module.
from chimera import openModels, Molecule

mainChain = re.compile("^(N|CA|C)$", re.I)
for m in openModels.list(modelTypes=[Molecule]):

for a in m.atoms:
a.display = mainChain.match(a.name) != None

Need to import the chimera module to access the function to add the icon to the
toolbar.
import chimera

Create a button in the toolbar. The first argument to chimera.tkgui.app.
toolbar.add is the icon, which is either the path to an image file, or the name of a
standard Chimera icon (which is the base name of an image file found in the "share/
chimera/images" directory in the Chimera installation directory). In this case, since
ToolbarButton.tiff is not an absolute path, the icon will be looked for under
that name in both the current directory and in the Chimera images directory. The
second argument is the Python function to be called when the button is pressed (a.
k.a., the "callback function"). The third argument is a short description of what the
button does (used typically as balloon help). The fourth argument is the URL to a
full description. For this example the icon name is ToolbarButton.tiff; the
Python function is mainchain; the short description is "Show Main Chain"; and
there is no URL for context help.
chimera.tkgui.app.toolbar.add('ToolbarButton.tiff', mainchain,
'Show Main Chain', None)

Code Notes

The code in this example consists of two portions: defining the actual functionality
in function mainchain and presenting an user interface to the functionality. While
the example is presented as a single Python source file, there are good reasons for
dividing the code into multiple source files and using a Python package instead.
The advantages of the latter approach is illustrated in Packaging an Extension.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_ToolbarButton.html (2 of 3) [6/4/13 4:17:57 PM]

Toolbar Buttons

Running the Example

You can execute the example code by downloading the linked Python script and
opening it with the File→Open menu item or with the open command. Note that
the .py extension is required for the open dialog/command to recognize that the
file is a Python script. The icon tiff file must be saved to a file named
'ToolbarButton.tiff' in the same directory as the script.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_ToolbarButton.html (3 of 3) [6/4/13 4:17:57 PM]

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/opensave.html#opendialog
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/open.html
http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.tiff

Packaging an Extension

Packaging an Extension
Chimera extensions typically can be divided into two parts: data manipulation and
user interface. For example, the code in Toolbar Buttons defines a function which
changes the display status of some atoms (the data manipulation code) and then
creates a toolbar button that invokes the function when pressed (the user interface
code). The data manipulation code often may be reused when building a new
extension, but the user interface code typically is not needed. Separating the parts
into multiple source files simplifies reusing the data manipulation code, but
complicates managing the extension code as a unit. Fortunately, Python supports
the package concept for just such a situation.

A Python package consists of a set of modules (.py files) stored in the same
directory in the file system. One of the modules must be named __init__.py, which
is the initialization module that is automatically executed when the package is
imported. By convention, Chimera extension packages implement the data
manipulation code in __init__.py and the user interface code in a module named gui.
py. Implementors of new functionality can access the data manipulation code by:

import extension

and end users can display the user interface by:

import extension.gui

where extension is the name of the package. The code in Toolbar Buttons is
divided in such a manner below:

Example ToolbarButtonPackage/__init__.py

The contents of ToolbarButtonPackage/__init__.py is identical to the first section of
code in Toolbar Buttons.

def mainchain():

import re
from chimera import openModels, Molecule

mainChain = re.compile("^(N|CA|C)$", re.I)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/Pr...ersGuide/Examples/Main_ExtensionPackage.html (1 of 2) [6/4/13 4:18:00 PM]

Packaging an Extension

for m in openModels.list(modelTypes=[Molecule]):
for a in m.atoms:

a.display = mainChain.match(a.name) != None

Example ToolbarButtonPackage/gui.py

The contents of ToolbarButtonPackage/gui.py is similar to the last section of code
in Toolbar Buttons, with the exception that the mainchain function is now
referenced as ToolbarButtonPackage.mainchain. The reason for the change is
that gui.py is a submodule, while the mainchain function is in the main package.
Since a submodule cannot directly access items defined in the main package, gui.
py must first import the package import ToolbarButtonPackage and refer to the
function by prepending the package name (ToolbarButtonPackage.mainchain in
the call to chimera.tkgui.app.toolbar.add).

import chimera
import ToolbarButtonPackage
chimera.tkgui.app.toolbar.add('ToolbarButton.tiff',
ToolbarButtonPackage.mainchain, 'Show Main Chain', None)

Running the Example

The example code files must be saved in a directory named
ToolbarButtonPackage. To run the example, start chimera, bring up the Tools
preference category (via the Preferences entry in the Favorites menu; then
choosing the "Tools" preference category) and use the Add button to add the
directory above the ToolbarButtonPackage directory. Then type the following
command into the IDLE command line:

import ToolbarButtonPackage.gui

The effect should be identical to running the Toolbar Buttons example.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/Pr...ersGuide/Examples/Main_ExtensionPackage.html (2 of 2) [6/4/13 4:18:00 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ContributedSoftware/idle/idle.html

Working with the Chimera Extension Manager

Working with the Chimera Extension
Manager
Chimera extensions typically can be divided into two parts: data manipulation and
user interface. For example, the code in Toolbar Buttons defines a function which
changes the display status of some atoms. This is the data manipulation part of
that extension. The code also creates a toolbar button that invokes the function
when pressed. This is the user interface part of the extension.

Data manipulation code may often be reused when building a new extension, but
user interface code typically is not. Separating the parts into multiple source files
simplifies reusing the data manipulation code, but complicates managing the
extension as a unit. Fortunately, Python supports the package concept for just this
purpose.

A Python package consists of a set of modules (.py files) stored in the same
directory in the file system. One of the modules must be named __init__.py, which
is the initialization module that is automatically executed when the package is
imported. By convention, Chimera extension packages implement the data
manipulation code in __init__.py. Implementors of new functionality can access the
data manipulation code by:

import extension

where extension is the name of the package.

The package integrates its functionality into the Chimera extension manager by
including a special module named ChimeraExtension.py in the package, and
following a particular protocol within that module. Namely, for each separate
function the package wants to offer through the extension manager, a class derived
from chimera.extension.EMO (Extension Management Object) must be defined in
the module and an instance registered with the extension manager.

The code in Toolbar Buttons is organized in such a manner below:

Example ToolbarButtonExtension/__init__.py

The contents of ToolbarButtonExtension/__init__.py is identical to the first section

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rsGuide/Examples/Main_ExtensionManager.html (1 of 3) [6/4/13 4:18:03 PM]

Working with the Chimera Extension Manager

of code in Toolbar Buttons, with the exception that module os is not imported.

import re

import chimera

def mainchain():

MAINCHAIN = re.compile("^(N|CA|C)$", re.I)
for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
a.display = MAINCHAIN.match(a.name) != None

Example ToolbarButtonExtension/ChimeraExtension.py

ChimeraExtension.py derives a class from chimera.extension.EMO to define how
functionality defined in __init__.py may be invoked by the Chimera extension
manager.

import chimera.extension

Class MainChainEMO is the derived class.
class MainChainEMO(chimera.extension.EMO):

Return the actual name of the extension.
def name(self):

return 'Backbone'

Return the short description that typically appears as balloon help or in the
Tools preference category.
def description(self):

return 'display only protein backbone'

Return the categories in which this extension should appear. It is either a list
or a dictionary. If it is a dictionary then the keys are the category names and

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rsGuide/Examples/Main_ExtensionManager.html (2 of 3) [6/4/13 4:18:03 PM]

Working with the Chimera Extension Manager

the values are category-specific descriptions (and the description() method
above is ignored).
def categories(self):

return ['Utilities']

Return the name of a file containing an icon that may be used on the tool bar
to provide a shortcut for launching the extension.
def icon(self):

return self.path('mainchain.tiff')

Invoke the extension. Note that when this method is called, the content of
"__init__.py" is not available. To simplify calling functions, the EMO provides a
module method that locates modules in the extension package by name; if no
name is supplied, the "__init__.py" module is returned.
def activate(self):

Call the mainchain function in the "__init__.py" module.
self.module().mainchain()

Register an instance of MainChainEMO with the Chimera extension manager.
chimera.extension.manager.registerExtension(MainChainEMO(__file__))

Running the Example

The example code files and ToolbarButton.tiff must be saved in a directory named
ToolbarButtonExtension. To run the example, start chimera, bring up the Tools
preference category (via the Preferences entry in the Favorites menu; then
choosing the "Tools" preference category), use the Add button to add the directory
above the ToolbarButtonExtension directory. A MainChain entry should appear
under the Utilities tools category.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rsGuide/Examples/Main_ExtensionManager.html (3 of 3) [6/4/13 4:18:03 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/ToolbarButton.tiff

Adding New Typed Commands

Adding New Typed Commands
Just as menu commands are added in an extension's ChimeraExtension.py file, so are typed
commands. This is for two reasons:

1. The command becomes available early, before command scripts might run.
2. The module itself doesn't have to be imported (which would slow startup).

The addCommand Function

Typed commands are added using Midas.midas_text's addCommand function. addCommand
has two mandatory arguments:

1. A string containing the typed command name. The user will be able to shorten the
name to the shortest unique prefix.

2. The function to call when the command is invoked. Explained further in the Callback
Function section below.

and it has three keyword arguments:

revFunc
Specifies a function to call when ~command is typed. If omitted, ~command will raise
an error.

help
Specifies where help for the command is found. Commands whose help is provided
with the Chimera documentation itself will set help to True. If help is a string, it is
interpreted as an URL that will be brought up in a browser to display help. If help is a
tuple, it should be a (path, package) 2-tuple, where path specifies a file relative to
package's helpdir subdirectory. The file will be displayed in a browser as help. Note
that though package can be an actual imported package, importing the package
would defeat the purpose of avoiding importing the module early, so package can
just be a string specifying the module name instead. If the help keyword is omitted,
no help will be provided.

changesDisplay
A boolean that specifies if the command changes the display in the main graphics
window (default: True). This is important for script processing so that Chimera knows
if the display needs to update once a command has executing (and to avoid spurious
extra frames during script execution -- important if recording animations).

Callback Function

The callback function you register with addCommand will be invoked with two arguments:

http://www.rbvi.ucsf.edu/chimera/1.8/docs...ammersGuide/Examples/Main_NewCommand.html (1 of 5) [6/4/13 4:18:07 PM]

Adding New Typed Commands

1. A string containing the name of the command as registered with addCommand.
2. The arguments to the command as typed by the user (a string).

The parsing of the typed arguments and calling of the function that actually performs the
command work is typically handled through Midas.midas_text's doExtensionFunc
function. This is discussed in detail below in The doExtensionFunc Function. Before
getting into that, we know enough at this point that we can look at a brief example.

An Example

Here is the code from the ChimeraExtension.py file of the Define Attribute extension that
implements adding the defattr command to the command line module:

def cmdAddAttr(cmdName, args):
 from AddAttr import addAttributes
 from Midas.midas_text import doExtensionFunc
 doExtensionFunc(addAttributes, args,
 specInfo=[("spec", "models", "molecules")])

from Midas.midas_text import addCommand
addCommand("defattr", cmdAddAttr, help=True)

First, a callback function named cmdAddAttr is defined that will later be registered with
addCommand. The callback imports a "workhorse" function (addAttributes) from the main
module and doExtensionFunc from Midas.midas_text and then calls doExtensionFunc to
process the typed arguments and call addAttributes appropriately. Note that
addAttributes is imported inside the cmdAddAttr definition. If it were outside, then the
whole module would be imported during Chimera startup, which we are trying to avoid.

After the cmdAddAttr function is defined, Midas.midas_text's addCommand is called to add
the defattr command to the command interpreter. Since the help for the defattr
command is shipped with Chimera, the help keyword argument is set to True.

The doExtensionFunc Function

As seen in the An Example section above, doExtensionFunc has two mandatory
arguments: the "workhorse" function that actually carries out the operation requested by
the user, and a string containing the command arguments that the user typed.
doExtensionFunc introspects the workhorse function to determine how many mandatory
arguments it expects and what keyword arguments it accepts. The initial arguments in the
typed string are assumed to correspond to the mandatory arguments, and the remainder of
the typed string is assumed to specify valid keyword/value pairs (space separated rather
than "=" separated). Keywords will be matched regardless of case, and the user need only
type enough characters to distinguish keywords.

http://www.rbvi.ucsf.edu/chimera/1.8/docs...ammersGuide/Examples/Main_NewCommand.html (2 of 5) [6/4/13 4:18:07 PM]

Adding New Typed Commands

doExtensionFunc has two keyword arguments:

invalid
A list of keyword arguments that cannot be used from the command line.
doExtensionFunc will behave as if the workhorse function did not have these
keywords.

specInfo
If the workhorse function has argument(s) whose value should be a list of Atoms,
Residues, etc., for which the user needs to type an atom specifier, that information is
given here. specInfo is a list of 3-tuples. The first component of the 3-tuple is the
keyword the user should type or, if this is a positional argument, the name that the
argument should be assumed to have for type-guessing purposes (in either case it
needs to end in "spec"). The next component is the real argument name that the
function uses (it will automatically be added to invalid). The final component is the
method name to apply to the selection generated by the atom spec in order to extract
the desired list (typically "atoms", "residues", "molecules", or "models"). If the method
name is None, then the selection itself will be returned.

Typed arguments are processed using some heuristic rules to convert them to their most
"natural" type. However, the argument name used by the workhorse function can influence
how the typed argument is processed. In particular, if the argument name (ignoring case)
ends in...

color
The typed argument is treated as a color name and is converted to a MaterialColor.

spec
The typed argument is assumed to be an atom specifier and is converted to a
Selection.

file
The typed argument is a file name. If the user types "browse" or "browser" then a file
selection dialog is displayed for choosing the file. If the workhorse argument name
ends in savefile, then a save-style browser will be used.

Furthermore, if the user provides a keyword argument multiple times, the value provided to
the workhorse function will be a list of the individual values.

In some cases it may be desirable to provide a "shim" function between the
doExtensionFunc "workhorse" function and the module's true workhorse function in order
to provide more user-friendly argument names or default values than those of the normal
module API.

MidasError

If you want to have errors from your command-line function handled the same was as
other command-line errors (i.e. shown as red text in the status line rather than raising an
error dialog), then you need to have the function you register with addCommand raise

http://www.rbvi.ucsf.edu/chimera/1.8/docs...ammersGuide/Examples/Main_NewCommand.html (3 of 5) [6/4/13 4:18:07 PM]

Adding New Typed Commands

MidasError in those cases instead of other error types. This may involve embedding your
use of doExtensionFunc in a try/ except block and re-raising caught errors as
MidasError. MidasError is defined in the Midas module.

A Second Example

Example ToolbarButtonCommand/ChimeraExtension.py

The initial code is the same as for the ToolbarButtonExtension example
import chimera.extension

class MainChainEMO(chimera.extension.EMO):

def name(self):
return 'Backbone'

def description(self):

return 'display only protein backbone'

def categories(self):

return ['Utilities']

def icon(self):

return self.path('mainchain.tiff')

def activate(self):

self.module().mainchain()

chimera.extension.manager.registerExtension(MainChainEMO(__file__))

Here we define two functions, one to handle the "mainchain" command, and one to handle
the "~mainchain" command.
def mainchainCmd(cmdName, args):

Import the module's workhorse function. It is imported inside the function definition
so that it does not slow down Chimera startup with extra imports in the main scope.
from ToolbarButtonCommand import mainchain

Import and use the Midas.midas_text doExtensionFunc procedure to process typed
arguments and call the mainchain() function appropriately. For a simple function like
mainchain(), which takes no arguments, using doExtensionFunc is probably overkill.
One could instead use the approach applied in the revMainchainCmd function below
and simply test for the presence of any arguments (raising MidasError if any are
found) and directly calling the mainchain() function otherwise. As implemented here,

http://www.rbvi.ucsf.edu/chimera/1.8/docs...ammersGuide/Examples/Main_NewCommand.html (4 of 5) [6/4/13 4:18:07 PM]

Adding New Typed Commands

using doExtensionFunc, if the user does provide arguments then doExtensionFunc
will raise an error complaining that there were unknown keyword arguments supplied.
from Midas.midas_text import doExtensionFunc
doExtensionFunc(mainchain, args)

The function for "~mainchain"
def revMainchainCmd(cmdName, args):

We are going to implement ~mainchain as a synonym for "display", so we import
runCommand which simplifies doing that.
from chimera import runCommand
from Midas import MidasError
if args:

Raising MidasError will cause the error message to show up in the status line as
red text
raise MidasError("~mainchain takes no arguments")

runCommand takes any legal command-line command and executes it.
runCommand("display")

Now actually register the "mainchain" command with the command interpreter by using
addCommand(). The first argument is the command name and the second is the callback
function for doing the work. The revFunc keyword specifies the function to implement
"~mainchain". The help keyword has been omitted, therefore no help will be provided.
from Midas.midas_text import addCommand
addCommand("mainchain", mainchainCmd, revFunc=revMainchainCmd)

Running the Example

The example files (ChimeraExtension.py, __init__.py, and ToolbarButton.tiff) must be saved
in a directory named ToolbarButtonCommand. To run the example, start chimera, bring up
the Tools preference category (via the Preferences entry in the Favorites menu; then
choosing the "Tools" preference category), use the Add button to add the directory above
the ToolbarButtonCommand directory. You should then be able to type "mainchain" to the
Chimera command line (start the command line from the Favorites menu if necessary).

http://www.rbvi.ucsf.edu/chimera/1.8/docs...ammersGuide/Examples/Main_NewCommand.html (5 of 5) [6/4/13 4:18:07 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonCommand/ToolbarButton.tiff

Extension-Specific User Interface

Extension-Specific User Interface
Chimera implements its graphical user interface (GUI) using a Python interface
(Tkinter module) to the Tcl/Tk toolkit. Since Chimera extensions are also written in
Python, they can extend the user interface using the same mechanism. Any
extension that requires user input will need to present a GUI. This example
assumes that the reader is familiar with Tkinter and does not describe the Tkinter-
specific code in detail.

The code below demonstrates how to change the display mode of protein backbone
to a user-selected representation. The graphical window renders atoms and bonds
according to their drawMode attribute. Thus, all that the example code in the main
package, __init__.py, does is to change the attribute values of backbone atoms and
bonds. The example code in the graphical user interface submodule, gui.py, adds a
button to the Chimera toolbar. When the user clicks the toolbar button, the window
below is displayed.

The user can select the desired display representation for atoms and bonds using
the option menus, and then set the backbone atom and bond representations by
clicking the Apply button.

