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Abstract

Opioids represent a highly-abused and highly potent class of drugs that have become a sig-

nificant threat to public safety. Often there are little to no pharmacological and toxicological

data available for new, illicitly used and abused opioids, and this has resulted in a growing

number of serious adverse events, including death. The large influx of new synthetic opioids

permeating the street-drug market, including fentanyl and fentanyl analogs, has generated

the need for a fast and effective method to evaluate the risk a substance poses to public

safety. In response, the US FDA’s Center for Drug Evaluation and Research (CDER) has

developed a rapidly-deployable, multi-pronged computational approach to assess a drug’s

risk to public health. A key component of this approach is a molecular docking model to pre-

dict the binding affinity of biologically uncharacterized fentanyl analogs to the mu opioid

receptor. The model was validated by correlating the docking scores of structurally diverse

opioids with experimentally determined binding affinities. Fentanyl derivatives with sub-

nanomolar binding affinity at the mu receptor (e.g. carfentanil and lofentanil) have signifi-

cantly lower binding scores, while less potent fentanyl derivatives have increased binding

scores. The strong correlation between the binding scores and the experimental binding

affinities suggests that this approach can be used to accurately predict the binding strength

of newly identified fentanyl analogs at the mu receptor in the absence of in vitro data and

may assist in the temporary scheduling of those substances that pose a risk to public safety.

Introduction

The severe social and economic impact of the opioid health crisis in the United States cannot

be overstated. While opioids have provided an invaluable treatment option for managing pain,

their addictive nature has contributed to the current crisis that has devastated countless com-

munities[1, 2].

There is no single panacea to end the epidemic, and a multifaceted, widespread effort is

underway to combat the crisis. Increased physician and patient education and tighter limits on
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INSERM, Université Paris Diderot, INTS, FRANCE

Received: December 19, 2017

Accepted: May 8, 2018

Published: May 24, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The work was internally funded by the US

Food and Drug Administration.

Competing interests: Additionally, we wish to

disclose our affiliation to the United States Food

and Drug Administration. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0197734
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197734&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197734&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197734&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197734&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197734&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197734&domain=pdf&date_stamp=2018-05-24
https://doi.org/10.1371/journal.pone.0197734
https://doi.org/10.1371/journal.pone.0197734
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


opioid advertising lead an effort to reduce opioid over-prescribing [3]. Drug developers are

designing abuse-deterrent formulations and developing safer ‘atypical/biased’ opioids that aim

to eliminate rewarding effects and reduce the risk of respiratory depression, the primary cause

of opioid overdose death [4–6]. While these atypical/biased opioids may provide safer alterna-

tives to traditional opioids, they may not reduce the addictiveness of opioids and new pain

treatment medications that target novel enzymes or receptors are needed [3]. Furthermore,

sustained addiction treatment is required for recovering addicts as many years of treatment

are often necessary for full recovery [6, 7].

Heroin and synthetic opioids are primarily responsible for the dramatic increase in the

number of drug overdose deaths, despite oxycodone and hydrocodone being the most com-

monly abused [2, 8]. In particular, opioid-related overdose deaths due to synthetic opioids

such as fentanyl and its analogs increased 72.2% from 2014 to 2015 and the trend is not slow-

ing down or decreasing [1, 9]. The straightforward synthesis, low cost, and high potency

of fentanyl have contributed to the influx of fentanyl analogs into the street-drug market as

indicated by the DEA 2016 Annual Emerging Threat Report, which identified over 80% of

emerging opioids as fentanyl analogs. The variability in potency among fentanyl analogs also

presents a substantial risk to public health as some derivatives, e.g. carfentanil, are estimated to

be about 10,000 times more potent than morphine [10, 11].

Fentanyl is a mu opioid receptor (μOR) agonist that causes analgesic and euphoric effects.

Given the high potency of fentanyl, it is commonly ‘cut’ into heroin, which has contributed to

the increase in heroin overdoses and deaths [2]. The fentanyl influx is exacerbated by the ease

with which simple modifications to the core fentanyl structure (4-anilidopiperidine, Fig 1A)

can yield potent analogs. Specifically, modification of the central fentanyl piperidine ring (R3

Fig 1. Fentanyl derivatization and the μOR. (A) Commonly-modified positions around the 4-anilidopiperidine core of fentanyl. (B) The seven-

helix transmembrane domain of the μOR in complex with agonist BU72; the binding site is represented by the transparent surface.

https://doi.org/10.1371/journal.pone.0197734.g001
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and R4) has led to the development of powerful derivatives such as carfentanil and lofentanil

[12]. In contrast, removal of the N-phenethyl (R1) group greatly reduces binding affinity at

the μOR [13]. Importantly, many slight structural modifications do not alter the function and

primary binding modes with the μOR creating a vast chemical space of fentanyl analogs with

abuse potential. The Analogue Act (21 U.S.C. 813) was designed to assist in the prosecution

of chemical analogs, but it has created a significant burden to demonstrate that two chemicals

are ‘substantially similar’ and not intended for human consumption each time the drug is

detected. This has led to significant challenges in the regulation of novel fentanyl analogs that

evade control by national and international legislation.

