
N1 Grid Engine 6 Administration
Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–5677–20
May 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, N1, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, N1 and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, N1, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des mardques de fabrique ou des marques
déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques
de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050523@11223

Contents

Preface 15

1 Configuring Hosts and Clusters 19

About Hosts and Daemons 20
Changing the Master Host 21
Configuring Shadow Master Hosts 21

Shadow Master Host Requirements 22
Shadow Master Hosts File 22
Starting Shadow Master Hosts 23
Configuring Shadow Master Hosts Environment Variables 23

Configuring Hosts 24
Configuring Execution Hosts With QMON 24
Configuring Execution Hosts From the Command Line 30
Configuring Administration Hosts With QMON 31
Configuring Administration Hosts From the Command Line 32
Configuring Submit Hosts With QMON 32
Configuring Submit Hosts From the Command Line 34

Configuring Host Groups With QMON 34

Configuring Host Groups From the Command Line 36

Monitoring Execution Hosts With qhost 37

Invalid Host Names 38

Killing Daemons From the Command Line 38

Restarting Daemons From the Command Line 39

Basic Cluster Configuration 40

Displaying a Cluster Configuration With QMON 40

Displaying the Global Cluster Configuration With QMON 41

3

Adding and Modifying Global and Host Configurations With QMON 41
Deleting a Cluster Configuration With QMON 42
Displaying the Basic Cluster Configurations From the Command Line 43
Modifying the Basic Cluster Configurations From the Command Line 43

2 Configuring Queues and Queue Calendars 45

Configuring Queues 45
Configuring Queues With QMON 47
Configuring General Parameters 49
Configuring Execution Method Parameters 50
Configuring the Checkpointing Parameters 51
Configuring Parallel Environments 52
Configuring Load and Suspend Thresholds 53
Configuring Limits 55
Configuring Complex Resource Attributes 56
Configuring Subordinate Queues 57
Configuring User Access Parameters 58
Configuring Project Access Parameters 59
Configuring Owners Parameters 60
Configuring Queues From the Command Line 61

Configuring Queue Calendars 63
Configuring Queue Calendars With QMON 63
Configuring Queue Calendars From the Command Line 65

3 Configuring Complex Resource Attributes 67

Complex Resource Attributes 67
Configuring Complex Resource Attributes With QMON 68
Assigning Resource Attributes to Queues, Hosts, and the Global Cluster 70
Consumable Resources 74
Configuring Complex Resource Attributes From the Command Line 86

Load Parameters 87
Default Load Parameters 87
Adding Site-Specific Load Parameters 87
Writing Your Own Load Sensors 88

4 Managing User Access 93

Setting Up a User 94

4 N1 Grid Engine 6 Administration Guide • May 2005

Configuring User Access 95
Configuring Manager Accounts 95
Configuring Operator Accounts 97
Configuring User Access Lists 98
Configuring Users 101

Defining Projects 103
Defining Projects With QMON 104
Defining Projects From the Command Line 106

Using Path Aliasing 106
Format of Path-Aliasing Files 107
How Path-Aliasing Files Are Interpreted 108

Configuring Default Requests 108
Format of Default Request Files 109

5 Managing Policies and the Scheduler 111

Administering the Scheduler 111
About Scheduling 112
Scheduling Strategies 112
Configuring the Scheduler 120
Changing the Scheduler Configuration With QMON 123

Administering Policies 127
Configuring Policy-Based Resource Management With QMON 127
Specifying Policy Priority 128
Configuring the Urgency Policy 129
Configuring Ticket-Based Policies 130
Configuring the Share-Based Policy 135

� How to Create Project-Based Share-Tree Scheduling 144
Configuring the Functional Policy 147

� How to Create User-Based, Project-Based, and Department-Based
Functional Scheduling 150

Configuring the Override Policy 151

6 Managing Special Environments 155

Configuring Parallel Environments 155
Configuring Parallel Environments With QMON 156
Configuring Parallel Environments From the Command Line 161
Parallel Environment Startup Procedure 162
Termination of the Parallel Environment 163