Example ExtensionUI/__init__.py

Import the standard modules used in this example.
import re

Import the Chimera modules used in this example.
import chimera

Define a regular expression for matching the names of protein backbone atoms (we

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (1 of 8) [6/4/13 4:18:11 PM]

http://www.pythonware.com/library/
http://www.scriptics.com/

Extension-Specific User Interface

do not include the carbonyl oxygens because they tend to clutter up the graphics
display without adding much information).
MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

Define mainchain function for setting the display representation of protein
backbone atoms and bonds. See Molecular Editing for a more detailed example on
changing molecular attributes.
def mainchain(atomMode, bondMode):

for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
if MAINCHAIN.match(a.name):

a.drawMode = atomMode
for b in m.bonds:

ends = b.atoms
if MAINCHAIN.match(ends[0].name) \
and MAINCHAIN.match(ends[1].name):

b.drawMode = bondMode

Example ExtensionUI/gui.py

Import the standard modules used by this example.
import os
import Tkinter

Import the Chimera modules and classes used by this example.
import chimera
from chimera.baseDialog import ModelessDialog

Import the package for which the graphical user interface is designed. In this case,
the package is named ExtensionUI.
import ExtensionUI

Define two module variables: atomMode and bondMode are Tk variables that keep
track of the last selected display representations. These variables are initialized to
be None, and are set to usable values when the GUI is created.
atomMode = None
bondMode = None

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (2 of 8) [6/4/13 4:18:11 PM]

Extension-Specific User Interface

Define two dictionaries that map string names into Chimera enumerated constant
values. The two variables atomMode and bondMode keep track of the
representations as strings because they are displayed directly in the user interface.
However, the mainchain function in the main package expects Chimera constants
as its arguments. The dictionaries atomModeMap and bondModeMap provides the
translation from string to enumerated constants.
atomModeMap = {

'Dot': chimera.Atom.Dot,
'Sphere': chimera.Atom.Sphere,
'EndCap': chimera.Atom.EndCap,
'Ball': chimera.Atom.Ball

}
bondModeMap = {

'Wire': chimera.Bond.Wire,
'Stick': chimera.Bond.Stick

}

Chimera offers two base classes to somewhat simplify the task of creating user
interfaces: ModalDialog and ModelessDialog. The former is designed for situations
when information or response is required of the user immediately; the dialog stays
in front of other Chimera windows until dismissed and prevents input from going
to other Chimera windows. The latter dialog type is designed for "ongoing"
interfaces; it allows input focus to go to other windows, and other windows can
obscure it.

Here we declare a class that derives from ModelessDialog and customize it for the
specific needs of this extension.
class MainchainDialog(ModelessDialog):

Chimera dialogs can either be named or nameless. Named dialogs are
displayed using the display(name) function of the chimera.dialogs module.
The name that should be used as an argument to the display function is
given by the class variable name. Using a named dialog is appropriate when it
might be desirable to invoke the dialog from other extensions or from
Chimera itself.

A nameless dialog is intended for use only in the extension that defines the

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (3 of 8) [6/4/13 4:18:11 PM]

Extension-Specific User Interface

dialog. A nameless dialog is typically created and displayed by calling its
constructor. Once created, a nameless dialog can be redisplayed (if it was
withdrawn by clicking its Cancel button for example) by calling its enter()
method.

For demonstration purposes, we use a named dialog here. A nameless dialog
is used in the Color and Color Wells example.
name = "extension ui"

The buttons displayed at the bottom of the dialog are given in the class
variable buttons. For modeless dialogs, a help button will automatically be
added to the button list (the help button will be grayed out if no help
information is provided). For buttons other than Help, clicking on them will
invoke a class method of the same name.

Both dialog base classes provide appropriate methods for Close, so we won't
provide a Close method in this subclass. The ModelessDialog base class also
provides a stub method for Apply, but we will override it with our own Apply
method later in the class definition.
buttons = ("Apply", "Close")

A help file or URL can be specified with the help class variable. A URL would
be specified as a string (typically starting with "http://..."). A file would be
specified as a 2-tuple of file name followed by a package. The file would then
be looked for in the helpdir subdirectory of the package. A dialog of
Chimera itself (rather than of an imported package) might only give a
filename as the class help variable. That file would be looked for in /usr/local/
chimera/share/chimera/helpdir.
help = ("ExtensionUI.html", ExtensionUI)

The title displayed in the dialog window's title bar is set via the class variable
title.
title = "Set Backbone Representation"

Both ModelessDialog and ModalDialog, in their __init__ functions, set up the
standard parts of the dialog interface (top-level window, bottom-row
buttons, etc.) and then call a function named fillInUI so that the subclass
can fill in the parts of the interface specific to the dialog. As an argument to
the function, a Tkinter Frame is provided that should be the parent to the
subclass-provided interface elements.
def fillInUI(self, parent):

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (4 of 8) [6/4/13 4:18:11 PM]

Extension-Specific User Interface

Declare that, in fillInUI, the names atomMode and bondMode refer to
the global variables defined above.
global atomMode, bondMode

Create and initialize atomMode and bondMode, the two global Tk string
variables that keep track of the currently selected display
representation.
atomMode = Tkinter.StringVar(parent)
atomMode.set('Dot')
bondMode = Tkinter.StringVar(parent)
bondMode.set('Wire')

Create the label and option menu for selecting atom display
representation. First create the label Atom Representation and place
it on the left-hand side of the top row in the GUI window.
atomLabel = Tkinter.Label(parent, text='Atom
Representation')
atomLabel.grid(column=0, row=0)

Create the menu button and the option menu that it brings up.
atomButton = Tkinter.Menubutton(parent, indicatoron=1,

textvariable=atomMode, width=6,
relief=Tkinter.RAISED, borderwidth=2)

atomButton.grid(column=1, row=0)
atomMenu = Tkinter.Menu(atomButton, tearoff=0)

Add radio buttons for all possible choices to the menu. The list of
choices is obtained from the keys of the string-to-enumeration
dictionary, and the radio button for each choice is programmed to
update the atomMode variable when selected.
for mode in atomModeMap.keys():

atomMenu.add_radiobutton(label=mode,
variable=atomMode, value=mode)

Assigns the option menu to the menu button.
atomButton['menu'] = atomMenu

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (5 of 8) [6/4/13 4:18:11 PM]

Extension-Specific User Interface

The lines below do the same thing for bond representation as the lines
above do for atom representation.
bondLabel = Tkinter.Label(parent, text='Bond
Representation')
bondLabel.grid(column=0, row=1)
bondButton = Tkinter.Menubutton(parent, indicatoron=1,

textvariable=bondMode, width=6,
relief=Tkinter.RAISED, borderwidth=2)

bondButton.grid(column=1, row=1)
bondMenu = Tkinter.Menu(bondButton, tearoff=0)
for mode in bondModeMap.keys():

bondMenu.add_radiobutton(label=mode,
variable=bondMode, value=mode)

bondButton['menu'] = bondMenu

Define the method that is invoked when the Apply button is clicked. The
function simply converts the currently selected representations from strings
to enumerated constants, using the atomModeMap and bondModeMap
dictionaries, and invokes the main package function mainchain.
def Apply(self):

ExtensionUI.mainchain(atomModeMap[atomMode.get()],
bondModeMap[bondMode.get()])

Now we register the above dialog with Chimera, so that it may be invoked via the
display(name) method of the chimera.dialogs module. Here the class itself is
registered, but since it is a named dialog deriving from ModalDialog/
ModelessDialog, the instance will automatically reregister itself when first created.
This allows the dialogs.find() function to return the instance instead of the
class.
chimera.dialogs.register(MainchainDialog.name, MainchainDialog)

Create the Chimera toolbar button that displays the dialog when pressed. Note that
since the package is not normally searched for icons, we have to prepend the path
of this package to the icon's file name.
dir, file = os.path.split(__file__)
icon = os.path.join(dir, 'ExtensionUI.tiff')
chimera.tkgui.app.toolbar.add(icon, lambda d=chimera.dialogs.
display, n=MainchainDialog.name: d(n), 'Set Main Chain
Representation', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (6 of 8) [6/4/13 4:18:11 PM]

Extension-Specific User Interface

Code Notes

The example above requires the user to first select the desired representation, then
apply the selection to the protein backbone. An alternative interface style is to
apply user selections immediately. The appropriate choice of style depends on the
extension application. The reason for choosing the "Apply" style for this example is
that the user is expected to change both atom and bond representations, and there
is no need to edit and display intermediate representations.

If your extension brings up several instances of the same dialog, one per data set (e.
g. one Multalign Viewer dialog for each sequence alignment file), then you should
register each dialog with the extension manager so that the user can raise a
particular dialog instance should it get buried behind other windows. You do this
by calling chimera.extension.manager.registerInstance(self) in either your
__init__ or fillInUI methods and deregister by calling chimera.extension.
manager.deregisterInstance(self) in your destroy method (don't forget to
call the parent class destroy() from your destroy().

The ratio of 13 lines of functionality code to 34 lines of user interface code is fairly
typical. Doing things is easy; figuring out what a user wants to do, that's hard.

For extensions based on the ModalDialog class, a different approach is typically
used. The dialog is not registered (no call to chimera.dialogs.register). The
function associated with the toolbar icon (the second argument to chimera.tkgui.
app.toolbar.add) creates the modal dialog, calls the dialog's run() method, and
uses that method's return value as appropriate (None is returned by a user-initiated
Cancel of the dialog). When writing dialog methods, the return value is kept in the
self.returnValue attribute of the dialog. The dialog is destroyed when the
toolbar function runs out of scope.

Running the Example

The example code files and toolbar icon must be saved in a directory named
ExtensionUI. To run the example, start chimera, bring up the Tools preference
category (via the Preferences entry in the Favorites menu; then choosing the
"Tools" preference category) and use the Add button to add the directory above the
ExtensionUI directory. Then type the following command into the IDLE command
line:

import ExtensionUI.gui

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (7 of 8) [6/4/13 4:18:11 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/ExtensionUI.tiff
http://www.rbvi.ucsf.edu/chimera/1.8/docs/ContributedSoftware/idle/idle.html

Extension-Specific User Interface

This should display a button on the Chimera toolbar. Clicking the button should
bring up a window similar to the one shown above.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ExtensionUI.html (8 of 8) [6/4/13 4:18:11 PM]

Colors and Color Wells

Colors and Color Wells
The color editor and color wells used in Chimera are not Chimera-specific interface
components. They handle colors as simple red/green/blue/alpha tuples, whereas
Chimera color objects have additional attributes (such as shininess). Since
translating between the two representations of colors would be tedious, a
ColorOption class is provided that encapsulates the use of a color well so that the
programmer need only deal with Chimera color objects.

The example below demonstrates how to display a color well, and how to update
the color of protein backbone atoms when the color of the well changes. The code
in the graphical user interface submodule, gui.py, adds a button to the Chimera
toolbar. When the user clicks the toolbar button, a window containing a color well
is displayed. When the user changes the color in the well, the color of protein
backbone atoms changes to match.

Example ColorWellUI/__init__.py

This code is analogous to the code found in the "__init__.py" modules in the
Packaging an Extension and Extension-Specific User Interface examples. See
Molecular Editing for a more detailed example on changing molecular attributes.
Note that the mainchain function is expecting a color object as its argument
(because the color is used to set an atomic attribute).
import chimera
import re

MAINCHAIN = re.compile("^(N|CA|C)$", re.I)
def mainchain(color):

for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
if MAINCHAIN.match(a.name):

a.color = color

Example ColorWellUI/gui.py

Import the standard Python modules used by the example code.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ColorWellUI.html (1 of 6) [6/4/13 4:18:15 PM]

Colors and Color Wells

import os
import Tkinter

Import the additional modules and classes needed. The ColorOption class
facilitates interoperation between Chimera colors and color wells (which use rgba
colors).
import chimera
from chimera.baseDialog import ModelessDialog
from chimera.tkoptions import ColorOption
import ColorWellUI

class ColorWellDialog(ModelessDialog):

ColorWellDialog is a "nameless" dialog. See the Extension-Specific User
Interface example for a more detailed explanation of Chimera dialogs.

Set the title bar of the dialog to display Set Backbone Color.
title = 'Set Backbone Color'

def fillInUI(self, master):

Create a ColorOption instance. The ColorOption will contain a
descriptive label and a color well. The arguments to the ColorOption
constructor are:

-
master widget

-
row number to use when griding the ColorOption into the
master widget. The default column is 0. The tkoptions
module contains other options besides ColorOption (e.g.
StringOption), which are generally intended to be put in
vertical lists, and therefore a row number is specified in the
constructor. In this example we are only using one option
however.

-
option label. This will be positioned to the left of the color
well and a ":" will be appended.

-
The default value for this option.

-
A callback function to call when the option is set by the user

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ColorWellUI.html (2 of 6) [6/4/13 4:18:15 PM]

Colors and Color Wells

(e.g. a color dragged to the well, or the well color edited in
the color editor)

-
An optional ballon-help message

coloropt = ColorOption(master, 0, 'Backbone Color', None,
self._setBackboneColor, balloon='Protein backbone color')

Call _updateBackboneColor to make the color displayed in the color
well reflect the current color of protein backbone atoms. While not
strictly necessary, keeping the color in the well consistent with the color
in the molecules enhances the extension usability.
self._updateBackboneColor(coloropt)

Define _updateBackboneColor, which is used to make the color of a well
reflect the color of protein backbone atoms.
def _updateBackboneColor(self, coloroption):

Loop through all atoms in all molecules, looking for protein backbone
atoms. When one is found, its color is compared against the last color
seen, theColor. The first time this comparison is made, theColor
does not exist yet and a NameError exception is raised; this exception
is caught, and theColor is assigned the color of the atom. All
subsequent times, the comparison between atom color and theColor
should work as expected. If the two colors are different, the color well
is set to show that multiple colors are present and execution returns to
the caller. If the two colors are the same, the next atom is examined. If
only one color is found among all protein backbone atoms (or zero if no
molecules are present), then execution continues.
for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
if ColorWellUI.MAINCHAIN.match(a.name):

try:
if a.color != theColor:

coloroption.setMultiple()
return

except NameError:
theColor = a.color

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ColorWellUI.html (3 of 6) [6/4/13 4:18:15 PM]

Colors and Color Wells

Set the color of the well to match theColor. There are two possible
cases:

1
theColor is not set (because there are no molecules),

2
theColor is None or a color object.

The set function will not result in a callback to _setBackboneColor.
try:

Handle case 2. Set the color well to the proper color
coloroption.set(theColor)

except NameError:

Handle case 1. Set the color well to show that no color is present
coloroption.set(None)

Define _setBackboneColor, which is invoked each time the color in the well
changes. When called by the ColorOption, _setBackboneColor receives a
single argument coloropt, which is the ColorOption instance.
def _setBackboneColor(self, coloroption):

Call the mainchain function in the main package, with the color object
corresponding to the color well color as its argument (which will be
None if No Color is the current selection in the well), to set the color of
backbone atoms.
ColorWellUI.mainchain(coloroption.get())

Define the module variable dialog, which keeps track of the dialog window
containing the color well. It is initialized to None, and is assigned a usable value
when the dialog is created.
dialog = None

Define showColorWellUI, which is invoked when the Chimera toolbar button is
pressed.
def showColorWellUI():

Declare that the name dialog refers to the global variable defined above.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ColorWellUI.html (4 of 6) [6/4/13 4:18:15 PM]

Colors and Color Wells

global dialog

Check whether the dialog has already been created. If so, the dialog window
is displayed by calling it's enter() function, and then the rest of the function
is skipped by returning.
if dialog is not None:

dialog.enter()
return

Otherwise, create the dialog.
dialog = ColorWellDialog()

Create the Chimera toolbar button that invokes the showColorWellUI
dir, file = os.path.split(__file__)
icon = os.path.join(dir, 'ColorWellUI.tiff')
chimera.tkgui.app.toolbar.add(icon, showColorWellUI, 'Set Main
Chain Color', None)

Code Notes

This example registers a callback with the color well, so that any color change in
the well results in the colors of protein backbone atoms being updated. An
alternative style interface, similar to the one used in Extension-Specific User
Interface, may be used by not registering the callback and adding an Apply button,
which would invoke a function that fetches the color from the well and calls
_setBackboneColor. For this example, since only one atomic attribute is being
set, the immediate feedback seems more appropriate.

Note that there was no explicit mention of the color panel. Invocation of and
interaction with the color panel is handled automatically by the color well.

The _updateBackboneColor function is used to synchronize the color displayed in
the well with the color of the atoms. However, if the color of the atoms are altered
through another agency (e.g., a different extension), then the well color and
backbone color no longer match. The Trigger Notifications example shows how to
keep the well color up-to-date.

Running the Example

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ColorWellUI.html (5 of 6) [6/4/13 4:18:15 PM]

Colors and Color Wells

The example code files must be saved in a directory named ColorWellUI. To run
the example, start chimera, bring up the Tools preference category (via the
Preferences entry in the Favorites menu; then choosing the "Tools" preference
category) and use the Add button to add the directory above the ColorWellUI
directory. Then type the following command into the IDLE command line:

import ColorWellUI.gui

This should display a button on the Chimera toolbar. Clicking the button should
bring up a window with a color well inside. The color well may be used to
manipulate the color of all protein backbone atoms.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_ColorWellUI.html (6 of 6) [6/4/13 4:18:15 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ContributedSoftware/idle/idle.html

Trigger Notifications

Trigger Notifications
An extension often needs to respond to changes in data caused by other
extensions. For instance, in the Colors and Color Wells example, a color well is
used to control the color of protein backbone atoms; if another extension (e.g.,
Midas emulator) changes the color of some backbone atoms, the color in the well
should change accordingly as well

Chimera provides the trigger mechanism for notifying interested parties of
spontaneous changes in data. A trigger is an object which monitors changes for a
set of data; an extension can register a handler to be invoked whenever the trigger
detects data modification. A standard set of triggers is defined in chimera.
triggers. In particular, there are triggers for objects of common classes; e.g.,
there is a trigger monitoring all Atom objects. Thus, tracking changes of standard
objects is very straightforward. Besides standard object triggers, there are a few
other triggers of general interest:

selection changed
This trigger fires whenever the selection in the main graphics window is
changed. Functions in chimera.selection are used to query and manipulate
the selection.

chimera.APPQUIT
This trigger fires when Chimera is quitting.

chimera.MOTION_START
One or more models have started moving.

chimera.MOTION_STOP
All models have stopped moving for at least a second. Useful for starting
heavy-weight calculations/updates based on model positioning.

chimera.CLOSE_SESSION
The user has selected the Close Session menu item.