To address the risk a substance poses to public health, the Drug Enforcement Administra-

tion (DEA) can assign the substance to a legislative “schedule” based on its psychological and/

or physiological abuse potential. Substances with a high abuse potential and no accepted medi-

cal use are placed into Schedule I, while substances with an accepted medical use and varying

degrees of abuse potential are placed into Schedules II-V. Schedule II narcotics include opioids

approved for pain management, such as morphine, fentanyl, and codeine, while Schedule I

narcotics include heroin. However, there is often no scientific knowledge regarding newly-

identified fentanyl analogs and a complete eight-factor analysis to support a scheduling action

can take up to two years. The eight-factor analysis includes experimental investigations of a

new drug’s pharmacology, mechanism of action, abuse potential, and public health risks. In

response to this need, the US FDA’s Center for Drug Evaluation and Research (CDER) has

developed a molecular docking model that harnesses the concepts of virtual screening and

simulates the binding interactions of biologically uncharacterized fentanyl analogs at the μOR

to predict binding affinity. The model is designed to be used in combination with the comple-

mentary approaches of structural similarity assessment [14], target identification [15, 16], and

functionality prediction [17, 18] to provide a comprehensive assessment of abuse potential to

support temporary scheduling actions and provide medical professionals with risk assessment

information in an emergency public health situation. This report describes the development,

validation, and application of this molecular docking model to fentanyl analogs and other opi-

oids, as part of a translatable approach with broader application to other classes of abused

substances.

Methods

Virtual screening—a computational drug identification and optimization protocol—has

enjoyed success in the pharmaceutical industry for structure-based drug design applications

[19]. The ever-increasing number of pharmacological targets and the tremendous magnitude

of potential chemical space has created the need for rapid, low-cost predictions of activity over

expensive, experimental measurement using traditional techniques [20, 21]. Molecular dock-

ing, a type of virtual screening, places compounds or ligands into potential binding poses

within the binding site of a biological target and assesses binding affinity with a scoring func-

tion. The scoring function evaluates the non-covalent interactions between the ligand and tar-

get to provide a binding energy (score) which can be used to rank compounds with increasing

binding affinity [22–24]. Initially, the molecular details of the docking simulations, e.g. dock-

ing poses and scoring distributions, are presented for a series of fentanyl analogs. These com-

pounds have high structural similarity but significantly different binding affinities that range

from sub-nM to μM. The model is further validated by docking and scoring a structurally

diverse set of twenty-three opioids. The strong correlation between the docking score and

binding affinities allows for the classification of the opioids into three binding concentration

regimes based on the docking score.

Predicting opioid binding affinity using molecular docking
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A series of 23 opioids were docked with the μOR crystal structure (Fig 1B, PDBID: 5C1M

[25]). The set of opioids contains eight fentanyl analogs (N-methyl fentanyl, N-methyl carfen-

tanil, fentanyl, alfentanil, sufentanil, carfentanil, lofentanil, and R30490), seven fentanyl conge-

ners ((±)-tramadol, meperidine, propoxyphene, diphenoxylate, and (±)-methadone) and eight

morphine derivatives (codeine, (+)-pentazocine, oxycodone, nalbuphine, morphine, oxymor-

phone, hydromorphone, and buprenorphine). The μOR was crystallized in the active state

with the agonist BU72 occupying the binding site. The crystal structure was prepared using the

‘QuickPrep’ function within Molecular Operating Environment (MOE) [26]. ‘QuickPrep’ sets

the protonation states of all titratable residues within the protein structure and performs an

energy minimization to remove any steric clashes. All water molecules in the crystal structure

were maintained in the structure preparation and included during docking and pose evalua-

tion. Each opioid was docked using the Triangle Matcher placement algorithm, and refined

using the induced fit protocol. A cation pharmacophore was placed at the positively charged

amine of BU72, a key interaction critical for amine-based opioid binding [27]. The pharmaco-

phore is used as a suggestion for initial placement; however, the binding pocket and drug are

relaxed (induced fit) upon ligand docking.