5

Tight Integration of Parallel Environments and Grid Engine Software 164
Configuring Checkpointing Environments 165

About Checkpointing Environments 166
Configuring Checkpointing Environments With QMON 166
Configuring Checkpointing Environments From the Command Line 168

7 Other Administrative Tasks 171

Gathering Accounting and Reporting Statistics 171
Report Statistics (ARCo) 171
Accounting and Usage Statistics (qacct) 177

Backing Up the Grid Engine System Configuration 178
Using Files and Scripts for Administration Tasks 179

Using Files to Add or Modify Objects 179
Using Files to Modify Queues, Hosts, and Environments 180
Using Files to Modify a Global Configuration or the Scheduler 184

8 Fine Tuning, Error Messages, and Troubleshooting 187

Fine-Tuning Your Grid Environment 187
Scheduler Monitoring 187
Finished Jobs 188
Job Validation 188
Load Thresholds and Suspend Thresholds 188
Load Adjustments 189
Immediate Scheduling 189
Urgency Policy and Resource Reservation 189

How the Grid Engine Software Retrieves Error Reports 190
Consequences of Different Error or Exit Codes 191
Running Grid Engine System Programs in Debug Mode 193

Diagnosing Problems 195
Pending Jobs Not Being Dispatched 195
Job or Queue Reported in Error State E 196

Troubleshooting Common Problems 197

9 Configuring DBWriter 203

Setup 203
Database System 203
Database Server 204

6 N1 Grid Engine 6 Administration Guide • May 2005

Base Directory for Reporting Files 204

Configuration 204

Interval 204

Pid 204

PidCmd 204

Continuous Mode 205

Debug Level 205

Reporting File 205

Calculation of Derived Values 206

Index 209

7

8 N1 Grid Engine 6 Administration Guide • May 2005

Tables

TABLE 8–1 Job-Related Error or Exit Codes 191

TABLE 8–2 Parallel-Environment-Related Error or Exit Codes 191

TABLE 8–3 Queue-Related Error or Exit Codes 192

TABLE 8–4 Checkpointing-Related Error or Exit Codes 192

9

10 N1 Grid Engine 6 Administration Guide • May 2005

Figures

FIGURE 1–1 Execution Host Tab 25

FIGURE 1–2 Attribute Selection Dialog Box 28

FIGURE 1–3 Administration Host Tab 31

FIGURE 1–4 Submit Host Tab 33

FIGURE 1–5 Host Groups Tab 35

FIGURE 1–6 Cluster Configuration Dialog Box 40

FIGURE 2–1 Queue Configuration– General Configuration Tab 48

FIGURE 3–1 Complex Configuration Dialog Box 69

FIGURE 3–2 Complex Configuration Dialog Box: virtual_free 76

FIGURE 3–3 Add/Modify Exec Host: virtual_free 76

FIGURE 4–1 Userset Tab 99

FIGURE 4–2 Access List Definition Dialog Box 99

FIGURE 4–3 Project Configuration Dialog Box 104

FIGURE 5–1 Policy Configuration Dialog Box 128

11

12 N1 Grid Engine 6 Administration Guide • May 2005

Examples

EXAMPLE 1–1 Sample qhost Output 38

EXAMPLE 3–1 qconf -sc Sample Output 86

EXAMPLE 3–2 Load Sensor – Bourne Shell Script 88

EXAMPLE 4–1 Example of Path-Aliasing File 108

EXAMPLE 4–2 Example of Default Request File 109

EXAMPLE 5–1 Functional Policy Example 133

EXAMPLE 5–2 Example A 143

EXAMPLE 5–3 Example B 143

EXAMPLE 7–1 Modifying the Migration Command of a Checkpoint Environment
180

EXAMPLE 7–2 Changing the Queue Type 182

EXAMPLE 7–3 Modifying the Queue Type and the Shell Start Behavior 182

EXAMPLE 7–4 Adding Resource Attributes 182

EXAMPLE 7–5 Attaching a Resource Attribute to a Host 182

EXAMPLE 7–6 Changing a Resource Value 182

EXAMPLE 7–7 Deleting a Resource Attribute 182

EXAMPLE 7–8 Adding a Queue to the List of Queues for a Checkpointing Environment
182