Also, chimera.openModels maintains two triggers that fire when models are added
to or removed from the list of open models. To register for these triggers use the
chimera.openModels.addAddHandler and chimera.openModels.
addRemoveHandler functions respectively. They each expect two arguments: a
callback function and user data. They return a handler ID. The callback function will
be invoked with two arguments: the added/removed models and the provided user
data. You can deregister from these triggers with chimera.openModels.
deleteAddHandler and chimera.openModels.deleteRemoveHandler
respectively. These latter two functions expect the handler ID as an argument.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (1 of 7) [6/4/13 4:18:16 PM]

Trigger Notifications

The example below derives from the code in Colors and Color Wells, and the code
description assumes that the reader is familiar with that code. While the Colors and
Color Wells code only synchronizes the color well with backbone atom colors when
the graphical user interface is first created, the example below registers a handler
with the Atom trigger and updates the color well whenever a backbone atom is
changed. Note that changes in atom data may have nothing to do with colors; the
Atom trigger invokes registered handlers whenever any change is made. However, it
is computationally cheaper to recompute the well color on any change than to keep
track of atom colors and only update the well color on color changes.

Example AtomTrigger/__init__.py

This file is identical to the ColorWellUI/__init__.py in the Colors and Color Wells
example.
import chimera
import re

MAINCHAIN = re.compile("^(N|CA|C)$", re.I)
def mainchain(color):

for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
if MAINCHAIN.match(a.name):

a.color = color

Example AtomTrigger/gui.py

The code here is very similar to the code in Colors and Color Wells and only
differences from that code will be described.

import os
import Tkinter

import chimera
from chimera.baseDialog import ModelessDialog
from chimera.tkoptions import ColorOption
import ColorWellUI

class ColorWellDialog(ModelessDialog):

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (2 of 7) [6/4/13 4:18:16 PM]

Trigger Notifications

title = 'Set Backbone Color'

Need to override __init__ to initialize our extra state.
def __init__(self, *args, **kw):

Whereas in the Colors and Color Wells example coloropt was a local
variable, here the coloropt variable is stored in the instance because
the trigger handler (which has access to the instance) needs to update
the color well contained in the ColorOption. A new variable, handlerId,
is created to keep track of whether a handler is currently registered.
The handler is only created when needed. See map and unmap below.
(Note that the instance variables must be set before calling the base
__init__ method since the dialog may be mapped during initialization,
depending on which window system is used.)
self.colorOpt = None
self.handlerId = None

Call the parent-class __init__.
apply(ModelessDialog.__init__, (self,) + args, kw)

def fillInUI(self, master):

Save ColorOption in instance.
self.coloropt = ColorOption(master, 0, 'Backbone Color',
None, self._setBackboneColor, balloon='Protein backbone
color')

self._updateBackboneColor()

def _updateBackboneColor(self):

for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
if ColorWellUI.MAINCHAIN.match(a.name):

try:
if a.color != theColor:

self.coloropt.setMultiple()
return

except NameError:
theColor = a.color

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (3 of 7) [6/4/13 4:18:16 PM]

Trigger Notifications

try:

self.coloropt.set(theColor)
except NameError:

self.coloropt.set(None)

def _setBackboneColor(self, coloroption):

ColorWellUI.mainchain(coloroption.get())

Register a trigger handler to monitor changes in the backbone atom list when
we're make visible. We ignore the event argument.
def map(self, *ignore):

Synchronize with well color.
self._updateBackboneColor()

If no handler is currently registered, register one.
if self.handlerId is None:

Registration occurs when the chimera.triggers object is
requested to add a handler. Registration requires three
arguments:

-
the name of the trigger,

-
the handler function to be invoked when the trigger
fires, and

-
an additional argument to be passed to the handler
function when it is invoked.

In this case, the trigger name is the same as the name of the class
of objects being monitored, "Atom". The handler function is
_handler, defined below. And the additional argument is empty
(None) -- it could have been the ColorOption instance (coloropt)
but that is accessible via the instance. The return value from the
registration is a unique handler identifier for the handler/
argument combination. This identifier is required for
deregistering the handler.

The handler function is always invoked by the trigger with three

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (4 of 7) [6/4/13 4:18:16 PM]

Trigger Notifications

arguments:

-
the name of the trigger,

-
the additional argument passed in at registration
time, and

-
an instance with three attributes
-

created: set of created objects
-

deleted: set of deleted objects
-

modified: set of modified objects

Note that with a newly opened model, objects will just appear in
both the created set and not in the modified set, even though
the newly created objects will normally have various of their
default attributes modified by later code sections.
self.handlerId = chimera.triggers.addHandler('Atom',
self._handler, None)

The _handler function is the trigger handler invoked when attributes of Atom
instances change.
def _handler(self, trigger, additional, atomChanges):

Check through modified atoms for backbone atoms.
for a in atomChanges.modified:

If any of the changed atoms is a backbone atom, call
_updateBackboneColor to synchronize the well color with
backbone atom colors.
if ColorWellUI.MAINCHAIN.match(a.name):

self._updateBackboneColor()
return

unmap is called when the dialog disappears. We ignore the event argument.
def unmap(self, *ignore):

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (5 of 7) [6/4/13 4:18:16 PM]

Trigger Notifications

Check whether a handler is currently registered (i.e., the handler
identifier, handlerId, is not None) and deregister it if necessary.
if self.handlerId is not None:

Deregistration requires two arguments: the name of the trigger
and the unique handler identifier returned by the registration call.
chimera.triggers.deleteHandler('Atom', self.handlerId)

Set the unique handler identifier to None to indicate that no
handler is currently registered.
self.handlerId = None

Define the module variable dialog, which tracks the dialog instance. It is initialized
to None, and is assigned a usable value when the dialog is created.
dialog = None

Define showColorWellUI, which is invoked when the Chimera toolbar button is
pressed.
def showColorWellUI():

global dialog
if dialog is not None:

dialog.enter()
return

dialog = ColorWellDialog()

dir, file = os.path.split(__file__)
icon = os.path.join(dir, 'AtomTrigger.tiff')
chimera.tkgui.app.toolbar.add(icon, showColorWellUI, 'Set Main
Chain Color', None)

Code Notes

Monitoring changes in atoms can result in many handler invocations. In an attempt
to reduce computation, the example above deregisters its handler when the user
interface is not being displayed.

Running the Example

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (6 of 7) [6/4/13 4:18:16 PM]

Trigger Notifications

The example code files must be saved in a directory named AtomTrigger. To run
the example, start chimera, bring up the Tools preference category (via the
Preferences entry in the Favorites menu; then choosing the "Tools" preference
category) and use the Add button to add the directory above the AtomTrigger
directory. Then type the following command into the IDLE command line:

import AtomTrigger.gui

This should display a button on the Chimera toolbar. Clicking the button should
bring up a window with a color well inside. The color well may be used to
manipulate the color of all protein backbone atoms. Changing atom colors through
another mechanism, e.g., the Midas emulator, should result in appropriate color
changes in the color well.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_AtomTrigger.html (7 of 7) [6/4/13 4:18:16 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ContributedSoftware/idle/idle.html

Selections

Selections
The Selection class (and its subclasses) is used to manage collections of items
derived from class Selectable. Molecules, Residues, Atoms, and Bonds are all
derived from Selectable. The examples given will use these common Selectables for
simplicity, but one should keep in mind that classes such as Model and
PseudoBond are also Selectables and can be managed with Selections.

An important thing to understand is that a Selection is not necessarily a fixed set of
Selectables. It may encapsulate an algorithm for choosing particular Selectables.
For example, a Selection may be used to hold "all bonds/atoms in aromatic rings in
all models". This Selection, when its contents are queried, would return differing
results as models are opened/closed.

Every Selectable has an associated selection level:

● SelGraph (e.g.Molecule)
● SelSubgraph (e.g.Residue)
● SelVertex (e.g.Atom)
● SelEdge (e.g.Bond)

Any Selectable's selection level is returned by its oslLevel() member function.

Selections typically only explicitly hold vertices and edges. Higher-level
Selectables' (graphs/subgraphs) membership in a Selection is computed from
member vertices/edges. Selection methods that enumerate graphs can do so based
on that graph's vertices/edges either being completely or partially present in the
selection, as desired. Inclusion of graphs that have no vertex or edge sub-
components (such as VRML models) is explicity tracked in a selection.

Since a Selection may encapsulate an algorithm for choosing Selectables, or instead
may hold a specific set of Selectables, there is no method in the class Selection for
specifying the items held in the Selection. Therefore, Selection is only used as a
base class and all actual selections use subclasses. The basic subclasses Chimera
defines in chimera.selection are the following:

ItemizedSelection: holds a fixed set of Selectables. However, Selectables will be
deleted from the selection when the model(s) containing those Selectables are
closed. Therefore, sometimes it is convenient to use an ItemizedSelection to track
atoms, etc., just to avoid having to write trigger-handling code yourself.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_Selections.html (1 of 4) [6/4/13 4:18:17 PM]

Selections

OrderedSelection: subclass of ItemizedSelection. Used in the infrequent case
where the ordering of the Selectables is important (e.g. structure matching).
Ordering is only maintained relative to Selectables at the same selection level.

OSLSelection: holds Selectables based on an OSL string. "OSL" stands for Object
Selection Language, and a rundown of OSL syntax can be found here. Whenever
Selectables are requested from an OSLSelection, the OSL string will be re-evaluated
to obtain the matching Selectables. Therefore, if the string contains an attribute
test, it may return different Selectables at different times.

CodeSelection: uses a Python code string to determine what is selected. The code
is expected to apply functions (provided as local variables) to selected objects.

In addition to these classes, chimera.selection has many functions for
manipulating the current selection shown in the Chimera graphics display. help
(chimera.selection) in the IDLE shell will display information about them.

The code below demonstrates how to use a selection to hold the atoms/bonds of
the protein mainchain, and then highlight them in the main Chimera graphics
window.

Example BackboneSel/__init__.py

Import the standard modules used in this example.
import re

Import the Chimera modules used in this example.
import chimera
from chimera import selection

Define a function that will select protein backbone atoms in the main Chimera
graphics window
def selBackbone(op=None):

Define a regular expression for matching the names of protein backbone
atoms (we do not include the carbonyl oxygens because they tend to clutter
up the graphics display without adding much information).
MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_Selections.html (2 of 4) [6/4/13 4:18:17 PM]

Selections

The list method of chimera.openModels will return a list of currently open
models, and takes several optional keyword arguments to restrict this list to
models matching certain criteria. When called with no arguments, this
method will return a list of all visible models, essentially models that were
created by the user. Internally managed (hidden) models, such as the
distance monitor pseudobondgroup, do not show up in this list. A list of
hidden models can be obtained by setting the optional keyword argument
hidden to True. The all argument (True/False) can be used to return a list of
all open models (including both hidden and visible). Other optional
arguments include:

id and subid, which restrict the returned list to models with the given id and
subid, respectively, while modelTypes (a list of model types, i.e. [chimera.
Molecule]) will restrict the returned list to models of a particular type.
bbAtoms = []
for m in chimera.openModels.list(modelTypes=[chimera.
Molecule]):

for a in m.atoms:
if MAINCHAIN.match(a.name):

bbAtoms.append(a)

Create a selection instance that we can use to hold the protein backbone
atoms. We could have added the atoms one by one to the selection while we
were in the above loop, but it is more efficient to add items in bulk to
selections if possible.
backboneSel = selection.ItemizedSelection()
backboneSel.add(bbAtoms)

Add the connecting bonds to the selection. The addImplied method of
Selection adds bonds if both bond endpoint atoms are in the selection, and
adds atoms if any of the atom's bonds are in the selection. We use that
method here to add the connecting bonds.
backboneSel.addImplied()

Change the selection in the main Chimera window in the manner indicated by
this function's op keyword argument. If op is None, then use whatever
method is indicated by the Selection Mode item in Chimera's Select menu.
Otherwise, op should be one of: selection.REPLACE, selection.
INTERSECT, selection.EXTEND or selection.REMOVE.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_Selections.html (3 of 4) [6/4/13 4:18:17 PM]

Selections

-
REPLACE causes the Chimera selection to be replaced with
backboneSel.

-
INTERSECT causes the Chimera selecion to be intersected with
backboneSel.

-
EXTEND causes backboneSel to be appended to the Chimera
selection.

-
REMOVE causes backboneSel to be unselected in the Chimera
window.

if op is None:

chimera.tkgui.selectionOperation(backboneSel)
else:

selection.mergeCurrent(op, backboneSel)

Code Notes

See the Registering Selectors example for how to make the "selBackbone" function
available from the Chimera Select menu.

Running the Example

The example code files must be saved in a directory named BackboneSel. To run
the example, start chimera, bring up the Tools preference category (via the
Preferences entry in the Favorites menu; then choosing the "Tools" preference
category) and use the Add button to add the directory above the BackboneSel
directory. Then type the following command into the IDLE command line:

import BackboneSel

BackboneSel.selBackbone()

This will cause the selection state of all protein backbone atoms to change,
depending on the Selection Mode chosen in the Chimera Select menu. If the mode
is the default ("replace"), then the protein backbone will become selected and all
other atoms/bonds will become deselected.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_Selections.html (4 of 4) [6/4/13 4:18:17 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ContributedSoftware/idle/idle.html

Session Saving Example

Saving Extension State in a Session File
This example shows how an extension can save its state in a Chimera session file. A
session file is Python code that is executed by Chimera to restore the state information.
The SimpleSession module saves the core Chimera state such as opened molecules and the
camera settings. It then invokes a SAVE_SESSION trigger that extensions can receive to save
their state.

Example SessionSaveExample.py

The code below saves state variables "some_path" and "some_number" in a session file
when the Save Session menu entry is used.

some_path = '/home/smith/tralala.data'
some_number = 3

def restoreState(path, number):
 global some_path, some_number
 some_path = path
 some_number = number

def saveSession(trigger, x, file):
 restoring_code = \
"""
def restoreSessionSaveExample():
 import SessionSaveExample
 SessionSaveExample.restoreState(%s,%s)
try:
 restoreSessionSaveExample()
except:
 reportRestoreError('Error restoring SessionSaveExample')
"""
 state = (repr(some_path), repr(some_number))
 file.write(restoring_code % state)

import chimera
import SimpleSession
chimera.triggers.addHandler(SimpleSession.SAVE_SESSION, saveSession, None)

The last line registers the saveSession routine to be called when the SAVE_SESSION trigger
is invoked. This happens when the user saves the session from the Chimera file menu. The
saveSession routine writes Python code to the session file that will restore the state of the
some_path and some_number global variables.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_SessionSave.html (1 of 5) [6/4/13 4:18:18 PM]

Session Saving Example

Large Data Structures

If you need to save data structures whose repr() would be hundreds or thousands of
characters long, you should use SimpleSession's sesRepr() function instead which will
insert newlines periodically. The resulting session has a better chance of being user-
editable and passing through various mailer programs without corruption.

Session File Format

Here is the code written to the session file by the above example.

def restoreSessionSaveExample():
 import SessionSaveExample
 SessionSaveExample.restoreState('/home/smith/tralala.data','3')
try:
 restoreSessionSaveExample()
except:
 reportRestoreError('Error restoring SessionSaveExample')

Code written by other extensions will appear before and after this code. The
restoreSessionSaveExample function is defined to keep extra names out of the global
namespace of the session file. This is to avoid name conflicts. The
restoreSessionSaveExample routine is called within a try statement so that if an error
occurs it won't prevent code later in the session file from being called. The
reportRestoreError routine is defined at the top of the session file by SimpleSession.

Saving Complex Data

The SessionUtil module helps writing and reading the state data for extensions that have
alot of state. It can convert class instances to dictionaries so they can be written to a file.
This is similar to the standard Python pickle module but provides better human readable
formatted output. It can handle a tree of data structures. Look at the ScaleBar extension
code to see how to use SessionUtil.

Restoring References to Molecular Data

You can save references to molecules, residues, atom, bonds, pseudobonds, VRML models,
and MSMS surfaces by calling SimpleSession's sessionID() function with the item to save
as the only argument. The repr() of the return value can then be written into the session
file. During the restore, the written session ID value should be given to SimpleSession's
idLookup() function, which will return the corresponding molecular data item.

Custom Molecular Attributes

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_SessionSave.html (2 of 5) [6/4/13 4:18:18 PM]

Session Saving Example

If you add non-standard attributes to Molecules/Residues/Bonds/Atoms that you want
preserved in restored sessions, use SimpleSession's registerAttribute() function, e.g,:

 import chimera
 from SimpleSession import registerAttribute
 registerAttribute(chimera.Molecule, "qsarVal")

Note that the Define Attribute tool automatically does this registration, so it's only
attributes that you add directly from your own Python code that need to be registered as
above. Also, only attributes whose values are recoverable from their repr() can be saved
by this mechanism, so values that are C++ types (Atoms, MaterialColors, etc.) could not be
preserved this way.

Restoring and Referring to Special Models

Non-molecular models cannot be located with the sessionID()/ idLookup() mechanism.
Instead, SimpleSession has a modelMap dictionary that can be used to map between a id/
subid tuple for a saved model and the actual restored model. So, during a session save, you
would get the tuple to save from a model with code like:

 refToSave = (model.id, model.subid)

The values in modelMap are actually lists of models with those particular id/subid values,
since multiple models may have the same id/subid (e.g. a molecule and its surface). So if
you are restoring a special model and want to update modelMap, you would use code like
this:

 import SimpleSession
 SimpleSession.modelMap.setdefault(refToSave, []).append(restoredModel)

Keep in mind that the id/subid of the saved model may not be the same as the restored
model, particularly if sessions are being merged. The key used by modelMap is always the
id/subid of the saved model.

If you are trying to refer to a non-molecular model using modelMap, and that non-
molecular model is of class X, you would use code like this:

 import SimpleSession
 restoredModel = filter(lambda m: isinstance(m, X), SimpleSession.modelMap
[refToSave])[0]

Session Merging

If you are restoring your own models, you should try to restore them into their original ids/
subids if possible so that scripts and so forth will continue to work across session saves. In

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_SessionSave.html (3 of 5) [6/4/13 4:18:18 PM]

Session Saving Example

the case of sessions being merged, this of course could be problematic. SimpleSession has
a variable modelOffset (i.e. SimpleSession.modelOffset) which should be added to your
model's id to avoid conflicts during session merges. modelOffset is zero during a non-
merging session restore.