The protein and small molecules were modeled with the Amber force field in combination

with the Extended Hückel Theory parameterization for small molecules [28–30]. The docked

drugs are scored with the GBVI/WSA scoring function [31]. All drugs were docked in the

protonated form which imparts chirality at the positively charged amine. All fentanyl and phe-

nylpiperidine derivatives placed the hydrogen in the axial position with the R-group in the

equatorial position. The morphine derivatives were docked in both protomeric states and the

lowest average docking score was used. Given the stochastic nature of the docking algorithm,

there is some variability in the best docking pose and score from each simulation. Therefore,

each opioid was docked and scored in ten independent simulations and the average of the low-

est energy pose is used in the following analysis. The entire procedure was performed in tripli-

cate to ensure reproducibility. The average docking score (ADS) of the best pose from the

three sets of simulations are within 0.2 kcal/mol for each drug (Supporting Information,

Fig 1).

The method was further evaluated by docking a series of 50 presumed non-binding fentanyl

decoys generated by the Directory of Useful Decoys, Enhanced (DUD-E) [32, 33]. DUD-E

was used to generate decoy structures that are physically similar to fentanyl but vary topologi-

cally. The difference in molecular shape should reduce the binding affinity. The 50 decoys con-

tained at least one positively charged amine and were docked and refined using the previously

described docking protocol. Finally, the structural similarity of fentanyl with respect to the

decoys was assessed using a combination of MACCS keys (166-bit) from MOE and the Tani-

moto similarity index [14]. The Tanimoto similarity index, or Tanimoto coefficient (Tc),

ranges from 0–1. Compounds with a high degree of structural similarity have a Tc near one,

while structurally divergent compounds have a score near zero.

Results and discussion

Molecular docking and scoring

The molecular docking and scoring procedure distinguishes between the binding affinities of

fentanyl, carfentanil, and N-methyl fentanyl despite the similar structures and relates the

increased binding affinity to the underlying molecular interactions. Fentanyl (Ki = 1.35 nM)

was independently docked to the μOR ten times and received an ADS of -9.4 kcal/mol. The

lowest energy (i.e. best) fentanyl poses are nearly identical from each simulation. However, the

slight variation in pose and active site conformation gives rise to fluctuations in the score from

Predicting opioid binding affinity using molecular docking
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each independent simulation (Fig 2A and 2B). Each minimum energy pose maintains the salt

bridge between the positively charged amine and the negatively charged aspartic acid (Asp147,

red mesh surface Fig 2B–2D) that is critical for amine-based opioid binding [27]. Additionally,

all poses contain aromatic stacking between the N-linked phenethyl (R1) and a histidine

(His297, blue mesh surface Fig 2B–2D) residue within the binding pocket. Importantly, the

aromatic stacking interaction was identified by the docking procedure and was not suggested

by the pharmacophore.

Carfentanil contains a methyl ester at the 4-position of the fentanyl piperidine ring (Fig 1A,

R4). Consistent with carfentanil’s increased binding affinity at the μOR (Ki = 0.22 nM), the car-

fentanil ADS is -10.8 kcal/mol, significantly lower than fentanyl. Similar to fentanyl, the lowest

energy carfentanil poses maintain the salt bridge and aromatic stacking interactions within the

binding pocket. Seven of the top 10 poses contain nearly identical placement, while 3 poses

vary (Fig 2C).

Chemical modification at the fentanyl N-phenethyl moiety (R1) can also impact the binding

affinity of fentanyl derivatives at the μOR. Strikingly, the N-benzyl analog of fentanyl only dif-

fers by the removal of a single carbon but greatly reduces the activity (ED50 = 10–45 mg/kg)

compared to that of fentanyl (ED50 = 0.01 mg/kg)[34]. In contrast, replacement of the aro-

matic phenyl with other aromatic groups including thiophene and tetrazole, e.g. sufentanil

and alfentanil, maintain strong binding with the μOR, while removal of the N-phenethyl

group significantly reduces binding affinity at the μOR [13]. Indeed, N-methyl fentanyl is inac-

tive at 100 mg/kg in mice [34]. Furthermore, the binding affinity of N-methyl fentanyl and N-

methyl carfentanil are 15,000 and 1,750 times weaker than fentanyl and carfentanil at the

guinea pig brain μOR, respectively [13].

Consistent with these experimental observations, the ADS of N-methyl fentanyl is signifi-

cantly larger than the ADS of fentanyl. Although N-methyl fentanyl does contain an aromatic

group, the compound is not large enough to maintain the salt bridge while simultaneously

stacking with the μOR histidine. The lack of aromatic stacking increases the ADS of N-methyl-

fentanyl to -7.9 kcal/mol. The distribution of N-methyl fentanyl scores is very narrow and has

a small standard deviation. Interestingly, despite the small fluctuations in score, N-methyl fen-

tanyl does not adopt a unique binding pose. N-methyl fentanyl adopts a primary conformation

in six lowest energy structures and a secondary binding pose in the remaining four configura-

tions (Fig 2D).