EXAMPLE 7–9 Changing the Number of Slots in a Parallel Environment 183

EXAMPLE 7–10 Listing Queues 183

EXAMPLE 7–11 Using qselect in qconf Commands 183

EXAMPLE 7–12 Modifying the Schedule Interval 184

13

14 N1 Grid Engine 6 Administration Guide • May 2005

Preface

The N1 Grid Engine 6 Administration Guide provides background information about
how to set up and administer a system of networked computer hosts that run N1™
Grid Engine 6 software. This version of the manual supports Grid Engine 6 Update 4

Who Should Use This Book
The background information and instructions in this guide are intended for
experienced system administrators.

How This Book Is Organized
The N1 Grid Engine 6 Administration Guide includes eight chapters.

� Chapter 1 provides general background about hosts and clusters, along with
detailed instructions for how to configure them.

� Chapter 2 describes queues, which serve as containers for different categories of
jobs. The chapter includes complete instructions for how to configure cluster
queues and queue instances.

� Chapter 3 explains how the grid engine system uses the complex to define all the
pertinent information concerning the resource attributes a user can request for a
job. The administrator configures complex resource attributes to match the
requirements of the environment. This chapter provides detailed instructions for
how to configure resource attributes.

� Chapter 4 provides background information about different types of users of the
grid engine system. The chapter provides instructions on how to set up and
maintain user access and project access.

15

� Chapter 5 provides full background information about the types of user policies that
are available. The chapter provides instructions on how to match these policies to
the computing environment. Chapter 5 also describes how to configure and modify
the scheduler.

� Chapter 6 describes how the grid engine system fits in with parallel environments,
and provides detailed instructions on how to configure them. The chapter also
describes how to set up and use checkpointing environments.

� Chapter 7 describes how to gather reporting and accounting statistics, how to
automatically back up your grid engine system configuration files, and how to use
files and scripts to add or modify objects such as queues, hosts, and environments.

� Chapter 8 describes some ways to fine-tune your grid engine system. It also
explains how the grid engine system retrieves error message and describes how to
run the software in debug mode.

� Chapter 9, DBWriter describes how you can modify the DBWriter portion of the
ARCo feature.

Note – Some of the material in this guide appeared originally in the “How-To” section
of the Sun Grid Engine project web site. Updated frequently, this web site is of special
value to administrators of the grid engine system and is well worth consulting.

Related Books
Other books in the N1 Grid Engine 6 software documentation collection include:

� N1 Grid Engine 6 User’s Guide
� N1 Grid Engine 6 Installation Guide
� N1 Grid Engine 6 Release Notes

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

16 N1 Grid Engine 6 Administration Guide • May 2005

http://docs.sun.com

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and on-screen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms or terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Do not save the file.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

17

http://docs.sun.com

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

18 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 1

Configuring Hosts and Clusters

This chapter provides background information about configuring various aspects of
the grid engine system. This chapter includes instructions for the following tasks:

� “Changing the Master Host” on page 21
� “Configuring Shadow Master Hosts” on page 21
� “Configuring Execution Hosts With QMON” on page 24
� “Configuring Execution Hosts From the Command Line” on page 30
� “Configuring Administration Hosts With QMON” on page 31
� “Configuring Administration Hosts From the Command Line” on page 32
� “Configuring Submit Hosts With QMON” on page 32
� “Configuring Submit Hosts From the Command Line” on page 34
� “Configuring Host Groups With QMON” on page 34
� “Configuring Host Groups From the Command Line” on page 36
� “Monitoring Execution Hosts With qhost” on page 37
� “Killing Daemons From the Command Line” on page 38
� “Restarting Daemons From the Command Line” on page 39
� “Displaying a Cluster Configuration With QMON” on page 40
� “Displaying the Global Cluster Configuration With QMON” on page 41
� “Adding and Modifying Global and Host Configurations With QMON” on page 41
� “Deleting a Cluster Configuration With QMON” on page 42
� “Displaying the Basic Cluster Configurations From the Command Line” on page