Special Molecular/VRML Models

Some extensions may create their own Molecule or VRML instances that need to be restored
by the extension itself rather than by the automatic save/restore for Molecules/VRML
provided by SimpleSession. In order to prevent SimpleSession from attempting to save the
instance, use the noAutoRestore() function once the instance has been created, like this:

 import SimpleSession
 SimpleSession.noAutoRestore(instance)

Your extension is responsible for restoring all aspects of the instance, including selection
state.

Post-Model Restore

If restoring code should be called only after all models have been restored then the
SimpleSession.registerAfterModelsCB routine should be used.

 def afterModelsRestoredCB(arg):
 # do some state restoration now that models have been created

 import SimpleSession
 SimpleSession.registerAfterModelsCB(afterModelsRestoredCB, arg)

The 'arg' can be omitted in both the registration and callback functions.

Saving Colors

Similar to sessionID for molecular data, there is colorID function that returns a value
whose repr() can be saved into a session file. During a restore, that value can be given to
SimpleSession's getColor function to get a Color object back.

Closing a Session

The Close Session entry in the Chimera file menu is meant to reset the state of Chimera,
unloading all currently loaded data. Extensions can reset their state when the session is
closed by handling the CLOSE_SESSION trigger as illustrated below.

def closeSession(trigger, a1, a2):

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_SessionSave.html (4 of 5) [6/4/13 4:18:18 PM]

Session Saving Example

 default_path = '/default/path'
 default_number = 1
 restoreState(default_path, default_number)

import chimera
chimera.triggers.addHandler(chimera.CLOSE_SESSION, closeSession, None)

Changing Behavior During a Session Restore

If an extension needs to behave differently during a session restore than at other times (e.
g. react differently to newly opened models), then it can register for the
BEGIN_RESTORE_SESSION and END_RESTORE_SESSION triggers, in an analogous manner to
the CLOSE_SESSION trigger in the preceding section.

Running the Example

To try the example, save the above sections of code shown in red as file
SessionSaveExample.py. Use the Chimera Favorites/Preferences/Tools/Locations interface
to add the directory where you have placed the file to the extension search path. Show the
Python shell window using the Tools/Programming/IDLE menu entry and type the following
command.

>>> import SessionSaveExample

Now save the session with the File/Save Session As... menu entry and take a look at the
session file in an editor. You should be able to find the restoreSessionSaveExample code in
the file. The current value of the some_path variable can be inspected as follows.

>>> SessionSaveExample.some_path
'/home/smith/tralala.data'

Now close the session with the File/Close Session menu entry and see that the some_path
variable has been reset to the default value.

>>> SessionSaveExample.some_path
'/default/path'

Now reload the session with the File/Open Session menu entry and see that the some_path
variable has been restored.

>>> SessionSaveExample.some_path
'/home/smith/tralala.data'

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...rammersGuide/Examples/Main_SessionSave.html (5 of 5) [6/4/13 4:18:18 PM]

Atomic Measurements Example

Measure Atomic-Level Quantities
This example shows how to measure atomic-level (rather than volumetric) quantities
such and angles, RMSDs, surface areas, and so forth.

Atomic Coordinates in Chimera

The first concept to understand is that when models are moved in Chimera, the atomic
coordinates are not changed. Instead, a "transformation" matrix is updated that
transforms the model's original coordinates into "world" coordinates (i.e. into the
overall coordinate system). Consequently, there are two methods for obtaining a
coordinate from a chimera.Atom object: coord(), which returns the Atom's original
coordinate, and xformCoord(), which returns the transformed coordinate. Note that
some structure-editing activities in Chimera will change the original coordinates (e.g.
changing a torsion angle).

Therefore, if you are measuring quantities that might involve multiple models, you
should use the xformCoord() method. If your measurements are completely intra-
model you can instead use the very slightly faster coord() method.

Getting Atoms, Bonds, Residues

The "Chimera's Object Model" example discusses how to access various Chimera
objects in detail, but here's an executive summary for the tl;dr crowd:

Getting a list of open chimera.Molecule models

from chimera import OpenModels, Molecule
mols = OpenModels.list(modelTypes=[Molecule])

Getting lists of chimera.Atoms/Bonds/Residues from a chimera.
Molecule object

The Atoms/Bonds/Residues in a chimera.Molecule object are contained in that object's
atoms/bonds/residues attributes, respectively.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_AtomMeasure.html (1 of 5) [6/4/13 4:18:18 PM]

http://www.urbandictionary.com/define.php?term=tl%3Bdr

Atomic Measurements Example

Getting Atoms/Bonds/Residues from the current selection

To get the Atoms/Bonds/Residues in the current selection (perhaps set by the user or
earlier in the code via the runCommand() function), use the currentAtoms/
currentBonds/currentResidues functions in the chimera.selection module, e.g.:

from chimera.selection import currentAtoms
sel_atoms = currentAtoms()

Getting Atoms/Bonds/Residues/Molecules from related Atoms/Bonds/
Residues

Here are some import methods/attributes for accessing Atoms/Bonds/Residues related
to other Atoms/Bonds/Residues:

Atom.neighbors
Atom.primaryNeighbors()

Returns a list of the Atoms bonded to the given Atom. Some high-resolution
structures can have multiple positions for a single atom, and in those cases
primaryNeighbors() will only return one Atom among those positions whereas
neighbors will return all of them.

Atom.bonds
Atom.primaryBonds()

Returns a list of the Bonds the Atom is involved in. primaryBonds() is
analogous to Atom.primaryNeighbors().

Atom.bondsMap
Returns a dictionary whose keys are Atoms the given Atom is bonded to, and the
values are the corresponding Bonds.

Atom.residue
Returns the Residue the Atom is in.

Atom.molecule
Returns the Molecule model the Atom is in.

Bond.atoms
Returns a list of the two Atoms forming the Bond.

Residue.atoms
Returns a list of the Atoms in the Residue.

Residue.atomsMap
Returns a dictionary whose keys are atom names. The values are lists of Atoms
with the corresponding name. The values are lists because in some structure
formats (e.g. Mol2, XYZ) small molecules atoms are not given unique names (for
example, all carbons are named "C"). Also, PDB files where an atom has alternate
locations will produce multiple Atoms with the same name in a Residue.

Residue.molecule
Returns the Molecule model the Residue is in.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_AtomMeasure.html (2 of 5) [6/4/13 4:18:18 PM]

Atomic Measurements Example

Point objects

Both the Atom.coord() and Atom.xformCoord() methods return chimera.Point
objects. Point objects have the following built-in measurement methods:

Point.distance(Point)
Returns the distance in angstroms between the two Points.

Point.sqdistance(Point)
Returns the square of the distance in angstroms between the two Points. Taking
square roots is slow, so this method is faster than the distance() method.
Therefore in code where speed is important, when possible you should work with
squares of distances rather than the distances themselves (e.g. when comparing a
distance to a cutoff value, compare the squares instead [and make sure to only
compute the square of the cutoff once!]).

Basic Measurement Functions

The chimera module offers several basic measurement functions:

chimera.distance(Point, Point)
chimera.sqdistance(Point, Point)

Returns the distance (or distance squared) in angstroms between the two Points.
Functionally identical to Point.distance(Point) and Point.sqdistance(Point) methods
respectively.

chimera.angle(Point, Point, Point)
Returns the angle in degrees formed by the points. The angle value ranges from -
180 to 180.

chimera.dihedral(Point, Point, Point, Point)
Returns the dihedral angle in degrees formed by the points. The angle value
ranges from -180 to 180. Note that Residues have phi, psi, and chi1 through
chi4 attributes that can be queried for the corresponding values (value will be
None if the Residue lacks that kind of angle). In fact, those attributes can be set
and the structure will be adjusted appropriately!

Here's a simple code snippet for finding the angle between three atoms (a1, a2, a3) that
may not all be in the same model (and therefore need to have the xformCoord()
method used to fetch their coordinates):

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_AtomMeasure.html (3 of 5) [6/4/13 4:18:18 PM]

Atomic Measurements Example

import chimera
angle = chimera.angle(a1.xformCoord(), a2.xformCoord(), a3.xformCoord())

Alternatively, if the three atoms are in a list (atoms), you can use slightly fancier Python:

import chimera
angle = chimera.angle(*[a.xformCoord() for a in atoms])

Axes, Planes, Centroids

Preliminaries

The centroid, axis, and plane functions described below utilize chimera.Point,
chimera.Vector, and chimera.Plane objects for some of their return values. A chimera.
Point object, described previously, abstracts a point in Cartesian 3-space. A chimera.
Vector objects abstracts a direction vector in 3-space with finite length (i.e. it is not
infinite and has an associated length). A chimera.Plane object abstracts an infinite plane
in 3-space. Each of these objects has useful member functions that you can learn about
by using the help Python function in the IDLE tool (e.g. help(chimera.Plane)). For
instance, if p is a Plane and pt is a Point, then p.distance(pt) is the distance from the
Point pt to the Plane p.

The axis and plane functions take an n-by-3 numpy array as one of their input
arguments. The easiest way to generate such an array from Atom coordinates is to use
the numpyArrayFromAtoms function from the chimera module (i.e. chimera.
numpyArrayFromAtoms(Atoms) or, if transformed coordinates are required, chimera.
numpyArrayFromAtoms(Atoms, xformed=True)).

The Functions

The StructMeasure module has three convenient functions for finding the best-fitting
axis, centroid, or plane through a set of points. They are:

StructMeasure.centroid(points, weights=None)
Returns a chimera.Point object. points is a sequence of chimera.Point objects.
weights is an optional sequence of corresponding numeric weights to give those
Points when computing the centroid. weights is most frequently used when mass
weighting is desired. To that end, it is useful to know that the mass of atom a is
given by a.element.mass.

StructMeasure.axis(xyzs, findBounds=False, findRadius=False, iterate=True,
weights=None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_AtomMeasure.html (4 of 5) [6/4/13 4:18:18 PM]

Atomic Measurements Example

Returns a chimera.Point and chimera.Vector. The Point is the center of the axis,
and the Vector indicates the direction of the axis (and is of unit length). As
discussed in Preliminaries, xyzs is an n-by-3 numpy array. If findBounds is
True, two floating point numbers are appended to the return values, indicating
the scaling values needed for the Vector to reach the approximate end of the axis
given the input coordinates. One of the scaling values will be negative. If
findRadius is True, a floating point number, indicating the approximate radius
of the axis given the input coordinates, will be appended to the return values. If
iterate is True, the best-fitting axis as determined by principal-component
analysis will be iteratively tweaked to try to get the axis as equidistant as possible
from the points determining the axis. For helical sets of atoms, the principal-
component axis will tend to tilt towards the final atoms of the helix. The tilt is
more pronounced the shorter the helix, and iterate attempts to correct the tilt.
weights is the same as in the centroid function.

StructMeasure.plane(xyzs, findBounds=False)
Returns a chimera.Plane whose origin is the centroid of xyzs. As discussed in
Preliminaries, xyzs is an n-by-3 numpy array. If findBounds is True, a Point,
which represents the furthest xyz from the origin when projected onto the Plane,
is appended to the return value.

Surface Areas

Once a surface has been computed for a model, all Atoms and Residues of that model
will have an areaSAS attribute (solvent accessible surface area) and an areaSES
attribute (solvent excluded surface area). One possible way to get a surface computed
for a model is to call the surface command via the runCommand() function.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/...ammersGuide/Examples/Main_AtomMeasure.html (5 of 5) [6/4/13 4:18:18 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/surface.html

Creating Molecules

Creating Molecules
Molecules may be created using only Python code. The following example shows
how to create a single water molecule.

Example CreateMolecule.py

Function createWater creates a water molecule.
def createWater():

Import the object that tracks open models and several classes from the
chimera module.
from chimera import openModels, Molecule, Element, Coord

Create an instance of a Molecule
m = Molecule()

Molecule contains residues. For our example, we will create a single residue
of HOH. The four arguments are: the residue type, chain identifier, sequence
number and insertion code. Note that a residue is created as part of a
particular molecule.
r = m.newResidue("HOH", " ", 1, " ")

Now we create the atoms. The newAtom function arguments are the atom
name and its element type, which must be an instance of Element. You can
create an Element instance from either its name or atomic number.
atomO = m.newAtom("O", Element("O"))
atomH1 = m.newAtom("H1", Element(1))
atomH2 = m.newAtom("H2", Element("H"))

Set the coordinates for the atoms so that they can be displayed.
from math import radians, sin, cos
bondLength = 0.95718
angle = radians(104.474)
atomO.setCoord(Coord(0, 0, 0))
atomH1.setCoord(Coord(bondLength, 0, 0))
atomH2.setCoord(Coord(bondLength * cos(angle), bondLength * sin
(angle), 0))

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mersGuide/Examples/Main_CreateMolecule.html (1 of 2) [6/4/13 4:18:19 PM]

Creating Molecules

Next, we add the atoms into the residue.
r.addAtom(atomO)
r.addAtom(atomH1)
r.addAtom(atomH2)

Next, we create the bonds between the atoms.
m.newBond(atomO, atomH1)
m.newBond(atomO, atomH2)

Finally, we add the new molecule into the list of open models.
openModels.add([m])

Call the function to create a water molecule.
createWater()

Code Notes

If multiple water molecules were needed, they should probably be created as
multiple residues (with different sequence numbers) in the same molecule.

Running the Example

You can execute the example code by downloading the linked Python script and
opening it with the File→Open menu item or with the open command. Note that
the .py extension is required for the open dialog/command to recognize that the
file is a Python script.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mersGuide/Examples/Main_CreateMolecule.html (2 of 2) [6/4/13 4:18:19 PM]

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/opensave.html#opendialog
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/open.html

Running a Background Process

Running a Background Process
Chimera may be used in conjunction with command line programs, e.g., Modeller,
by creating the required input files, executing the program, and importing the
generated results, e.g., as attributes of molecules.

Example RunSubprocess.py

Class CountAtoms assigns two attributes, "numAtoms" and "numHetatms", to a
molecule by exporting the molecule as a PDB file and running the "grep" program
twice. The "grep" invocations are run in the background so that Chimera stays
interactive while they execute.
class CountAtoms:

The constructor sets up a temporary file for the PDB output, and a Chimera
task instance for showing progress to the user.
def __init__(self, m, grepPath):

Generate a temporary file name for PDB file. We use Chimera's
osTemporaryFile function because it automatically deletes the file
when Chimera exits.
import OpenSave
self.pdbFile = OpenSave.osTemporaryFile(suffix=".pdb",
prefix="rg")
self.outFile = OpenSave.osTemporaryFile(suffix=".out",
prefix="rg")

Write molecule in to temporary file in PDB format.
self.molecule = m
import Midas
Midas.write([m], None, self.pdbFile)

Set up a task instance for showing user our status.
from chimera import tasks
self.task = tasks.Task("atom count for %s" % m.name, self.
cancelCB)

Start by counting the ATOM records first.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_RunSubprocess.html (1 of 5) [6/4/13 4:18:20 PM]

http://www.salilab.org/modeller/

Running a Background Process

self.countAtoms()

cancelCB is called when user cancels via the task panel
def cancelCB(self):

self.molecule = None

countAtoms uses "grep" to count the number of ATOM records.
def countAtoms(self):

from chimera import SubprocessMonitor as SM
self.outF = open(self.outFile, "w")
self.subproc = SM.Popen([grepPath, "-c", "^ATOM", self.
pdbFile], stdout=self.outF)
SM.monitor("count ATOMs", self.subproc, task=self.task,
afterCB=self._countAtomsCB)

_countAtomsCB is the callback invoked when the subprocess started by
countAtoms completes.
def _countAtomsCB(self, aborted):

Always close the open file created earlier
self.outF.close()

If user canceled the task, do not continue processing.
if aborted or self.molecule is None:

self.finished()
return

Make sure the process exited normally.
if self.subproc.returncode != 0 and self.subproc.
returncode != 1:

self.task.updateStatus("ATOM count failed")
self.finished()
return

Process exited normally, so the count is in the output file. The error
checking code (in case the output is not a number) is omitted to keep

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_RunSubprocess.html (2 of 5) [6/4/13 4:18:20 PM]

Running a Background Process

this example simple.
f = open(self.outFile)
data = f.read()
f.close()
self.molecule.numAtoms = int(data)

Start counting the HETATM records
self.countHetatms()

countHetatms uses "grep" to count the number of HETATM records.
def countHetatms(self):

from chimera import SubprocessMonitor as SM
self.outF = open(self.outFile, "w")
self.subproc = SM.Popen([grepPath, "-c", "^HETATM", self.
pdbFile], stdout=self.outF)
SM.monitor("count HETATMs", self.subproc, task=self.task,
afterCB=self._countHetatmsCB)

_countHetatmsCB is the callback invoked when the subprocess started by
countHetatms completes.
def _countHetatmsCB(self, aborted):

Always close the open file created earlier
self.outF.close()

If user canceled the task, do not continue processing.
if aborted or self.molecule is None:

self.finished()
return

Make sure the process exited normally.
if self.subproc.returncode != 0 and self.subproc.
returncode != 1:

self.task.updateStatus("HETATM count failed")
self.finished()
return

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_RunSubprocess.html (3 of 5) [6/4/13 4:18:20 PM]

Running a Background Process

Process exited normally, so the count is in the output file. The error
checking code (in case the output is not a number) is omitted to keep
this example simple.
f = open(self.outFile)
data = f.read()
f.close()
self.molecule.numHetatms = int(data)

No more processing needs to be done.
self.finished()

finished is called to clean house.
def finished(self):

Temporary files will be removed when Chimera exits, but may be
removed here to minimize their lifetime on disk. The task instance must
be notified so that it is labeled completed in the task panel.
self.task.finished()

Set instance variables to None to release references.
self.task = None
self.molecule = None
self.subproc = None

Below is the main program. First, we find the path to the "grep" program. Then, we
run CountAtoms for each molecule.
from CGLutil import findExecutable
grepPath = findExecutable.findExecutable("grep")
if grepPath is None:

from chimera import NonChimeraError
raise NonChimeraError("Cannot find path to grep")

Add "numAtoms" and "numHetatms" attributes to all open molecules.
import chimera
from chimera import Molecule
for m in chimera.openModels.list(modelTypes=[Molecule]):

CountAtoms(m, grepPath)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_RunSubprocess.html (4 of 5) [6/4/13 4:18:20 PM]

Running a Background Process

Running the Example

You can execute the example code by downloading the linked Python script and
opening it with the File→Open menu item or with the open command. Note that
the .py extension is required for the open dialog/command to recognize that the
file is a Python script.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/P...mmersGuide/Examples/Main_RunSubprocess.html (5 of 5) [6/4/13 4:18:20 PM]

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/opensave.html#opendialog
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/open.html

C/C++ Extension Example

Writing a C/C++ Chimera Extension
Caveat

The header files declaring Molecules, Residues, etc., are available for download.
This allows C/C++ extensions to work with molecular data classes, but not add
methods and/or data to those classes. The support for inserting methods and data
into molecular classes will be made available some time later in the Chimera
"developer" release.