Classifying opioid binding affinities with docking scores

The docking procedure was repeated for 23 opioids (Table 1). The 23 opioids (21 unique com-

pounds and two stereoisomers) were selected to provide structural diversity across different

classes of opioids. Ideally, the experimental binding data should be derived from the same

source and measurements taken from human opioid receptors. However, experimental data

derived from human μOR are limited and reported binding affinities from different experi-

ments range dramatically depending on numerous experimental conditions including the

choice of radioligand, tissue source, and species [35]. Perhaps the most striking reported bind-

ing affinity range is for fentanyl Ki measurements, ranging from 0.007 to 214 nM [36, 37].

In order to maximize the number of docked and scored compounds, the experimentally

determined binding affinities were taken from three sources [13, 35, 38]. The binding affinities

of 18 of the 23 compounds were measured in competitive binding assays that displaced (3H)-

DAMGO from recombinant human μOR [35]. In a similar competitive binding assay, the

binding affinities of carfentanil and lofentanil were measured from marmoset brain homoge-

nates [38]. Finally, binding affinities of N-methyl fentanyl, N-methyl carfentanil and R30490

Predicting opioid binding affinity using molecular docking

PLOS ONE | https://doi.org/10.1371/journal.pone.0197734 May 24, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0197734


Fig 2. Molecular docking poses and scores. (A) Docking score distribution from the 10 docking simulations of

fentanyl (purple), carfentanil (green) and N-methyl fentanyl (blue). (B) Superimposition of the ten lowest energy

fentanyl poses in the μOR binding pocket. (C) The left and right panels present the primary (7) and secondary (3)

carfentanil poses from the 10 docking simulations, respectively. (D) The left and right panels present the primary (6)

and secondary poses (4) of N-methyl fentanyl from the ten docking simulations, respectively. The six primary N-

methyl fentanyl poses are virtually identical. In panels B-D, the negatively charged sidechain of Asp147 that forms the

salt bridge with the positively charged amine of each opioid is highlighted by the red mesh surface, and the aromatic

sidechain of His297 is represented by the blue mesh surface.

https://doi.org/10.1371/journal.pone.0197734.g002
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were measured from guinea pig whole membranes [13]. Despite differences in the animal

source, the measured binding affinity of fentanyl was between 1.2 and 1.4 nM across the three

experiments. Additionally, the measured Ki of alfentanil and sufentanil were approximately

two times weaker in the marmoset brain homogenates compared to the recombinant human

receptors. Moreover, carfentanil and lofentanil are known to have stronger interactions with

the μOR, while the N-methyl derivatives have decreased binding affinity.

Fentanyl analogs. The series of docked and scored fentanyl analogs range from sub-nM

to μM binding affinities and explicitly investigate the effect of chemical modifications at criti-

cal locations within the fentanyl scaffold. Specifically, the impact of (1) inclusion of a polar

group at the 4-position of the piperidine ring (carfentanil, lofentanil, R30490), (2) aromatic

substitution on the N-linked substituent (sufentanil, alfentanil), (3) methyl substitution at the

third position of the piperidine ring (lofentanil), and (4) removal of the aromatic ring from the

N-linked substituent (N-methyl fentanyl, N-methyl carfentanil) is tested (Fig 3).

The fentanyl analogs include 4 strong binders (Ki < 1 nM), 3 moderate binders (1 < Ki <

100 nM), and 1 weak binder (Ki > 100 nM). The strong correlation between the experimen-

tally determined binding affinity and calculated ADS of the fentanyl analogs (r = 0.86) allows

Table 1. Experimentally determined and predicted binding affinity ranges of the 23 opioids docked at the μOR. The 8 fentanyl derivatives and 7 fentanyl congeners

are listed first and ordered by increasing binding affinity, and the 8 morphine derivatives are listed last. The green labels indicate that the model correctly predicted the

binding concentration regime, yellow indicates that the model predicted the compound to bind stronger than the measured Ki, and red indicates that the model predicted

the compound to bind less strongly than the measured Ki.

Drug Human Ki (nM)

[35]

Marmoset Ki (nM)

[38]

Guinea Pig Ki (nM)

[13]

Average Docking Score

(ADS)

Standard Deviation in

Score

Predicted Conc.