43
� “Modifying the Basic Cluster Configurations From the Command Line” on page

43

19

About Hosts and Daemons
Grid engine system hosts are classified into four groups, depending on which
daemons are running on the system and on how the hosts are registered at
sge_qmaster.

� Master host. The master host is central for the overall cluster activity. The master
host runs the master daemon sge_qmaster. sge_qmaster controls all grid
engine system components such as queues and jobs. It also maintains tables about
the status of the components, about user access permissions and the like. The
master host usually runs the scheduler sge_schedd. The master host requires no
further configuration other than that performed by the installation procedure.

For information about how to initially set up the master host, see “How to Install
the Master Host” in N1 Grid Engine 6 Installation Guide. For information about how
to configure dynamic changes to the master host, see “Configuring Shadow Master
Hosts” on page 21.

� Execution hosts. Execution hosts are nodes that have permission to run jobs.
Therefore they host queue instances, and they run the execution daemon
sge_execd. An execution host is initially set up by the installation procedure, as
described in “How to Install Execution Hosts” in N1 Grid Engine 6 Installation
Guide.

� Administration hosts. Permission can be given to hosts other than the master host
to carry out any kind of administrative activity. Administrative hosts are set up
with the following command:

qconf -ah hostname

See the qconf(1) man page for details.

� Submit hosts. Submit hosts allow for submitting and controlling batch jobs only. In
particular, a user who is logged into a submit host can use qsub to submit jobs, can
use qstat to control the job status, or can run the graphical user interface QMON.
Submit hosts are set up using the following command:

qconf -as hostname

See the qconf(1) man page for details.

Note – A host can belong to more than one class. The master host is by default an
administration host and a submit host.

20 N1 Grid Engine 6 Administration Guide • May 2005

Changing the Master Host
Because the spooling database cannot be located on an NFS-mounted file system, the
following procedure requires that the Berkeley DB RPC server be used for spooling.

If you configure spooling to a local file system, you must transfer the spooling
database to a local file system on the new sge_qmaster host.

To change the master host, do the following:

1. On the current master host, stop the master daemon and the scheduler daemon by
typing the following command:

qconf -ks -km

2. Edit the sge-root/cell/common/act_qmaster file according to the following
guidelines:

a. In the act_qmaster file, replace the current host name with the new master
host’s name.

This name should be the same as the name returned by the gethostname
utility. To get that name, type the following command on the new master host:

sge-root/utilbin/$ARCH/gethostname

b. Replace the old name in the act_qmaster file with the name returned by the
gethostname utility.

3. On the new master host, run the following script:

sge-root/cell/common/sge5

This starts up sge_qmaster and sge_schedd on the new master host.

Configuring Shadow Master Hosts
Shadow master hosts are machines in the cluster that can detect a failure of the master
daemon and take over its role as master host. When the shadow master daemon
detects that the master daemon sge_qmaster has failed abnormally, it starts up a
new sge_qmaster on the host where the shadow master daemon is running.

Chapter 1 • Configuring Hosts and Clusters 21

Note – If the master daemon is shut down gracefully, the shadow master daemon does
not start up. If you want the shadow master daemon to take over after you shut down
the master daemon gracefully, remove the lock file that is located in the sge_qmaster
spool directory. The default location of this spool directory is
sge-root/cell/spool/qmaster.

The automatic failover start of a sge_qmaster on a shadow master host takes
approximately one minute. Meanwhile, you get an error message whenever a grid
engine system command is run.