What you can do now

Basically, you write an extension conforming to Python's normal C/C++ API. Once
you have a compiled shared library, put it in Chimera's lib subdirectory and you will
then be able to import it and use its functions from your Python code.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_C_Extension.html [6/4/13 4:18:20 PM]

http://www.python.org/doc/current/ext/ext.html

Chimera Menu/Widget Text Guidelines

Chimera Menu/Widget Text Guidelines
I. Goals

● to promote consistent text usage in Chimera's user interfaces
● to provide guidelines for developers and programmers
● to promote awareness and discussion

II. Font

The default font type and size should be used.

III. Menus

IIIa. General Scheme

Primary (one word, noun or verb, capitalized)
 Secondary (words capitalized as in a title)
 tertiary or lower (numeral or lowercase,
 except proper nouns)

Proper nouns include atom types, elements, and extension (tool) names.

Examples:

Select
 Chemistry
 element
 other
 Fe-Hg
 Fe
 (etc.)
 Residue
 amino acid category
 aliphatic
 (etc.)
 Selection Mode (replace)
 append

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/guidelines.html (1 of 4) [6/4/13 4:18:21 PM]

Chimera Menu/Widget Text Guidelines

 (etc.)
Actions
 Atoms/Bonds
 wire width
 1
 (etc.)
 Ribbon
 show
 (etc.)
Tools
 Utilities
 Browser Configuration
 (etc.)

IIIb. Usage of Ellipses

The ellipsis string "..." should indicate a menu item that opens an additional
interface which requires user input to accomplish the function described by its
name (one-shot panels, as opposed to those intended to be left up for a series of
user interactions). For now, Tools are exempted from this guideline.

We decided that "..." should not indicate a menu item which simply opens an
additional interface, since practically all items would then require it.

There also needs to be consistency in whether "..." is preceded by a space; we
recommend no space.

Finally, should "..." appear on buttons as well as menu items? If so, the same
criteria should apply.

IV. Widgets (GUIs)

This is the broadest grouping, and thus less amenable to standardization. It
includes panels and dialog boxes generated by built-in functions as well as
extensions to Chimera. General recommendations:

● Title of Widget
- one or more words to appear on the top bar, capitalized as a title, no colon
or period at the end; should be the same text as the invoking menu item or
button (except sans any "...")

● Brief Header for a section

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/guidelines.html (2 of 4) [6/4/13 4:18:21 PM]

Chimera Menu/Widget Text Guidelines

- capitalized as a title, optional colon at the end (but no colon when sections
are treated as "index cards")

● Longer description of a section
- first word capitalized, subsequent words not capitalized unless proper
nouns or acronyms; optional colon at the end, no period

● Instructive statement
- first word capitalized, subsequent words not capitalized unless proper
nouns or acronyms; no period
Example:
Ctrl-click on histogram to add or delete thresholds in the Volume Viewer
Display panel

● [box] Description next to a checkbox
- first word capitalized, subsequent words not capitalized unless proper
nouns or acronyms; no period or question mark

�❍ exception: when the checkbox indicates a section to be expanded/
compacted, the text may be capitalized as a title (instead of only the
first word being capitalized).

● Item name: [blank, color well, slider, pulldown menu or checkbox list]
or (especially if there are many of these in the widget)
item name: [blank, color well, slider, pulldown menu or checkbox list]
- first word of item name optionally capitalized, subsequent words not
capitalized unless proper nouns or acronyms; colon separating the item name
from the value(s); options in a pulldown menu or checkbox list not
capitalized unless proper nouns or acronyms

�❍ exception: when the item name and pulldown option together describe
a section, both should be capitalized and the colon is optional
Examples:
Inspect [Atom/etc.] in the Selection Inspector
Category: [New Molecules/etc.] in the Preferences Tool

● Phrase with [blank, color well, pulldown menu, or checkbox list]
embedded
- first word capitalized, no colon, period or question mark; the blank (etc.)
should not start the phrase

● Phrase with [button] embedded
- 1-2 words actually on the button, others trailing and/or preceding; the first
word should be capitalized whether or not on the button; no colon, period or
question mark; the button may start the phrase

● buttons marked OK, Apply, Cancel, Help
- common but optional

● widget-specific buttons
- 1-2 words, each capitalized if the button brings up another panel, at least
the first word capitalized otherwise; if another panel is evoked, consider

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/guidelines.html (3 of 4) [6/4/13 4:18:21 PM]

Chimera Menu/Widget Text Guidelines

using "..."

UCSF Computer Graphics Laboratory / November 2004

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/guidelines.html (4 of 4) [6/4/13 4:18:21 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py

Import Chimera modules used in this example.
import chimera

First, we'll open up a model to work with. This molecule (4fun) is very small,
comprised of just a couple residues, but it is perfect for illustrating
some important components of Chimera's object model.
For more information on how to open/close models in Chimera, see the
"Basic Model Manipulation" Example in the Programmer's Guide (coming soon). For now,
just understand that this code opens up any molecules stored in the file
"4fun.pdb" and returns a list of references to opened models.
(Put 4fun.pdb on your desktop or change the path in the command below.)
#
.. "4fun.pdb" 4fun.pdb
opened = chimera.openModels.open('~/Desktop/4fun.pdb')

Because only one molecule was opened, 'opened' is a list with just one element.
Get a reference to that element (which is a 'Molecule'
instance) and store it in 'mol'
mol = opened[0]

Now that we have a molecule to work with, an excellent way of examining its data structures is to flatten it out and write
it to a file. We'll write this file in the 'mol2' format, a free-format ascii file that describes molecular structure.
It is not necessary to have any prior knowledge of the 'mol2' format to understand this example, just a basic
comprehension of file formats that use coordinate data. Check out the "finished product".
It should serve as a good reference while you're going through the example.
Get a reference to a file to write to:
#
.. "finished product" 4fun.mol2
f = open("4fun.mol2", 'w')

mol2 uses a series of Record Type Indicators (RTI), that indicate the type of structure that will be described in
the following lines.
An RTI is simply an ASCII string which starts with an asterisk ('@'), followed by a string of characters,
and is terminated by a new line.
Here, we define some RTI's that we will use througout the file to describe the various parts of our model:

MOLECULE_HEADER = "@<TRIPOS>MOLECULE"
ATOM_HEADER = "@<TRIPOS>ATOM"
BOND_HEADER = "@<TRIPOS>BOND"
SUBSTR_HEADER = "@<TRIPOS>SUBSTRUCTURE"

The 'chimera2sybyl' dictionary is used to map Chimera atom types
to Sybyl atom types. See section below on writing out per-atom
information.
chimera2sybyl = {
 'C3' : 'C.3', 'C2' : 'C.2', 'Car' : 'C.ar', 'Cac' : 'C.2',
 'C1' : 'C.1', 'N3+' : 'N.4', 'N3' : 'N.3', 'N2' : 'N.2',
 'Npl' : 'N.pl3', 'Ng+' : 'N.pl3', 'Ntr' : 'N.2', 'Nox' : 'N.4',
 'N1+' : 'N.1', 'N1' : 'N.1', 'O3' : 'O.3', 'O2' : 'O.2',

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py (1 of 5) [6/4/13 4:18:22 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py

 'Oar' : 'O.2', 'O3-' : 'O.co2', 'O2-' : 'O.co2', 'S3+' : 'S.3',
 'S3' : 'S.3', 'S2' : 'S.2', 'Sac' : 'S.O2', 'Son' : 'S.O2',
 'Sxd' : 'S.O', 'Pac' : 'P.3', 'Pox' : 'P.3', 'P3+' : 'P.3',
 'HC' : 'H', 'H' : 'H', 'DC' : 'H', 'D' : 'H',
 'P' : 'P.3', 'S' : 'S.3', 'Sar' : 'S.2', 'N2+' : 'N.2'
}

Writing Out per-Molecule Information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
The "<TRIPOS>MOLECULE" RTI indicates that the next couple of lines will contain information relevant
to the molecule as a whole. First, write out the Record Type Indicator (RTI):
f.write("%s\n" % MOLECULE_HEADER)

The next line contains the name of the molecule. This can be accessed through the 'mol.name' attribute.
(Remember, 'mol' is a reference to the molecule we opened). If the model you open came from a pdb file, 'name' will most
often be the name of the file (without the '.pdb' extension). For this example, 'mol.name' is "4fun".
f.write("%s\n" % mol.name)

Next, we need to write out the number of atoms, number of bonds, and number of substructures in the model (substructures
can be several different things; for the sake of simplicity, the only substructures we'll worry about here are residues).
This data is accessible through attributes of a molecule object: 'mol.atoms', 'mol.bonds', and 'mol.residues' all contain
lists of their respective components. We can determine how many atoms, bonds, or residues this
molecule has by taking the 'len' of the appropriate list.
save the list of references to all the atoms in 'mol':
ATOM_LIST = mol.atoms
save the list of references to all the bonds in 'mol':
BOND_LIST = mol.bonds
save the list of references to all the residues in 'mol':
RES_LIST = mol.residues

f.write("%d %d %d\n" % (len(ATOM_LIST), len(BOND_LIST), len(RES_LIST)))

type of molecule
f.write("PROTEIN\n")

indicate that no charge-related information is available
f.write("NO_CHARGES\n")

f.write("\n\n")

Writing Out per-Atom Information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
Next, write out atom-related information. In order to indicate this, we must first write out the
atom RTI:
f.write("%s\n" % ATOM_HEADER)

Each line under the 'ATOM' RTI consists of information pertaining to a single atom. The following information about each
atom is required: an arbitrary atom id number, atom name, x coordinate, y coordinate, z coordinate, atom type, id of the
substructure to which the atom belongs , name of the substructure to which the atom belongs.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py (2 of 5) [6/4/13 4:18:22 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py

You can look at each atom in the molecule by looping through its 'atoms' attribute.
Remember, 'ATOM_LIST' is the list of atoms stored in 'mol.atoms.' It's more efficient
to get the list once, and assign it to a variable, then to repeatedly ask for 'mol.atoms'.
for atom in ATOM_LIST:
 # Now that we have a reference to an atom, we can write out all the necessary information to the file.
 # The first field is an arbitrary id number. We'll just use that atom's index within the 'mol.atoms' list.
 f.write("%d " % ATOM_LIST.index(atom))

 # Next, we need the name of the atom, which is accessible via the 'name' attribute.
 f.write("%s " % atom.name)

 # Now for the x, y, and z coordinate data.
 # Get the atom's 'xformCoord' object. This is essentially a wrapper that holds information about the
 # coordinate position (x,y,z) of that atom. 'xformCoord.x', 'xformCoord.y', and 'xformCoord.z' store the x, y,
 # and z coordinates,
 # respectively, as floating point integers. This information comes from the coordinates given for each atom
 # specification in the input file
 coord = atom.xformCoord()
 f.write("%g %g %g " % (coord.x, coord.y, coord.z))

 # The next field in this atom entry is the atom type. This is a string which stores information about the
 # chemical properties of the atom. It is accessible through the 'idatmType' attribute of an atom object.
 # Because Chimera uses slightly different atom types than SYBYL (the modeling program for which .mol2 is the primary
 # input format), use a dictionary called chimera2sybyl (defined above) that converts Chimera's atom types to
 # the corresponding SYBYL version of the atom's type.
 f.write("%s " % chimera2sybyl[atom.idatmType])

 # The last two fields in an atom entry pertain to any substructures to which the atom may belong.
 # As previously noted, we are only interested in residues for this example.
 # Every atom object has a 'residue' attribute, which is a reference to the residue to which that atom belongs.
 res = atom.residue

 # Here, we'll use 'res.id' for the substructure id field. 'res.id' is a string which represents a unique id
 # for that residue (a string representation of a number, i.e. "1" , which are sequential, for all the
 # residues in a molecule).
 f.write("%s " % res.id)

 # The last field to write is substructure name. Here, we'll use the 'type' attribute of 'res'. the 'type' attribute contains
 # a string representation of the residue type (e.g. "HIS", "PHE", "SER"...). Concatenate onto this the residue's 'id'
 # to make a unique name for this substructure (because it is possible, and probable, to have more than one
 # "HIS" residue in a molecule. This way, the substructure name will be "HIS6" or "HIS28")
 f.write("%s%s\n" % (res.type, res.id))

f.write("\n\n")

Writing Out per-Bond Information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
Now for the bonds. The bond RTI says that the following lines will contain information about bonds.
f.write("%s\n" % BOND_HEADER)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py (3 of 5) [6/4/13 4:18:22 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py

Each line after the bond RTI contains information about one bond in the molecule.
As noted earlier, you can access all the bonds in a molecule through the 'bonds' attribute,
which contains a list of bonds.
for bond in BOND_LIST:

 # each bond object has an 'atoms' attribute, which is list of length 2, where each item in the list is
 # a reference to one of the atoms to which the bond connects.
 a1, a2 = bond.atoms

 # The first field in a mol2 bond entry is an arbitrary bond id. Once again, we'll just use that
 # bond's index in the 'mol.bonds' list
 f.write("%d " % BOND_LIST.index(bond))

 # The next two fields are the ids of the atoms which the bond connects. Since we have a reference to both these
 # atoms (stored in 'a1' and 'a2'), we can just get the index of those objects in the 'mol.atoms' list:
 f.write("%s %s " % (ATOM_LIST.index(a1), ATOM_LIST.index(a2)))

 # The last field in this bond entry is the bond order. Chimera doesn't currently calcuate bond orders,
 # but for our educational purposes here, this won't be a problem.
 # The mol2 format expects bond order as a string: "1" (first-order), "2" (second-order), etc., so
 # just write out "1" here (even though this may not be correct).
 f.write("1\n")

f.write("\n\n")

Writing Out per-Residue Information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
Almost done!!! The last section contains information about the substructures (i.e. residues for this example)
You know the drill:
f.write("%s\n" % SUBSTR_HEADER)

We've already covered some of these items (see above):
for res in RES_LIST:
 # residue id field
 f.write("%s " % res.id)

 # residue name field
 f.write("%s%s " % (res.type, res.id))

 # the next field specifies the id of the root atom of the substructure. For the case of residues,
 # we'll use the alpha-carbon as the root.
 # Each residue has an 'atomsMap' attribute which is a dictionary. The keys in this dictionary are
 # atom names (e.g. 'C', 'N', 'CA'), and the values are lists of references to atoms in the residue that have that
 # name. So, to get the alpha-carbon of this residue:
 alpha_carbon = res.atomsMap['CA'][0]

 # and get the id of 'alpha_carbon' from the 'mol.atoms' list
 f.write("%d " % ATOM_LIST.index(alpha_carbon))

 # The final field of this substructure entry is a string which specifies what type of substructure it is:

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py (4 of 5) [6/4/13 4:18:22 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py

 f.write("RESIDUE\n")

f.write("\n\n")
f.close()

And that's it! Don't worry if you didn't quite understand all the ins and outs of the mol2 file format.
The purpose of this exercise was to familiarize yourself with Chimera's object model; writing out a mol2 file
was just a convenient way to do that. The important thing was to gain an understanding of how Chimera's atoms,
bonds, residues, and molecules all fit together.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py (5 of 5) [6/4/13 4:18:22 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2

@<TRIPOS>MOLECULE
4fun.pdb
47 48 6
PROTEIN
NO_CHARGES

@<TRIPOS>ATOM
0 N 49.668 24.248 10.436 N.4 1 HIS1
1 CA 50.197 25.578 10.784 C.3 1 HIS1
2 C 49.169 26.701 10.917 C.2 1 HIS1
3 O 48.241 26.524 11.749 O.2 1 HIS1
4 CB 51.312 26.048 9.843 C.3 1 HIS1
5 CG 50.958 26.068 8.34 C.ar 1 HIS1
6 ND1 49.636 26.144 7.86 N.pl3 1 HIS1
7 CD2 51.797 26.043 7.286 C.ar 1 HIS1
8 CE1 49.691 26.152 6.454 C.ar 1 HIS1
9 NE2 51.046 26.09 6.098 N.pl3 1 HIS1
10 N 49.788 27.85 10.784 N.pl3 2 SER2
11 CA 49.138 29.147 10.62 C.3 2 SER2
12 C 47.713 29.006 10.11 C.2 2 SER2
13 O 46.74 29.251 10.864 O.2 2 SER2
14 CB 49.875 29.93 9.569 C.3 2 SER2
15 OG 49.145 31.057 9.176 O.3 2 SER2
16 N 47.62 28.367 8.973 N.pl3 3 GLN3
17 CA 46.287 28.193 8.308 C.3 3 GLN3
18 C 45.406 27.172 8.963 C.2 3 GLN3
19 O 44.198 27.508 9.014 O.2 3 GLN3
20 CB 46.489 27.963 6.806 C.3 3 GLN3
21 CG 45.138 27.8 6.111 C.3 3 GLN3
22 CD 45.304 27.952 4.603 C.2 3 GLN3
23 OE1 46.432 28.202 4.112 O.2 3 GLN3
24 NE2 44.233 27.647 3.897 N.pl3 3 GLN3
25 N 46.014 26.394 9.871 N.pl3 4 GLY4
26 CA 45.422 25.287 10.68 C.3 4 GLY4
27 C 43.892 25.215 10.719 C.2 4 GLY4
28 O 43.287 26.155 11.288 O.2 4 GLY4
29 N 43.406 23.993 10.767 N.pl3 5 THR5
30 CA 42.004 23.642 10.443 C.3 5 THR5
31 C 40.788 24.146 11.252 C.2 5 THR5
32 O 39.804 23.384 11.41 O.2 5 THR5
33 CB 41.934 22.202 9.889 C.3 5 THR5

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2 (1 of 3) [6/4/13 4:18:22 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2