Regime

N-methyl fentanyl� 18000 ± 3000 -7.89 0.21 > 100 nM

(1R,2R)Tramadol 12,500 -7.85 0.06 > 100 nM

(1S,2S) Tramadol 12,500 -7.97 0.20 > 100 nM

Meperidine 450 -7.77 0.07 > 100 nM

Propoxyphene 120 -9.56 0.08 0–100 nM

N-Methyl

carfentanil�
42 ± 6 -8.53 0.07 0–100 nM

Diphenoxylate 12.4 -10.1 0.47 Sub nM

Alfentanil 7.39 14.4 ± 4.2 -10.5 0.56 Sub nM

R-Methadone 3.38 -8.69 0.12 0–100 nM

S-Methadone 3.38 -8.63 0.07 0–100 nM

Fentanyl 1.35 1.32 ± 0.35 1.2 ± 0.2 -9.43 0.38 0–100 nM

Sufentanil 0.138 0.24 ± 0.05 -9.89 0.23 Sub nM

Carfentanil^ 0.22 ± 0.08 0.024 ± 0.004 -10.8 0.30 Sub nM

Lofentanil^ 0.055 ± 0.006 0.023 ± 0.004 -10.8 0.50 Sub nM

R30490� 0.09 ± 0.01 -10.3 0.31 Sub nM

Codeine 734 -8.23 0.16 > 100 nM

(+)-Pentazocine 118 -7.77 0.12 > 100 nM

Oxycodone 25.9 -8.78 0.27 0–100 nM

Nalbuphine 2.12 -8.47 0.29 0–100 nM

Morphine 1.14 -7.76 0.14 > 100 nM

Oxymorphone 0.406 -8.40 0.18 0–100 nM

Hydromorphone 0.365 -7.94 0.26 > 100 nM

Buprenorphine 0.216 -9.76 0.48 0–100 nM

�Experimental data from guinea pig whole brain membranes.

^Experimental data from marmoset brain homogenates.

https://doi.org/10.1371/journal.pone.0197734.t001
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for separation into the three predicted binding concentration ranges, or regimes (Fig 4). Com-

pounds that receive an ADS of less than -9.9 are predicted strong binders, compounds that

receive an ADS of between -9.8 and -8.4 are predicted moderate binders, and compounds that

receive an ADS of greater than -8.4 are predicted weak binders. The ADS correctly assigns the

Fig 3. Fentanyl analog structures. Summary of the fentanyl analog chemical features assessed by molecular docking.

https://doi.org/10.1371/journal.pone.0197734.g003
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binding concentration regime of all but one fentanyl derivative, alfentanil. The measured bind-

ing affinity of alfentanil is 7.4 nM; however, the docking procedure predicts sub-nM binding

affinity (ADS = -10.5). The low ADS is likely due to docking alfentanil in the positively charged

state. Unlike most fentanyl derivatives, the pKa of alfentanil is reduced and it is predominately

neutral at physiological pH [39].

Carfentanil (ADS = -10.8, green), fentanyl (ADS = -9.4, purple), and N-methyl fentanyl

(ADS = -7.8, blue) bind in the sub nM, 1–100 nM, and greater than 100 nM binding concen-

tration regimes, respectively. Carfentanil, an opioid only intended for animal use because its

potency makes it inappropriate for humans [12], is almost structurally identical to lofentanil

(ADS = -10.8, red). The methyl substitution at the 3-position gives rise to a marked increase in

the lofentanil binding affinity [38], however, both carfentanil and lofentanil receive nearly

Fig 4. Fentanyl analog binding prediction and classification. Scatterplot of the experimentally determined binding

affinity, Ki, with the ADS from the molecular docking procedure of the 8 fentanyl analogs (shown as diamonds). The

grey, shaded regions display the sub-nM, 1–100 nM, and greater than 100 nM binding concentration regimes used to

classify the predicted binding strength of new drugs. N-methyl fentanyl (blue), fentanyl (purple), carfentanil (green)

and lofentanil (red) are presented with colored diamonds to demonstrate the method’s ability to separate fentanyl

analogs into the proper binding concentration regimes. The remaining black diamonds represent the 4 other fentanyl

analogs that were docked and scored.

https://doi.org/10.1371/journal.pone.0197734.g004
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identical binding scores from the docking procedure (carfentanil ADS = -10.75, lofentanil

ADS = -10.82). The scoring function is likely unable to distinguish between these two com-

pounds because the additional methyl within the piperidine ring does not significantly change

the molecule’s shape or impact the binding poses.

Importantly, the predictions distinguish between key structural features of fentanyl analogs

that either increase or decrease the binding affinity. Specifically, compounds with chemical

modifications at the 4- position within the piperidine ring increase binding affinity, removal of

the N-phenethyl group significantly diminishes binding affinity, and exchange for a different

aromatic group at the N-phenethyl group does not significantly alter the binding score. How-

ever, the slight modification of the additional methyl within the ring is too subtle to be picked

up by the scoring function.