Note – The file sge-root/cell/common/act_qmaster contains the name of the host
actually running the sge_qmaster daemon.

Shadow Master Host Requirements
To prepare a host as a shadow master, the following requirements must be met:

� The shadow master host must run sge_shadowd.

� The shadow master host must share sge_qmaster’s status information, job
configuration, and queue configuration logged to disk. In particular, a shadow
master host needs read/write root access to the master host’s spool directory and
to the directory sge-root/cell/common.

� Either the Berkeley DB RPC server or classic grid engine system spooling must be
used for sge_qmaster spooling. For more information, see “Database Server and
Spooling Host” in N1 Grid Engine 6 Installation Guide.

� The shadow-master-hostname file must contain a line that defines the host as
shadow master host.

As soon as these requirements are met, the shadow-master-host facility is activated for
this host. No restart of grid engine system daemons is necessary to activate the feature.

Shadow Master Hosts File
The shadow master host name file, sge-root/cell/common/shadow_masters, contains
the following:

� The name of the primary master host, which is the machine where the master
daemon sge_qmaster initially runs

� The names of the shadow master hosts

22 N1 Grid Engine 6 Administration Guide • May 2005

The format of the shadow master hostname file is as follows:

� The first line of the file defines the primary master host
� The following lines define the shadow master hosts, one host per line

The order of the shadow master hosts is significant. The primary master host is the
first line in the file. If the primary master host fails to proceed, the shadow master
defined in the second line takes over. If this shadow master also fails, the shadow
master defined in the third line takes over, and so forth.

Starting Shadow Master Hosts
In order to start a shadow sge_qmaster, the system must be sure either that the old
sge_qmaster has terminated, or that it will terminate without performing actions
that interfere with the newly-started shadow sge_qmaster.

In very rare circumstances it might be impossible to determine that the old
sge_qmaster has terminated or that it will terminate. In such cases, an error message
is logged to the messages log file of the sge_shadowds on the shadow master hosts.
See Chapter 8. Also, any attempts to open a tcp connection to a sge_qmaster
daemon permanently fail. If this occurs, make sure that no master daemon is running,
and then restart sge_qmaster manually on any of the shadow master machines. See
“Restarting Daemons From the Command Line” on page 39.

Configuring Shadow Master Hosts Environment
Variables
There are three environment variables which affect the takeover time for a shadow
master:

� SGE_DELAY_TIME - This variable controls the interval in which sge_shadowd
pauses if a takeover bid fails. This value is used only when there are multiple
sge_shadowd instances and they are contending to be the master. (the default is
600 seconds.)

� SGE_CHECK_INTERVAL - This variable controls the interval in which the
sge_shadowd checks the heartbeat file (60 seconds by default.)

� SGE_GET_ACTIVE_INTERVAL - This variable controls the interval when a
sge_shadowd instance tries to take over when the heartbeat file has not changed.

These variables interact in the following way.

1. The master host updates the heartbeat file every 30 seconds.

2. The sge_shadowd daemon checks for changes to heartbeat file every number of
seconds defined by the SGE_CHECK_INTERVAL variable. So, this value must be
greater than 30 seconds.

Chapter 1 • Configuring Hosts and Clusters 23

3. If the sge_shadowd daemon notices that the heartbeat file has been updated
updated, it starts waiting again until it is once more time to check the heartbeat file.

4. If the sge_shadowd daemon notices that the heartbeat file has not been updated,
it waits for number of seconds defined by the SGE_CHECK_INTERVAL variable to
expire. This step lets you make sure that the sge_shadowd daemon is not too
agressive in trying to takeover and allows the master host some leeway in
updating the heartbeat file.