34 OG1 41.08 21.317 10.609 O.3 5 THR5
35 CG2 43.317 21.556 9.849 C.3 5 THR5
36 N 40.628 25.463 11.441 N.pl3 6 PHE6
37 CA 39.381 25.95 12.104 C.3 6 PHE6
38 C 38.156 25.684 11.232 C.2 6 PHE6
39 O 37.231 25.002 11.719 O.2 6 PHE6
40 CB 39.407 27.425 12.584 C.3 6 PHE6
41 CG 38.187 27.923 13.43 C.ar 6 PHE6
42 CD1 36.889 27.518 13.163 C.ar 6 PHE6
43 CD2 38.386 28.862 14.419 C.ar 6 PHE6
44 CE1 35.813 27.967 13.909 C.ar 6 PHE6
45 CE2 37.306 29.328 15.177 C.ar 6 PHE6
46 CZ 36.019 28.871 14.928 C.ar 6 PHE6

@<TRIPOS>BOND
0 2 3 SINGLE
1 2 1 SINGLE
2 1 0 SINGLE
3 1 4 SINGLE
4 4 5 SINGLE
5 7 9 SINGLE
6 7 5 SINGLE
7 8 9 SINGLE
8 8 6 SINGLE
9 5 6 SINGLE
10 12 11 SINGLE
11 12 13 SINGLE
12 11 14 SINGLE
13 11 10 SINGLE
14 14 15 SINGLE
15 2 10 SINGLE
16 18 17 SINGLE
17 18 19 SINGLE
18 17 20 SINGLE
19 17 16 SINGLE
20 20 21 SINGLE
21 22 21 SINGLE
22 22 23 SINGLE
23 22 24 SINGLE
24 12 16 SINGLE
25 27 26 SINGLE
26 27 28 SINGLE

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2 (2 of 3) [6/4/13 4:18:23 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2

27 26 25 SINGLE
28 18 25 SINGLE
29 31 30 SINGLE
30 31 32 SINGLE
31 30 33 SINGLE
32 30 29 SINGLE
33 33 35 SINGLE
34 33 34 SINGLE
35 27 29 SINGLE
36 38 39 SINGLE
37 38 37 SINGLE
38 37 36 SINGLE
39 37 40 SINGLE
40 40 41 SINGLE
41 42 44 SINGLE
42 42 41 SINGLE
43 43 45 SINGLE
44 43 41 SINGLE
45 44 46 SINGLE
46 45 46 SINGLE
47 31 36 SINGLE

@<TRIPOS>SUBSTRUCTURE
1 HIS1 1 RESIDUE
2 SER2 11 RESIDUE
3 GLN3 17 RESIDUE
4 GLY4 26 RESIDUE
5 THR5 30 RESIDUE
6 PHE6 37 RESIDUE

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2 (3 of 3) [6/4/13 4:18:23 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py

import chimera

open up a molecule to work with:
opened = chimera.openModels.open('3fx2', type="PDB")
mol = opened[0]

Molecule Display Properties
~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
the 'color' attribute represents the model-level color.
This color can be controlled by the midas command 'modelcolor'.
The 'color' assigned to a newly opened model is determined by a configurable preference (see discussion above).
Programmatically, the model
color can be changed by simply assigning a 'MaterialColor' to 'molecule.color'. Molecules also have a
'display' attribute, where a value of 'True' corresponds to being displayed, and a value of 'False'
means the molecule is not displayed.
So to make sure the molecule is shown (it is by default when first opened):
mol.display = True

To color the molecule red,
get a reference to Chimera's notion of the color red (returns a 'MaterialColor' object)
from chimera.colorTable import getColorByName
red = getColorByName('red')

and assign it to 'mol.color'.
mol.color = red
Note that the model will appear red at this point because all the atoms/bonds/residues
'color' attributes are set to 'None'

Atom Display Properties
~~~~~~~~~~~~~~~~~~~~~~~
#
Each atom in a molecule has its own individual color,
accessible by the 'color' attribute. Upon opening a molecule, each atom's 'color' is set to 'None';
it can be changed by assigning a new 'MaterialColor' to 'atom.color'.
So, if we wanted to color all the alpha-carbon atoms blue, and all the rest yellow,
get references to the colors:
blue = getColorByName('blue')
yellow = getColorByName('yellow')

get a list of all the atoms in the molecule
ATOMS = mol.atoms
for at in ATOMS:
 # check to see if this atom is an alpha-carbon
 if at.name == 'CA':
 at.color = yellow
 else:
 at.color = blue

Now, even though 'mol.color' is set to red, the molecule will appear to be blue and yellow. This is because each individual
atom's 'color' is visible over 'mol.color'.

Like molecules, atoms also have a 'display' attribute that controls whether or not the atom is shown.
While 'atom.display' controls whether the atom can be seen at all, 'atom.drawMode' controls its visual representation.
The value of 'drawMode' can be one of four constants, defined in the 'Atom' class.
Acceptable values for 'drawMode'
are 'chimera.Atom.Dot' (dot representation), 'chimera.Atom.Sphere' (sphere representation),

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py (1 of 3) [6/4/13 4:18:23 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py

'chimera.Atom.EndCap' (endcap representation), or 'chimera.Atom.Ball' (ball representation).
So, to represent all the atoms in the molecule as "balls":
for at in ATOMS:
 at.drawMode = chimera.Atom.Ball

Bond Display Properties
~~~~~~~~~~~~~~~~~~~~~~~
#
Bonds also contain 'color', and 'drawMode' attributes. They serve the same purposes here as they do
in atoms ('color' is the color specific to that bond, and 'drawMode' dictates
how the bond is represented). 'drawMode' for bonds can be either 'chimera.Bond.Wire' (wire representation)
or 'chimera.Bond.Stick' (stick representation).
The 'bond.display' attribute accepts slightly different values than that of other objects.
While other objects' 'display' can be set to either 'False' (not displayed)
or 'True' (displayed), 'bond.display' can be assigned a value of 'chimera.Bond.Never' (same as 'False' - bond is not
displayed), 'chimera.Bond.Always' (same as 'True' - bond is displayed), or 'chimera.Bond.Smart' which means that the
bond will only be
displayed if both the atoms it connects to are displayed. If not, the bond will not be displayed.
The heuristic that determines bond color is also a little more complicated than for atoms.
Bonds have an attribute called 'halfbond'
that determines the source of the bond's color. If 'halfbond' is set to 'True', then the
bond derives its color from the atoms which
it connects, and ignores whatever 'bond.color' is. If both those atoms are the same color (blue, for instance),
then the bond will appear blue. If the bonds atoms are different colors, then each half of the bond will correspond to the color
of the atom on that side. However, if 'bond.halfbond' is set to 'False', then that bond's color
will be be derived from its 'color' attribute, regardless of the 'color's of the atoms which it connects (except in the case
'bond.color' is 'None', the bond will derive its color from one of the atoms to which it connects).
To set each bond's display mode to "smart", represent it as a stick, and turn halfbond mode on,
get a list of all bonds in the molecule
BONDS = mol.bonds
for b in BONDS:
 b.display = chimera.Bond.Smart
 b.drawMode = chimera.Bond.Stick
 b.halfbond = True