Fentanyl congeners. As an extension to the initial set of fentanyl analogs, 7 fentanyl con-

geners were docked and scored. The fentanyl congeners include the phenylpiperidine deriva-

tives, diphenoxylate and meperidine, and the noncyclic-aliphatic amines, (±)-tramadol,

(±)-methadone, and propoxyphene. Similar to the fentanyl analogs, the fentanyl congener

ADS correlates with the measured binding affinities (r = 0.60) at the μOR and correctly assigns

the binding concentration regime in 5 of the 7 compounds assessed (Fig 5). The 2 incorrectly

assigned compounds (propoxyphene and diphenoxylate) are predicted to bind more strongly

than the measured binding concentration regime. Both enantiomers of tramadol and metha-

done were docked and scored because the experimental binding affinities were measured

using racemic mixtures and the drugs are typically administered clinically as racemic mixtures

[35].

Meperidine (purple) and (±)-tramadol (blue) were correctly assigned as weak binders. This

is perhaps not surprising considering that these compounds are structurally similar to N-

methyl fentanyl. While these drugs do contain an aromatic moiety, the separation between the

positively charged amine and aromatic ring is not large enough for the salt bridge and aro-

matic stacking interactions to occur simultaneously. Propoxyphene (green), was incorrectly

assigned to the moderate binding regime and received an ADS of -9.6 kcal/mol. However, the

experimentally determined binding affinity is 120 nM, very close to the cut-off between the

weak and moderate binding regime. Furthermore, an overestimated binding prediction is pre-

ferred to an underestimation of the binding affinity in the context of protecting public health.

Methadone (red), commonly associated with detoxification of patients with opioid depen-

dence, is administered as a racemic mixture of R-methadone and S-methadone. However, pre-

viously published binding studies indicate that R-methadone has a 10-fold higher affinity for

the μOR and accounts for most of the pharmacological effect [40, 41]. Despite the difference in

binding affinities, each methadone enantiomer would be classified as a moderate binder in the

given concentration regimes. Binding measurements from the data set used in the current

study were based on a racemic mixture of methadone [35]. Therefore, given only one mea-

sured Ki for the racemic mixture, the correlation plot uses Ki = 3.38 nM for both R- and S-

methadone, both of which receive an ADS of -8.7 kcal/mol.

Fentanyl decoys. The set of 50 fentanyl decoys, generated using the Directory of Useful

Decoys, Enhanced (DUD-E) server [32, 33], was docked and scored at the μOR. The fentanyl

decoys have similar molecular weight and chemical features to fentanyl, but vary in molecular

shape. Decoys provide a comparison between an experimentally known binder and presumed

non-binders providing a measure of how known ligands rank versus a background. The distri-

bution of the fentanyl decoy ADS values (Fig 6A) demonstrates that 49 of the 50 decoys have a

higher ADS than fentanyl (red vertical line), and the majority of the decoys receive an ADS of

approximately 1 kcal/mol higher than fentanyl. The single decoy with a lower ADS than fenta-

nyl (ADS = -10.1) contains two positively charged amines in close proximity to each other
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forming a dual salt bridge with the negatively charged aspartic acid driving the docking score

lower (predicted stronger binding). All 50 decoys had substantially lower ADS values than car-

fentanil (vertical blue line, Fig 6A). Next, the distribution of the decoy Tanimoto coefficients

(TC, Fig 6B) quantifies the structural similarity of the decoys with respect to fentanyl and dem-

onstrates that the decoys are structurally dissimilar to fentanyl (average Tc = 0.39). In contrast,

the fentanyl analogs sufentanil (Tc = 0.69) and carfentanil (Tc = 0.76, blue vertical line) have

Fig 5. Fentanyl congener binding prediction and classification. Scatterplot of the experimentally determined

binding affinity, Ki, with the average docking score from the molecular docking procedure of the 7 fentanyl congeners

(shown as circles). (+)-Tramadol (blue), meperidine (purple), propoxyphene (green) and methadone (red) are

highlighted and demonstrate the method’s ability to predict the correct binding concentration regimes of fentanyl

congeners. The remaining black circles represent the three fentanyl congeners that were docked and scored. The black

diamonds represent the fentanyl analogs from Fig 4.

https://doi.org/10.1371/journal.pone.0197734.g005

Predicting opioid binding affinity using molecular docking

PLOS ONE | https://doi.org/10.1371/journal.pone.0197734 May 24, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0197734.g005
https://doi.org/10.1371/journal.pone.0197734


much higher similarity scores with respect to fentanyl. Finally, this model was developed to

prospectively predict the binding affinity of newly identified drugs of abuse at the μOR, where

some drugs may not bind. Accordingly, chemicals that are not known binders with a predicted

binding regime of Ki >100 nM must be considered weak or non-binding.

Binding affinity predictions using molecular docking can be challenging due to inherent

limitations with scoring functions. Larger molecules can form more interactions within the

binding pocket leading to lower binding scores. Indeed, the ADS score of the fentanyl deriva-

tives is strongly correlated to the molecular weight (r = -.97, Fig 6C). However, the measured

binding affinity (Ki) is also strongly correlated with the molecular weight (r = -0.85, Fig 6D).