Residue Display Properties
~~~~~~~~~~~~~~~~~~~~~~~~~~
#
Residues are not "displayed" in the same manner that atoms and bonds are. When residues are displayed, they are
in the form of ribbons, and the attributes that control the visual details of the residues are named accordingly:
'ribbonDisplay', 'ribbonColor', 'ribbonDrawMode'. The values for 'ribbonDrawMode' can be 'chimera.Residue.Ribbon_2D' (flat ribbon),
'chimera.Residue.Ribbon_Edged' (sharp ribbon), or 'chimera.Residue.Ribbon_Round' (round/smooth ribbon).
If a residue's 'ribbonDisplay' value is set to 'False', it doesn't matter what 'ribbonDrawMode'
is - the ribbon still won't be displayed!
Residues have three attributes that control how the ribbon is drawn. 'isTurn', 'isHelix', and 'isSheet' (same as 'isStrand') are
set to either 'True' or 'False' based on secondary structure information contained in the source file (if available).
For any residue, only one of these can be set to 'True'.
So, to display only the residues which are part of an alpha-helix, as a smooth ribbon,
get a list of all the residues in the molecule
RESIDUES = mol.residues
for r in RESIDUES:
 # only for residues that are part of an alpha-helix
 if r.isHelix:
 r.ribbonDisplay = True
 r.ribbonDrawMode = chimera.Residue.Ribbon_Round

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py (2 of 3) [6/4/13 4:18:23 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py (3 of 3) [6/4/13 4:18:23 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/MolecularEditing.py

Import system modules used in this example.
import re

Import Chimera modules used in this example.
import chimera

Define a regular expression for matching the names of protein
backbone atoms (we do not include the carbonyl oxygens because
they tend to clutter up the graphics display without adding
much information).
MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

Do the actual work of setting the display status of atoms and
bonds. The following 'for' statement iterates over molecules.
The function call
'chimera.openModels.list(modelTypes=[chimera.Molecule])'
returns a list of all open molecules; non-molecular models such
as surfaces and graphics objects will not appear in the list.
The loop variable 'm' refers to each model successively.
for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):

 # The following 'for' statement iterates over atoms. The
 # attribute reference 'm.atoms' returns a list of all atoms
 # in model 'm', in no particular order. The loop variable
 # 'a' refers to each atom successively.
 for a in m.atoms:
 # Set the display status of atom 'a'. First, we match
 # the atom name, 'a.name', against the backbone atom
 # name regular expression, 'MAINCHAIN'. The function
 # call 'MAINCHAIN.match(a.name)' returns an 're.Match'
 # object if the atom name matches the regular expression
 # or 'None' otherwise. The display status of the atom
 # is set to true if there is a match (return value is not
 # 'None') and false otherwise.
 a.display = MAINCHAIN.match(a.name) != None

 # By default, bonds are displayed if and only if both endpoint
 # atoms are displayed, so therefore we don't have to explicitly
 # set bond display modes; they will automatically "work right".

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/MolecularEditing.py [6/4/13 4:18:24 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.py

Function 'mainchain' sets the display status of atoms
and requires no arguments. The body of the function is
identical to the example described in
"Molecular Editing Using Python".
#
.. "Molecular Editing Using Python" MolecularEditing.html
def mainchain():
 # Note that due to a fairly arcane Python behavior, we need to
 # import modules used by a (script) function inside the function itself
 # (the local scope) rather than outside the function (the
 # global scope). This is because Chimera executes scripts in a
 # temporary module so that names defined by the script don't
 # conflict with those in Chimera's main namespace. When the
 # temporary module is deleted, Python sets all names in the
 # module's global namespace to 'None'. Therefore, by the time
 # this function is executed (by the toolbar button callback)
 # any modules imported in the global namespace would have the
 # value 'None' instead of being a module object.

 # The regular expression module, 're', is used for matching atom names.
 import re

 # Import the object that tracks open models and the Molecule
 # class from the 'chimera' module.
 from chimera import openModels, Molecule

 mainChain = re.compile("^(N|CA|C)$", re.I)
 for m in openModels.list(modelTypes=[Molecule]):
 for a in m.atoms:
 a.display = mainChain.match(a.name) != None

Need to import the 'chimera' module to access the function to
add the icon to the toolbar.
import chimera

Create a button in the toolbar.
The first argument to 'chimera.tkgui.app.toolbar.add' is the icon,
which is either the path to an image file, or the name of a standard
Chimera icon (which is the base name of an image file found in the
"share/chimera/images" directory in the Chimera installation directory).
In this case, since 'ToolbarButton.tiff' is not an absolute path, the
icon will be looked for under that name in both the current directory

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.py (1 of 2) [6/4/13 4:18:24 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.py

and in the Chimera images directory.
The second argument is the Python function to be called when the button
is pressed (a.k.a., the "callback function").
The third argument is a short description of what the button does
(used typically as balloon help).
The fourth argument is the URL to a full description.
For this example the icon name is 'ToolbarButton.tiff';
the Python function is 'mainchain';
the short description is "Show Main Chain";
and there is no URL for context help.
chimera.tkgui.app.toolbar.add('ToolbarButton.tiff', mainchain, 'Show Main Chain', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.py (2 of 2) [6/4/13 4:18:24 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/MolecularEditing.html

Example MolecularEditing.py

Import system modules used in this example.
import re

Import Chimera modules used in this example.
import chimera

Define a regular expression for matching the names of protein backbone atoms (we
do not include the carbonyl oxygens because they tend to clutter up the graphics
display without adding much information).
MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

Do the actual work of setting the display status of atoms and bonds. The following
for statement iterates over molecules. The function call chimera.openModels.
list(modelTypes=[chimera.Molecule]) returns a list of all open molecules;
non-molecular models such as surfaces and graphics objects will not appear in the
list. The loop variable m refers to each model successively.
for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):

The following for statement iterates over atoms. The attribute reference m.
atoms returns a list of all atoms in model m, in no particular order. The loop
variable a refers to each atom successively.
for a in m.atoms:

Set the display status of atom a. First, we match the atom name, a.
name, against the backbone atom name regular expression, MAINCHAIN.
The function call MAINCHAIN.match(a.name) returns an re.Match
object if the atom name matches the regular expression or None
otherwise. The display status of the atom is set to true if there is a
match (return value is not None) and false otherwise.
a.display = MAINCHAIN.match(a.name) != None

By default, bonds are displayed if and only if both endpoint atoms are
displayed, so therefore we don't have to explicitly set bond display modes;
they will automatically "work right".

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/MolecularEditing.html [6/4/13 4:18:25 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonPackage/__init__.py

The contents of "ToolbarButtonPackage/__init__.py" is
identical to the first section of code in "Toolbar Buttons".
#
.. "ToolbarButtonPackage/__init__.py" ToolbarButtonPackage/__init__.py
.. "Toolbar Buttons" ToolbarButton.html

def mainchain():
 import re
 from chimera import openModels, Molecule

 mainChain = re.compile("^(N|CA|C)$", re.I)
 for m in openModels.list(modelTypes=[Molecule]):
 for a in m.atoms:
 a.display = mainChain.match(a.name) != None

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonPackage/__init__.py [6/4/13 4:18:25 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.html

Example ToolbarButton.py

Function mainchain sets the display status of atoms and requires no arguments.
The body of the function is identical to the example described in Molecular Editing
Using Python.
def mainchain():

Note that due to a fairly arcane Python behavior, we need to import modules
used by a (script) function inside the function itself (the local scope) rather
than outside the function (the global scope). This is because Chimera
executes scripts in a temporary module so that names defined by the script
don't conflict with those in Chimera's main namespace. When the temporary
module is deleted, Python sets all names in the module's global namespace to
None. Therefore, by the time this function is executed (by the toolbar button
callback) any modules imported in the global namespace would have the
value None instead of being a module object.

The regular expression module, re, is used for matching atom names.
import re

Import the object that tracks open models and the Molecule class from the
chimera module.
from chimera import openModels, Molecule

mainChain = re.compile("^(N|CA|C)$", re.I)
for m in openModels.list(modelTypes=[Molecule]):

for a in m.atoms:
a.display = mainChain.match(a.name) != None

Need to import the chimera module to access the function to add the icon to the
toolbar.
import chimera

Create a button in the toolbar. The first argument to chimera.tkgui.app.
toolbar.add is the icon, which is either the path to an image file, or the name of a
standard Chimera icon (which is the base name of an image file found in the "share/
chimera/images" directory in the Chimera installation directory). In this case, since
ToolbarButton.tiff is not an absolute path, the icon will be looked for under

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.html (1 of 2) [6/4/13 4:18:26 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.html

that name in both the current directory and in the Chimera images directory. The
second argument is the Python function to be called when the button is pressed (a.
k.a., the "callback function"). The third argument is a short description of what the
button does (used typically as balloon help). The fourth argument is the URL to a
full description. For this example the icon name is ToolbarButton.tiff; the
Python function is mainchain; the short description is "Show Main Chain"; and
there is no URL for context help.
chimera.tkgui.app.toolbar.add('ToolbarButton.tiff', mainchain,
'Show Main Chain', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.html (2 of 2) [6/4/13 4:18:26 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonPackage/gui.py

The contents of "ToolbarButtonPackage/gui.py" is similar to
the last section of code in "Toolbar Buttons", with the
exception that the 'mainchain' function is now referenced as
'ToolbarButtonPackage.mainchain'. The reason for the change is
that 'gui.py' is a submodule, while the 'mainchain' function is in
the main package. Since a submodule cannot directly access items
defined in the main package, 'gui.py' must first import the package
'import ToolbarButtonPackage' and refer to the function by prepending
the package name ('ToolbarButtonPackage.mainchain' in the call to
'chimera.tkgui.app.toolbar.add').
#
.. "ToolbarButtonPackage/gui.py" ToolbarButtonPackage/gui.py
.. "Toolbar Buttons" ToolbarButton.html

import chimera
import ToolbarButtonPackage
chimera.tkgui.app.toolbar.add('ToolbarButton.tiff', ToolbarButtonPackage.mainchain, 'Show Main Chain', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonPackage/gui.py [6/4/13 4:18:26 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/__init__.py

The contents of "ToolbarButtonExtension/__init__.py" is
identical to the first section of code in "Toolbar Buttons",
with the exception that module 'os' is not imported.
#
.. "ToolbarButtonExtension/__init__.py" ToolbarButtonExtension/__init__.py
.. "Toolbar Buttons" ToolbarButton.html

import re

import chimera

def mainchain():
 MAINCHAIN = re.compile("^(N|CA|C)$", re.I)
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 a.display = MAINCHAIN.match(a.name) != None

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/__init__.py [6/4/13 4:18:27 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/ChimeraExtension.py

"ChimeraExtension.py" derives a class from 'chimera.extension.EMO'
to define how functionality defined in "__init__.py" may be invoked
by the Chimera extension manager.
#
.. "ChimeraExtension.py" ToolbarButtonExtension/ChimeraExtension.py
.. "__init__.py" ToolbarButtonExtension/__init__.py

import chimera.extension

Class 'MainChainEMO' is the derived class.
class MainChainEMO(chimera.extension.EMO):
 # Return the actual name of the extension.
 def name(self):
 return 'Backbone'

 # Return the short description that typically appears as
 # balloon help or in the Tools preference category.
 def description(self):
 return 'display only protein backbone'

 # Return the categories in which this extension should appear.
 # It is either a list or a dictionary. If it is a dictionary
 # then the keys are the category names and the values are
 # category-specific descriptions (and the description() method
 # above is ignored).
 def categories(self):
 return ['Utilities']

 # Return the name of a file containing an icon that may be used
 # on the tool bar to provide a shortcut for launching the extension.
 def icon(self):
 return self.path('mainchain.tiff')

 # Invoke the extension. Note that when this method is called,
 # the content of "__init__.py" is not available. To simplify
 # calling functions, the 'EMO' provides a 'module' method that
 # locates modules in the extension package by name; if no name
 # is supplied, the "__init__.py" module is returned.
 def activate(self):
 # Call the 'mainchain' function in the "__init__.py" module.
 self.module().mainchain()

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/ChimeraExtension.py (1 of 2) [6/4/13 4:18:27 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/ChimeraExtension.py

Register an instance of 'MainChainEMO' with the Chimera
extension manager.
chimera.extension.manager.registerExtension(MainChainEMO(__file__))

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/ChimeraExtension.py (2 of 2) [6/4/13 4:18:27 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonCommand/ChimeraExtension.py

The initial code is the same as for the ToolbarButtonExtension example
import chimera.extension

class MainChainEMO(chimera.extension.EMO):
 def name(self):
 return 'Backbone'

 def description(self):
 return 'display only protein backbone'

 def categories(self):
 return ['Utilities']

 def icon(self):
 return self.path('mainchain.tiff')

 def activate(self):
 self.module().mainchain()

chimera.extension.manager.registerExtension(MainChainEMO(__file__))

Here we define two functions, one to handle the "mainchain" command,
and one to handle the "~mainchain" command.
def mainchainCmd(cmdName, args):
 # Import the module's workhorse function.
 # It is imported inside the function definition so that
 # it does not slow down Chimera startup with extra imports
 # in the main scope.
 from ToolbarButtonCommand import mainchain

 # Import and use the Midas.midas_text doExtensionFunc procedure
 # to process typed arguments and call the mainchain() function
 # appropriately. For a simple function like mainchain(), which
 # takes no arguments, using doExtensionFunc is probably overkill.
 # One could instead use the approach applied in the revMainchainCmd
 # function below and simply test for the presence of any
 # arguments (raising MidasError if any are found) and directly calling
 # the mainchain() function otherwise. As implemented here, using
 # doExtensionFunc, if the user does provide arguments then
 # doExtensionFunc will raise an error complaining that there
 # were unknown keyword arguments supplied.
 from Midas.midas_text import doExtensionFunc

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonCommand/ChimeraExtension.py (1 of 2) [6/4/13 4:18:28 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonCommand/ChimeraExtension.py

 doExtensionFunc(mainchain, args)

The function for "~mainchain"
def revMainchainCmd(cmdName, args):
 # We are going to implement ~mainchain as a synonym for "display",
 # so we import runCommand which simplifies doing that.
 from chimera import runCommand
 from Midas import MidasError
 if args:
 # Raising MidasError will cause the error message
 # to show up in the status line as red text
 raise MidasError("~mainchain takes no arguments")
 # runCommand takes any legal command-line command and executes it.
 runCommand("display")

Now actually register the "mainchain" command with the command interpreter
by using addCommand(). The first argument is the command name and the
second is the callback function for doing the work. The 'revFunc' keyword
specifies the function to implement "~mainchain". The 'help' keyword has
been omitted, therefore no help will be provided.
from Midas.midas_text import addCommand
addCommand("mainchain", mainchainCmd, revFunc=revMainchainCmd)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonCommand/ChimeraExtension.py (2 of 2) [6/4/13 4:18:28 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/__init__.py

Import the standard modules used in this example.
import re

Import the Chimera modules used in this example.
import chimera

Define a regular expression for matching the names of protein backbone
atoms (we do not include the carbonyl oxygens because they tend to
clutter up the graphics display without adding much information).
MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

Define 'mainchain' function for setting the display representation
of protein backbone atoms and bonds. See "Molecular Editing" for a
more detailed example on changing molecular attributes.
#
.. "Molecular Editing" MolecularEditing.html
def mainchain(atomMode, bondMode):
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 if MAINCHAIN.match(a.name):
 a.drawMode = atomMode
 for b in m.bonds:
 ends = b.atoms
 if MAINCHAIN.match(ends[0].name) \
 and MAINCHAIN.match(ends[1].name):
 b.drawMode = bondMode

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/__init__.py [6/4/13 4:18:29 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py

Import the standard modules used by this example.
import os
import Tkinter

Import the Chimera modules and classes used by this example.
import chimera
from chimera.baseDialog import ModelessDialog

Import the package for which the graphical user interface
is designed. In this case, the package is named 'ExtensionUI'.
import ExtensionUI

Define two module variables:
'atomMode' and 'bondMode' are Tk variables that keep track of
the last selected display representations. These variables are
initialized to be 'None', and are set to usable values when
the GUI is created.
atomMode = None
bondMode = None

Define two dictionaries that map string names into Chimera
enumerated constant values. The two variables 'atomMode' and
'bondMode' keep track of the representations as strings because
they are displayed directly in the user interface. However,
the 'mainchain' function in the main package expects Chimera
constants as its arguments. The dictionaries 'atomModeMap' and
'bondModeMap' provides the translation from string to enumerated
constants.
atomModeMap = {
 'Dot': chimera.Atom.Dot,
 'Sphere': chimera.Atom.Sphere,
 'EndCap': chimera.Atom.EndCap,
 'Ball': chimera.Atom.Ball
}
bondModeMap = {
 'Wire': chimera.Bond.Wire,
 'Stick': chimera.Bond.Stick
}

Chimera offers two base classes to somewhat simplify the task of
creating user interfaces: ModalDialog and ModelessDialog. The
former is designed for situations when information or response
is required of the user immediately; the dialog stays in front
of other Chimera windows until dismissed and prevents input from
going to other Chimera windows. The latter dialog type is designed
for "ongoing" interfaces; it allows input focus to go to other
windows, and other windows can obscure it.
#
Here we declare a class that derives from ModelessDialog and
customize it for the specific needs of this extension.
class MainchainDialog(ModelessDialog):

 # Chimera dialogs can either be *named* or *nameless*. Named
 # dialogs are displayed using the 'display(name)' function
 # of the chimera.dialogs module. The *name* that should be used
 # as an argument to the 'display' function is given by the class
 # variable 'name'. Using a named dialog is appropriate when
 # it might be desirable to invoke the dialog from other extensions
 # or from Chimera itself.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py (1 of 4) [6/4/13 4:18:30 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py

 #
 # A nameless dialog is intended for use only in the extension that
 # defines the dialog. A nameless dialog is typically created and
 # displayed by calling its constructor. Once created, a nameless
 # dialog can be redisplayed (if it was withdrawn by clicking its
 # 'Cancel' button for example) by calling its 'enter()' method.
 #
 # For demonstration purposes, we use a named dialog here. A
 # nameless dialog is used in the "Color and Color Wells" example.
 #
 # .. "Color and Color Wells" Main_ColorWellUI.html
 name = "extension ui"

 # The buttons displayed at the bottom of the dialog are given
 # in the class variable 'buttons'. For modeless dialogs, a
 # help button will automatically be added to the button list
 # (the help button will be grayed out if no help information
 # is provided). For buttons other than 'Help', clicking on
 # them will invoke a class method of the same name.
 #
 # Both dialog base classes provide appropriate methods for
 # 'Close', so we won't provide a 'Close' method in this
 # subclass. The ModelessDialog base class also provides a
 # stub method for 'Apply', but we will override it with our
 # own 'Apply' method later in the class definition.
 buttons = ("Apply", "Close")

 # A help file or URL can be specified with the 'help' class
 # variable. A URL would be specified as a string (typically
 # starting with "http://..."). A file would be specified as
 # a 2-tuple of file name followed by a package. The file
 # would then be looked for in the 'helpdir' subdirectory of
 # the package. A dialog of Chimera itself (rather than of an
 # imported package) might only give a filename as the class
 # help variable. That file would be looked for in
 # /usr/local/chimera/share/chimera/helpdir.
 help = ("ExtensionUI.html", ExtensionUI)

 # The title displayed in the dialog window's title bar is set
 # via the class variable 'title'.
 title = "Set Backbone Representation"

 # Both ModelessDialog and ModalDialog, in their __init__
 # functions, set up the standard parts of the dialog interface
 # (top-level window, bottom-row buttons, etc.) and then call
 # a function named 'fillInUI' so that the subclass can fill
 # in the parts of the interface specific to the dialog. As
 # an argument to the function, a Tkinter Frame is provided
 # that should be the parent to the subclass-provided interface
 # elements.
 def fillInUI(self, parent):

 # Declare that, in 'fillInUI', the names 'atomMode' and
 # 'bondMode' refer to the global variables defined above.
 global atomMode, bondMode

 # Create and initialize 'atomMode' and 'bondMode', the
 # two global Tk string variables that keep track of the
 # currently selected display representation.
 atomMode = Tkinter.StringVar(parent)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py (2 of 4) [6/4/13 4:18:30 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py

 atomMode.set('Dot')
 bondMode = Tkinter.StringVar(parent)
 bondMode.set('Wire')

 # Create the label and option menu for selecting atom
 # display representation. First create the label 'Atom
 # Representation' and place it on the left-hand side of
 # the top row in the GUI window.
 atomLabel = Tkinter.Label(parent, text='Atom Representation')
 atomLabel.grid(column=0, row=0)
 # Create the menu button and the option menu that it brings up.
 atomButton = Tkinter.Menubutton(parent, indicatoron=1,
 textvariable=atomMode, width=6,
 relief=Tkinter.RAISED, borderwidth=2)
 atomButton.grid(column=1, row=0)
 atomMenu = Tkinter.Menu(atomButton, tearoff=0)
 # Add radio buttons for all possible choices to the menu.
 # The list of choices is obtained from the keys of the
 # string-to-enumeration dictionary, and the radio button
 # for each choice is programmed to update the 'atomMode'
 # variable when selected.
 for mode in atomModeMap.keys():
 atomMenu.add_radiobutton(label=mode, variable=atomMode, value=mode)
 # Assigns the option menu to the menu button.
 atomButton['menu'] = atomMenu

 # The lines below do the same thing for bond representation
 # as the lines above do for atom representation.
 bondLabel = Tkinter.Label(parent, text='Bond Representation')
 bondLabel.grid(column=0, row=1)
 bondButton = Tkinter.Menubutton(parent, indicatoron=1,
 textvariable=bondMode, width=6,
 relief=Tkinter.RAISED, borderwidth=2)
 bondButton.grid(column=1, row=1)
 bondMenu = Tkinter.Menu(bondButton, tearoff=0)
 for mode in bondModeMap.keys():
 bondMenu.add_radiobutton(label=mode, variable=bondMode, value=mode)
 bondButton['menu'] = bondMenu

 # Define the method that is invoked when the 'Apply' button
 # is clicked. The function simply converts the currently
 # selected representations from strings to enumerated constants,
 # using the 'atomModeMap' and 'bondModeMap' dictionaries, and
 # invokes the main package function 'mainchain'.
 def Apply(self):
 ExtensionUI.mainchain(atomModeMap[atomMode.get()],
 bondModeMap[bondMode.get()])

Now we register the above dialog with Chimera, so that it may be
invoked via the 'display(name)' method of the chimera.dialogs module.
Here the class itself is registered, but since it is a named dialog
deriving from ModalDialog/ModelessDialog, the instance will automatically
reregister itself when first created. This allows the 'dialogs.find()'
function to return the instance instead of the class.
chimera.dialogs.register(MainchainDialog.name, MainchainDialog)

Create the Chimera toolbar button that displays the dialog when
pressed. Note that since the package is not normally searched for
icons, we have to prepend the path of this package to the icon's
file name.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py (3 of 4) [6/4/13 4:18:30 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py

dir, file = os.path.split(__file__)
icon = os.path.join(dir, 'ExtensionUI.tiff')
chimera.tkgui.app.toolbar.add(icon, lambda d=chimera.dialogs.display, n=MainchainDialog.name: d(n), 'Set Main Chain Representation', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py (4 of 4) [6/4/13 4:18:30 PM]

RGBA tuples

RGBA tuples
RGBA tuples are 4-tuples where the respective tuple components represent red,
green, blue, and alpha (opacity) values for a color. Each value is a floating point
number between 0.0 and 1.0. For example, the tuple (1, 0, 0, 1) represents an
opaque red, while (0, 1, 0, 0.5) represents a half transparent green.

Back to example.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/footnotes/rgba.html [6/4/13 4:18:30 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/__init__.py

This code is analogous to the code found in the "__init__.py"
modules in the "Packaging an Extension" and "Extension-Specific
User Interface" examples. See "Molecular Editing" for a more
detailed example on changing molecular attributes. Note that
the 'mainchain' function is expecting a color *object* as its
argument (because the color is used to set an atomic attribute).
#
.. "Packaging an Extension" Main_ExtensionPackage.html