Alfentanil is the only chemical that does not fall on the trend line, and as previously discussed,

alfentanil is unique in that it is predominately neutral at physiological pH which may explain

the reduced binding affinity [39]. Removing alfentanil from the molecular weight versus

Fig 6. Decoy analysis. (A) Distribution of the decoy binding scores. The vertical red and blue lines indicate the

docking score of fentanyl and carfentanil, respectively. (B) Distribution of the Tanimoto index of the fentanyl decoys

with respect to fentanyl. The vertical blue line indicates the Tanimoto index of carfentanil (Tc = 0.76) with respect to

fentanyl. (C) Correlation of the fentanyl derivative molecular weight with respect to the ADS. (D) Correlation of the

fentanyl derivative molecular weight with respect to the experimentally determined binding affinity (Ki). (E)

Correlation of the fentanyl decoy molecular weight with respect to the ADS. In panels C-E, the red and blue diamonds

indicate fentanyl and carfentanil, respectively.

https://doi.org/10.1371/journal.pone.0197734.g006
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binding affinity correlation increases the correlation coefficient to -0.97. The lack of correla-

tion between the fentanyl decoy’s ADS values and molecular weight (r = - 0.16, Fig 6E) demon-

strates that the model and scoring function are not simply predicting using the molecular

weight. The fentanyl decoy molecular weights span about 40 Da and the decoys generally score

about 1 kcal/mol higher than fentanyl. In contrast, R30490 only differs from fentanyl by a

small ether group (R4, molecular weight = 45 Da) and decreases the ADS by 1 kcal/mol. In

summary, the fentanyl decoy analysis demonstrates that the model ranks fentanyl as a stronger

binder than compounds with similar chemical features but different molecular shapes, and the

scoring function is not simply predicting based on the molecular weight. The model properly

assesses chemical features that lead to increased or decreased binding affinity.

Application to designer drugs. Newly-identified fentanyl analogs generally lack any in
vitro and/or in vivo data. To fill this data gap, the docking and scoring methodology can serve

as a prediction protocol for assessing the binding affinity of newly discovered fentanyl analogs

at the μOR. For example, furanylfentanyl (Fu-F, Fig 7A), a designer fentanyl analog, has been

confirmed in several drug overdoses [42–44], and the DEA has recently issued a final order to

temporarily schedule Fu-F as a Schedule I narcotic to protect public safety [45].

Docking and scoring Fu-F with the μOR provides the predicted binding concentration

regime (Fig 7B), as well as insight into the molecular details of the binding interactions. Fu-F

shares many structural features with fentanyl including the phenethyl side chain (R1) and

hydrogens at the 3- and 4- positions on the piperidine ring (R3 and R4). Given the common

structural features, the Fu-F ADS (-9.6 kcal/mol, Fig 7B) is also similar to the fentanyl ADS

(-9.4 kcal/mol). The lowest energy poses of Fu-F are analogous to fentanyl, the phenethyl (R1)

stacks with histidine within the binding pocket and the benzene ring is directed toward the

interior of the protein (Fig 7C). Fu-F contains a furan ring adjacent to the carbonyl, while fen-

tanyl contains an aliphatic chain. Interestingly, the addition of the second aromatic ring allows

for an alternative pose to be populated, which places the furan ring into the pocket that is

Fig 7. Furanylfentanyl case study. (A) Chemical structure of the designer opioid Fu-F. (B) Binding concentration

prediction of Fu-F (red). (C-D) Primary and secondary binding poses from the 10 independent docking simulations of

Fu-F. In panels C and D, the key salt bridge (Asp147) and aromatic stacking interactions (His297) with Fu-F are

highlighted by the red and blue mesh surfaces, respectively.

https://doi.org/10.1371/journal.pone.0197734.g007
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occupied by the benzene ring in the primary Fu-F pose and all fentanyl poses (Fig 7D). All Fu-

F poses maintain the salt bridge between the positively charged amine with the negatively

charged aspartic acid and aromatic stacking within the binding pocket.

A multi-pronged approach that utilizes molecular docking, structural similarity assessment

with previously scheduled substances, and biological target identification can provide a wealth

of information regarding a new drug in the absence of in vitro and/or in vivo data. The atomis-

tic view into the binding pocket of receptors in complex with new drugs provides insight into

the molecular features that govern binding strength. As the number of fentanyl derivatives

‘cut’ into street drugs increases, in silico scientific assessment of new substances of abuse may

provide rapid support for temporary scheduling of the new substances.