.. "Extension-Specific User Interface" Main_ExtensionUI.html
.. "Molecular Editing" MolecularEditing.html
import chimera
import re

MAINCHAIN = re.compile("^(N|CA|C)$", re.I)
def mainchain(color):
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 if MAINCHAIN.match(a.name):
 a.color = color

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/__init__.py [6/4/13 4:18:33 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py

Import the standard Python modules used by the example code.
import os
import Tkinter

Import the additional modules and classes needed.
The ColorOption class facilitates interoperation between Chimera
colors and color wells (which use rgba colors).
import chimera
from chimera.baseDialog import ModelessDialog
from chimera.tkoptions import ColorOption
import ColorWellUI

class ColorWellDialog(ModelessDialog):
 # ColorWellDialog is a "nameless" dialog. See the
 # "Extension-Specific User Interface" example for a more detailed
 # explanation of Chimera dialogs.
 #
 # .. "Extension-Specific User Interface" Main_ExtensionUI.html

 # Set the title bar of the dialog to display 'Set Backbone Color'.
 title = 'Set Backbone Color'

 def fillInUI(self, master):
 # Create a ColorOption instance. The ColorOption will contain
 # a descriptive label and a color well. The arguments to the
 # ColorOption constructor are:
 # - master widget
 # - row number to use when 'grid'ing the ColorOption into the
 # master widget. The default column is 0. The tkoptions
 # module contains other options besides ColorOption (e.g.
 # StringOption), which are generally intended to be put in
 # vertical lists, and therefore a row number is specified in
 # the constructor. In this example we are only using one
 # option however.
 # - option label. This will be positioned to the left of the
 # color well and a ":" will be appended.
 # - The default value for this option.
 # - A callback function to call when the option is set by the
 # user (e.g. a color dragged to the well, or the well color
 # edited in the color editor)
 # - An optional ballon-help message
 #
 coloropt = ColorOption(master, 0, 'Backbone Color', None, self._setBackboneColor, balloon='Protein backbone color')

 # Call '_updateBackboneColor' to make the color displayed
 # in the color well reflect the current color of protein
 # backbone atoms. While not strictly necessary, keeping the
 # color in the well consistent with the color in the molecules
 # enhances the extension usability.
 self._updateBackboneColor(coloropt)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py (1 of 3) [6/4/13 4:18:37 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py

 # Define '_updateBackboneColor', which is used to make the color
 # of a well reflect the color of protein backbone atoms.
 def _updateBackboneColor(self, coloroption):
 # Loop through all atoms in all molecules, looking for protein
 # backbone atoms. When one is found, its color is compared
 # against the last color seen, 'theColor'. The first time this
 # comparison is made, 'theColor' does not exist yet and a
 # NameError exception is raised; this exception is caught,
 # and 'theColor' is assigned the color of the atom. All
 # subsequent times, the comparison between atom color and
 # 'theColor' should work as expected. If the two colors are
 # different, the color well is set to show that multiple colors
 # are present and execution returns to the caller. If the two
 # colors are the same, the next atom is examined. If only one
 # color is found among all protein backbone atoms (or zero if
 # no molecules are present), then execution continues.
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 if ColorWellUI.MAINCHAIN.match(a.name):
 try:
 if a.color != theColor:
 coloroption.setMultiple()
 return
 except NameError:
 theColor = a.color

 # Set the color of the well to match 'theColor'. There are
 # two possible cases:
 # 1 'theColor' is not set (because there are no molecules),
 # 2 'theColor' is 'None' or a color object.
 # The 'set' function will not result in a callback to
 # '_setBackboneColor'.
 try:
 # Handle case 2. Set the color well to the proper color
 coloroption.set(theColor)
 except NameError:
 # Handle case 1. Set the color well to show that no color
 # is present
 coloroption.set(None)

 # Define '_setBackboneColor', which is invoked each time the
 # color in the well changes. When called by the ColorOption,
 # '_setBackboneColor' receives a single argument 'coloropt',
 # which is the ColorOption instance.
 def _setBackboneColor(self, coloroption):
 # Call the 'mainchain' function in the main package, with
 # the color object corresponding to the color well color
 # as its argument (which will be None if 'No Color' is
 # the current selection in the well), to set the color of
 # backbone atoms.
 ColorWellUI.mainchain(coloroption.get())

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py (2 of 3) [6/4/13 4:18:37 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py

Define the module variable 'dialog', which keeps track of the
dialog window containing the color well. It is initialized to
'None', and is assigned a usable value when the dialog is created.
dialog = None

Define 'showColorWellUI', which is invoked when the Chimera
toolbar button is pressed.
def showColorWellUI():
 # Declare that the name 'dialog' refers to the global variable
 # defined above.
 global dialog
 # Check whether the dialog has already been created. If so,
 # the dialog window is displayed by calling it's 'enter()'
 # function, and then the rest of the function is skipped by returning.
 if dialog is not None:
 dialog.enter()
 return

 # Otherwise, create the dialog.
 dialog = ColorWellDialog()

Create the Chimera toolbar button that invokes the 'showColorWellUI'
dir, file = os.path.split(__file__)
icon = os.path.join(dir, 'ColorWellUI.tiff')
chimera.tkgui.app.toolbar.add(icon, showColorWellUI, 'Set Main Chain Color', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py (3 of 3) [6/4/13 4:18:37 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/__init__.py

This file is identical to the "ColorWellUI/__init__.py"
in the "Colors and Color Wells" example.
#
.. "ColorWellUI/__init__.py" ColorWellUI/__init__.py
.. "Colors and Color Wells" Main_ColorWellUI.html
import chimera
import re

MAINCHAIN = re.compile("^(N|CA|C)$", re.I)
def mainchain(color):
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 if MAINCHAIN.match(a.name):
 a.color = color

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/__init__.py [6/4/13 4:18:40 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py

The code here is very similar to the code in "Colors
and Color Wells" and only differences from that code
will be described.
#
.. "Colors and Color Wells" Main_ColorWellUI.html

import os
import Tkinter

import chimera
from chimera.baseDialog import ModelessDialog
from chimera.tkoptions import ColorOption
import ColorWellUI

class ColorWellDialog(ModelessDialog):

 title = 'Set Backbone Color'

 # Need to override '__init__' to initialize our extra state.
 def __init__(self, *args, **kw):

 # Whereas in the "Colors and Color Wells" example 'coloropt'
 # was a local variable, here the 'coloropt' variable is stored
 # in the instance because the trigger handler (which has access
 # to the instance) needs to update the color well contained in
 # the ColorOption. A new variable, 'handlerId', is created to
 # keep track of whether a handler is currently registered. The
 # handler is only created when needed. See 'map' and 'unmap'
 # below. (Note that the instance variables must be set before
 # calling the base __init__ method since the dialog may be mapped
 # during initialization, depending on which window system is used.)
 #
 # .. "Colors and Color Wells" Main_ColorWellUI.html
 self.colorOpt = None
 self.handlerId = None

 # Call the parent-class '__init__'.
 apply(ModelessDialog.__init__, (self,) + args, kw)

 def fillInUI(self, master):
 # Save ColorOption in instance.
 self.coloropt = ColorOption(master, 0, 'Backbone Color', None, self._setBackboneColor, balloon='Protein backbone color')

 self._updateBackboneColor()

 def _updateBackboneColor(self):
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 if ColorWellUI.MAINCHAIN.match(a.name):
 try:
 if a.color != theColor:
 self.coloropt.setMultiple()

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py (1 of 3) [6/4/13 4:18:43 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py

 return
 except NameError:
 theColor = a.color

 try:
 self.coloropt.set(theColor)
 except NameError:
 self.coloropt.set(None)

 def _setBackboneColor(self, coloroption):
 ColorWellUI.mainchain(coloroption.get())

 # Register a trigger handler to monitor changes in the
 # backbone atom list when we're make visible. We ignore
 # the event argument.
 def map(self, *ignore):
 # Synchronize with well color.
 self._updateBackboneColor()

 # If no handler is currently registered, register one.
 if self.handlerId is None:
 # Registration occurs when the 'chimera.triggers' object
 # is requested to add a handler. *Registration requires
 # three arguments*:
 # - the name of the trigger,
 # - the handler function to be invoked when the
 # trigger fires, and
 # - an additional argument to be passed to the handler
 # function when it is invoked.
 # In this case, the trigger name is the same as the name
 # of the class of objects being monitored, "Atom".
 # The handler function is '_handler', defined below.
 # And the additional argument is empty (None) -- it could
 # have been the ColorOption instance ('coloropt') but that
 # is accessible via the instance. The return value from
 # the registration is a unique handler identifier for
 # the handler/argument combination. This identifier is
 # required for deregistering the handler.
 #
 # *The handler function is always invoked by the trigger
 # with three arguments*:
 # - the name of the trigger,
 # - the additional argument passed in at registration
 # time, and
 # - an instance with three attributes
 # - created: set of created objects
 # - deleted: set of deleted objects
 # - modified: set of modified objects
 # Note that with a newly opened model, objects will just
 # appear in both the 'created' set and not in the 'modified'
 # set, even though the newly created objects will normally have
 # various of their default attributes modified by later
 # code sections.
 self.handlerId = chimera.triggers.addHandler('Atom', self._handler, None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py (2 of 3) [6/4/13 4:18:43 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py

 # The '_handler' function is the trigger handler invoked when
 # attributes of 'Atom' instances change.
 def _handler(self, trigger, additional, atomChanges):
 # Check through modified atoms for backbone atoms.
 for a in atomChanges.modified:
 # If any of the changed atoms is a backbone atom, call
 # '_updateBackboneColor' to synchronize the well color
 # with backbone atom colors.
 if ColorWellUI.MAINCHAIN.match(a.name):
 self._updateBackboneColor()
 return

 # 'unmap' is called when the dialog disappears. We ignore the
 # event argument.
 def unmap(self, *ignore):
 # Check whether a handler is currently registered (*i.e.*, the
 # handler identifier, 'handlerId', is not 'None') and
 # deregister it if necessary.
 if self.handlerId is not None:

 # Deregistration requires two arguments: the name of the
 # trigger and the unique handler identifier returned by
 # the registration call.
 chimera.triggers.deleteHandler('Atom', self.handlerId)

 # Set the unique handler identifier to 'None' to indicate
 # that no handler is currently registered.
 self.handlerId = None

Define the module variable 'dialog', which tracks the dialog instance.
It is initialized to 'None', and is assigned a usable value when the
dialog is created.
dialog = None

Define 'showColorWellUI', which is invoked when the Chimera
toolbar button is pressed.
def showColorWellUI():
 global dialog
 if dialog is not None:
 dialog.enter()
 return

 dialog = ColorWellDialog()

dir, file = os.path.split(__file__)
icon = os.path.join(dir, 'AtomTrigger.tiff')
chimera.tkgui.app.toolbar.add(icon, showColorWellUI, 'Set Main Chain Color', None)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py (3 of 3) [6/4/13 4:18:43 PM]

OSL

OSL
OSL stands for Object Selection Language. The OSL is a syntax for choosing
Selectables. For example, ":51@ca" is an OSL string that refers to residue 51, atom
CA of all molecules. "@/color=red" refers to all red vertices (usually atoms) of all
models. Further information about the OSL can be found here.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/footnotes/osl.html [6/4/13 4:18:45 PM]

OSL Syntax

Object Selection Language syntax
The OSL is a syntax for choosing Selectables. There are four generic types of
Selectables: graphs, subgraphs, vertices, and edges. In a molecular model, these
correspond to the entire molecule, the residues, atoms, and bonds. For a non-
molecular model, the only relevant Selectable type, graph, corresponds to the
entire model.

The OSL is almost exactly the same as the Midas atom specification syntax as
implemented in the Chimera Midas emulator. A detailed description of that syntax
can be found here. There are three features found in Midas atom specifiers that are
not found in the OSL. They are:

1. Current selection synonyms ("selected", "sel", etc.).
2. Zones (e.g. "z<5")
3. Intersections (the & symbol)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/footnotes/OSLsyntax.html [6/4/13 4:18:48 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/UsersGuide/midas/atom_spec.html

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/BackboneSel/__init__.py

Import the standard modules used in this example.
import re

Import the Chimera modules used in this example.
import chimera
from chimera import selection

Define a function that will select protein backbone atoms in the
main Chimera graphics window
def selBackbone(op=None):
 # Define a regular expression for matching the names of protein backbone
 # atoms (we do not include the carbonyl oxygens because they tend to
 # clutter up the graphics display without adding much information).
 MAINCHAIN = re.compile("^(N|CA|C)$", re.I)

 # The 'list' method of chimera.openModels will return a list of
 # currently open models, and takes several optional keyword arguments
 # to restrict this list to models matching certain criteria.
 # When called with no arguments, this method will
 # return a list of all visible models, essentially models that
 # were created by the user. Internally managed ('hidden') models,
 # such as the distance monitor pseudobondgroup, do not show up in this
 # list. A list of hidden models can be obtained by setting the
 # optional keyword argument 'hidden' to True.
 # The 'all' argument (True/False) can be used to return a list of all open models
 # (including both hidden and visible). Other optional arguments include:
 # 'id' and 'subid', which restrict the returned list to models with the given
 # id and subid, respectively, while 'modelTypes' (a list of model types,
 # i.e. '[chimera.Molecule]') will restrict the returned list to models
 # of a particular type.
 bbAtoms = []
 for m in chimera.openModels.list(modelTypes=[chimera.Molecule]):
 for a in m.atoms:
 if MAINCHAIN.match(a.name):
 bbAtoms.append(a)

 # Create a selection instance that we can use to hold the protein
 # backbone atoms. We could have added the atoms one by one to the
 # selection while we were in the above loop, but it is more efficient
 # to add items in bulk to selections if possible.
 backboneSel = selection.ItemizedSelection()
 backboneSel.add(bbAtoms)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/BackboneSel/__init__.py (1 of 2) [6/4/13 4:18:50 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/BackboneSel/__init__.py

 # Add the connecting bonds to the selection. The 'addImplied' method
 # of Selection adds bonds if both bond endpoint atoms are in the
 # selection, and adds atoms if any of the atom's bonds are in the
 # selection. We use that method here to add the connecting bonds.
 backboneSel.addImplied()

 # Change the selection in the main Chimera window in the manner
 # indicated by this function's 'op' keyword argument. If op is
 # 'None', then use whatever method is indicated by the 'Selection Mode'
 # item in Chimera's Select menu. Otherwise, op should
 # be one of: 'selection.REPLACE', 'selection.INTERSECT',
 # 'selection.EXTEND' or 'selection.REMOVE'.
 # - 'REPLACE' causes the Chimera selection to be replaced with
 # 'backboneSel'.
 # - 'INTERSECT' causes the Chimera selecion to be intersected
 # with 'backboneSel'.
 # - 'EXTEND' causes 'backboneSel' to be appended to the Chimera
 # selection.
 # - 'REMOVE' causes 'backboneSel' to be unselected in the
 # Chimera window.
 if op is None:
 chimera.tkgui.selectionOperation(backboneSel)
 else:
 selection.mergeCurrent(op, backboneSel)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/BackboneSel/__init__.py (2 of 2) [6/4/13 4:18:50 PM]

Registering Selectors

The Selection Manager

Some extensions may identify sets of Selectables that it would be useful for other
extensions to be able to identify, or for the user to select from the Selection menu.
For example, the ChemGroup extension identifies chemical entities such as
aromatic rings. It is useful to allow other extensions (and the user) to also pick out
these entities without replicating the ChemGroup code. This is accomplished by
registering selections with the Chimera selection manager.

The Chimera selection manager is defined in chimera.selection.manager.
Selections are registered with the selection manager as strings (either Python code
or OSL strings) and are made available in the Chimera Selection menu. Selections
can (only) be retrieved from the selection manager en masse as a dictionary
organized in the same fashion as the Selection menu. The keys in the dictionary are
the same as the menu labels, and the values are either a 2-tuple of the registered
selection string and a help description, or a dictionary introducing a submenu
which is organized the same as the main dictionary. The selectionFromText
method of the selection manager converts a registered selection string into the
appropriate Selection subclass.

chimera.selection.manager also defines the CodeItemizedSelection class,
which is similar to the CodeSelection class described above, except that the code
is given an empty ItemizedSelection to fill in instead of functions to apply.

The Python strings registered with the selection manager are expected to be
useable in conjunction with CodeItemizedSelections.

This example is not yet finished. Sorry!

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/Main_SelReg.html [6/4/13 4:18:53 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/CreateMolecule.py

Function 'createWater' creates a water molecule.
def createWater():

 # Import the object that tracks open models and several
 # classes from the 'chimera' module.
 from chimera import openModels, Molecule, Element, Coord

 # Create an instance of a Molecule
 m = Molecule()

 # Molecule contains residues. For our example, we will
 # create a single residue of HOH. The four arguments are:
 # the residue type, chain identifier, sequence number and
 # insertion code. Note that a residue is created as part
 # of a particular molecule.
 r = m.newResidue("HOH", " ", 1, " ")

 # Now we create the atoms. The newAtom function arguments
 # are the atom name and its element type, which must be
 # an instance of Element. You can create an Element
 # instance from either its name or atomic number.
 atomO = m.newAtom("O", Element("O"))
 atomH1 = m.newAtom("H1", Element(1))
 atomH2 = m.newAtom("H2", Element("H"))

 # Set the coordinates for the atoms so that they can be displayed.
 from math import radians, sin, cos
 bondLength = 0.95718
 angle = radians(104.474)
 atomO.setCoord(Coord(0, 0, 0))
 atomH1.setCoord(Coord(bondLength, 0, 0))
 atomH2.setCoord(Coord(bondLength * cos(angle), bondLength * sin(angle), 0))

 # Next, we add the atoms into the residue.
 r.addAtom(atomO)
 r.addAtom(atomH1)
 r.addAtom(atomH2)

 # Next, we create the bonds between the atoms.
 m.newBond(atomO, atomH1)
 m.newBond(atomO, atomH2)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/CreateMolecule.py (1 of 2) [6/4/13 4:18:54 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/CreateMolecule.py

 # Finally, we add the new molecule into the list of
 # open models.
 openModels.add([m])

Call the function to create a water molecule.
createWater()

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/CreateMolecule.py (2 of 2) [6/4/13 4:18:54 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py

Class 'CountAtoms' assigns two attributes, "numAtoms" and "numHetatms",
to a molecule by exporting the molecule as a PDB file and running
the "grep" program twice. The "grep" invocations are run in the
background so that Chimera stays interactive while they execute.
class CountAtoms:

 # The constructor sets up a temporary file for the PDB output,
 # and a Chimera task instance for showing progress to the user.
 def __init__(self, m, grepPath):

 # Generate a temporary file name for PDB file.
 # We use Chimera's 'osTemporaryFile' function
 # because it automatically deletes the file when
 # Chimera exits.
 import OpenSave
 self.pdbFile = OpenSave.osTemporaryFile(suffix=".pdb", prefix="rg")
 self.outFile = OpenSave.osTemporaryFile(suffix=".out", prefix="rg")

 # Write molecule in to temporary file in PDB format.
 self.molecule = m
 import Midas
 Midas.write([m], None, self.pdbFile)

 # Set up a task instance for showing user our status.
 from chimera import tasks
 self.task = tasks.Task("atom count for %s" % m.name, self.cancelCB)

 # Start by counting the ATOM records first.
 self.countAtoms()

 # 'cancelCB' is called when user cancels via the task panel
 def cancelCB(self):
 self.molecule = None

 # 'countAtoms' uses "grep" to count the number of ATOM records.
 def countAtoms(self):
 from chimera import SubprocessMonitor as SM
 self.outF = open(self.outFile, "w")
 self.subproc = SM.Popen([grepPath, "-c", "^ATOM", self.pdbFile], stdout=self.outF)
 SM.monitor("count ATOMs", self.subproc, task=self.task, afterCB=self._countAtomsCB)

 # '_countAtomsCB' is the callback invoked when the subprocess

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py (1 of 4) [6/4/13 4:18:55 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py

 # started by 'countAtoms' completes.
 def _countAtomsCB(self, aborted):

 # Always close the open file created earlier
 self.outF.close()

 # If user canceled the task, do not continue processing.
 if aborted or self.molecule is None:
 self.finished()
 return

 # Make sure the process exited normally.
 if self.subproc.returncode != 0 and self.subproc.returncode != 1:
 self.task.updateStatus("ATOM count failed")
 self.finished()
 return

 # Process exited normally, so the count is in the output file.
 # The error checking code (in case the output is not a number)
 # is omitted to keep this example simple.
 f = open(self.outFile)
 data = f.read()
 f.close()
 self.molecule.numAtoms = int(data)

 # Start counting the HETATM records
 self.countHetatms()

 # 'countHetatms' uses "grep" to count the number of HETATM records.
 def countHetatms(self):
 from chimera import SubprocessMonitor as SM
 self.outF = open(self.outFile, "w")
 self.subproc = SM.Popen([grepPath, "-c", "^HETATM", self.pdbFile], stdout=self.outF)
 SM.monitor("count HETATMs", self.subproc, task=self.task, afterCB=self._countHetatmsCB)

 # '_countHetatmsCB' is the callback invoked when the subprocess
 # started by 'countHetatms' completes.
 def _countHetatmsCB(self, aborted):

 # Always close the open file created earlier
 self.outF.close()

 # If user canceled the task, do not continue processing.

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py (2 of 4) [6/4/13 4:18:55 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py

 if aborted or self.molecule is None:
 self.finished()
 return

 # Make sure the process exited normally.
 if self.subproc.returncode != 0 and self.subproc.returncode != 1:
 self.task.updateStatus("HETATM count failed")
 self.finished()
 return

 # Process exited normally, so the count is in the output file.
 # The error checking code (in case the output is not a number)
 # is omitted to keep this example simple.
 f = open(self.outFile)
 data = f.read()
 f.close()
 self.molecule.numHetatms = int(data)

 # No more processing needs to be done.
 self.finished()

 # 'finished' is called to clean house.
 def finished(self):

 # Temporary files will be removed when Chimera exits, but
 # may be removed here to minimize their lifetime on disk.
 # The task instance must be notified so that it is labeled
 # completed in the task panel.
 self.task.finished()

 # Set instance variables to None to release references.
 self.task = None
 self.molecule = None
 self.subproc = None

Below is the main program. First, we find the path to
the "grep" program. Then, we run CountAtoms for each molecule.
from CGLutil import findExecutable
grepPath = findExecutable.findExecutable("grep")
if grepPath is None:
 from chimera import NonChimeraError
 raise NonChimeraError("Cannot find path to grep")

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py (3 of 4) [6/4/13 4:18:55 PM]

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py

Add "numAtoms" and "numHetatms" attributes to all open molecules.
import chimera
from chimera import Molecule
for m in chimera.openModels.list(modelTypes=[Molecule]):
 CountAtoms(m, grepPath)

http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py (4 of 4) [6/4/13 4:18:55 PM]

	ucsf.edu
	Chimera Programmer's Guide
	Very Basic Chimera Programming Primer
	Example FrameSet
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Molecule.html
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Residue.html
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Atom.html
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/helpPages/Bond.html
	Chimera Programming FAQ
	_surface module
	Making Tools Scene- and Animation-aware
	md-mav.graffle
	resources.rtf
	Chimera Menu/Widget Text Guidelines
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/processData.py
	Introduction to Examples
	Chimera's Object Model
	Molecular Editing Using Python
	Toolbar Buttons
	Packaging an Extension
	Working with the Chimera Extension Manager
	Adding New Typed Commands
	Extension-Specific User Interface
	Colors and Color Wells
	Trigger Notifications
	Selections
	Session Saving Example
	Atomic Measurements Example
	Creating Molecules
	Running a Background Process
	C/C++ Extension Example
	Chimera Menu/Widget Text Guidelines
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/writeMol2.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/4fun.mol2
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/displayProp.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/MolecularEditing.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/MolecularEditing.html
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonPackage/__init__.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButton.html
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonPackage/gui.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/__init__.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonExtension/ChimeraExtension.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ToolbarButtonCommand/ChimeraExtension.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/__init__.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ExtensionUI/gui.py
	RGBA tuples
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/__init__.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/ColorWellUI/gui.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/__init__.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/AtomTrigger/gui.py
	OSL
	OSL Syntax
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/BackboneSel/__init__.py
	Registering Selectors
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/CreateMolecule.py
	http://www.rbvi.ucsf.edu/chimera/1.8/docs/ProgrammersGuide/Examples/RunSubprocess.py