Limitations. Eight morphine analogs were docked and scored at the μOR (Fig 8). In con-

trast to the fentanyl derivatives and fentanyl congeners, the ADS and experimental binding

affinity is not strongly correlated (r = 0.32), and the docking and scoring procedure was unable

to identify the correct binding concentration regimes of the morphine derivatives with high

accuracy. Of the 8 derivatives, only 4 were properly predicted (2 weak binders, 2 moderate

binders). Similar to carfentanil and lofentanil, the morphine analogs are too structurally simi-

lar for the scoring function to distinguish between the analogs. With the exception of pentazo-

cine (purple), buprenorphine (blue), and nalbuphine which contain bulky hydrophobic

groups at the positively charged amine, the remaining analogs are very structurally similar in

the core structure and contain a methyl amine.

The docking procedure correctly predicts the binding concentration regime of codeine,

oxycodone, and nalbuphine (green, left of the vertical black line). The ADS of these 3 com-

pounds spans -8.8 to -8.2 kcal/mol, close to the separation of binding concentration regimes at

-8.4 kcal/mol. However, the docking procedure incorrectly predicts the binding concentration

regime of morphine, oxymorphone and hydromorphone (red, right of the vertical black line)

and the ADS spans -8.4 to -7.8 kcal/mol. The molecular docking procedure predicts very

Fig 8. Morphine analogs: Binding prediction and classification. Scatterplot of the experimentally determined binding affinity, Ki, with the ADS from the molecular

docking procedure of the 8 morphine analogs (shown as squares). Pentazocine (purple) and buprenorphine (blue) are the most structurally dissimilar to morphine.

The remaining 6 drugs are structurally similar to morphine; 3 are predicted correctly (green) and 3 are predicted incorrectly (red). The black diamonds and circles

represent the fentanyl analogs and fentanyl congeners from Fig 5. For clarity, correctly and incorrectly predicted morphine analogs are on the left and right side of the

vertical black line, respectively.

https://doi.org/10.1371/journal.pone.0197734.g008
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similar scores for both the correctly and incorrectly predicted morphine analogs (-7.8 to -8.8

kcal/mol). The correct predictions for 3 out of the 6 structurally similar morphine analogs are

driven by the experimentally determined binding affinity and not the uniqueness in structure.

However, buprenorphine (Ki = 0.216 nM), which is structurally dissimilar, received a lower

ADS and was nearly predicted to be a sub-nM binder. This highlights the limitation of the cur-

rent model. The scoring function readily identifies and relates large structural changes, e.g.

removal of an aromatic ring or the introduction of a large polar group, to the binding affinity.

However, the scoring function is not sensitive enough to detect subtle structural changes, such

as the addition of a methyl or the replacement of a hydroxyl group with a carbonyl. Despite the

limitation observed with morphine analogs, the docking model provides an accurate assess-

ment of μOR binding of fentanyl analogs, which constitute the most significant threat to public

health from the opioid class. Indeed, according to the DEA 2016 Annual Emerging Threat

Report, no newly-identified opioids in 2016 were morphine-based, suggesting that this limita-

tion is unlikely to diminish the model’s practical utility.

Conclusions

The rapid influx of fentanyl analogs on the street market has created the need for a rapid evalu-

ation method to assess a new drug’s risk to public safety. Slight structural modifications to the

fentanyl core can lead to a wealth of novel structures. As a result, pursuing enforcement

actions against synthetic drug distribution for abuse purposes is challenging. When there is a

need for temporary (or emergency) scheduling of a substance, a computational structure-

based assessment that utilizes the molecular docking model described in this study may be

used to provide early scientific support to determine if a substance may be an imminent hazard

to public safety. A structure-based assessment strategy may also include structural similarity

analysis [14], biological target identification [15, 16], and functionality prediction [17, 18],

where the molecular docking model complements the biological target prediction to provide

an estimated binding affinity.

The presented molecular docking and scoring procedure accurately predicts the binding

concentration of fentanyl analogs and fentanyl congeners at the μOR. The molecular docking

and scoring procedure is general and readily extends to any drug class and any receptor with

an available crystal structure. However, it is critical that each drug class is assessed at the

appropriate receptor to confirm the scoring function’s ability to determine how chemical mod-

ifications impact binding interactions and strength. Given the large influx of new fentanyl ana-

logs ‘cut’ into street-drugs, a computational structure-based assessment strategy provides a

rapid and low-cost evaluation to assess the risk a new drug poses to public health. This assess-

ment could help guide the DEA and hospital workers when encountering these dangerous sub-

stances, both by aiding in scheduling decisions and potentially informing patient treatment.

Supporting information

S1 Fig. Average docking score. The docking procedure (ten independent simulations and

averaging the best pose) was repeated three times for the 24 opioids. This plot shows the aver-

age docking score for run 1 (black), run 2 (red), and run 3 (blue).
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