5. When the SGE_GET_ACTIVE_INTERVAL has expired, sge_shadowd daemon
takes over if heartbeat file is still not updated.

A reasonable configuration might be to set the SGE_CHECK_INTERVAL to be 45
seconds and the SGE_GET_ACTIVE_INTERVAL to be 90 seconds. So, after about 2
minutes, the take over will occur. If you want to check the operation of the shadow
host after you have configured these environment variables you will have to pull out
the master host’s network cable to simulate a failure.

Configuring Hosts
N1 Grid Engine 6 software (grid engine software) maintains object lists for all types of
hosts except for the master host. The lists of administration host objects and submit
host objects indicate whether a host has administrative or submit permission. The
execution host objects include other parameters. Among these parameters are the load
information that is reported by the sge_execd running on the host, and the load
parameter scaling factors that are defined by the administrator.

You can configure host objects with QMON or from the command line.

QMON provides a set of host configuration dialog boxes that are invoked by clicking the
Host Configuration button on the QMON Main Control window. The Host
Configuration dialog box has four tabs:

� Administration Host tab. See Figure 1–3.
� Submit Host tab. See Figure 1–4.
� Host Groups tab. See Figure 1–5.
� Execution Host tab. See Figure 1–1.

The qconf command provides the command-line interface for managing host objects.

Configuring Execution Hosts With QMON
Before you configure an execution host, you must first install the software on the
execution host as described in “How to Install Execution Hosts” in N1 Grid Engine 6
Installation Guide.

24 N1 Grid Engine 6 Administration Guide • May 2005

To configure execution hosts, on the QMON Main Control window click the Host
Configuration button, and then click the Execution Host tab. The Execution Host tab
looks like the following figure:

FIGURE 1–1 Execution Host Tab

Note – Administrative or submit commands are allowed from execution hosts only if
the execution hosts are also declared to be administration or submit hosts. See
“Configuring Administration Hosts With QMON” on page 31 and “Configuring Submit
Hosts With QMON” on page 32.

The Hosts list displays the execution hosts that are already defined.

The Load Scaling list displays the currently configured load-scaling factors for the
selected execution host. See “Load Parameters” on page 87 for information about
load parameters.

The Access Attributes list displays access permissions. See Chapter 4 for information
about access permissions.

Chapter 1 • Configuring Hosts and Clusters 25

The Consumables/Fixed Attributes list displays resource availability for consumable
and fixed resource attributes associated with the host. See “Complex Resource
Attributes” on page 67 for information about resource attributes.

The Reporting Variables list displays the variables that are written to the reporting file
when a load report is received from an execution host. See “Defining Reporting
Variables” on page 29 for information about reporting variables.

The Usage Scaling list displays the current scaling factors for the individual usage
metrics CPU, memory, and I/O for different machines. Resource usage is reported by
sge_execd periodically for each currently running job. The scaling factors indicate
the relative cost of resource usage on the particular machine for the user or project
running a job. These factors could be used, for instance, to compare the cost of a
second of CPU time on a 400 MHz processor to that of a 600 MHz CPU. Metrics that
are not displayed in the Usage Scaling window have a scaling factor of 1.

Adding or Modifying an Execution Host
To add or modify an execution host, click Add or Modify. The Add/Modify Exec Host
dialog box appears.

The Add/Modify Exec Host dialog box enables you to modify all attributes associated
with an execution host. The name of an existing execution host is displayed in the
Host field.

If you are adding a new execution host, type its name in the Host field.

Defining Scaling Factors

To define scaling factors, click the Scaling tab.

26 N1 Grid Engine 6 Administration Guide • May 2005

The Load column of the Load Scaling table lists all available load parameters, and the
Scale Factor column lists the corresponding definitions of the scaling. You can edit the
Scale Factor column. Valid scaling factors are positive floating-point numbers in
fixed-point notation or scientific notation.

The Usage column of the Usage Scaling table lists the current scaling factors for the
usage metrics CPU, memory, and I/O. The Scale Factor column lists the corresponding
definitions of the scaling. You can edit the Scale Factor column. Valid scaling factors
are positive floating-point numbers in fixed-point notation or scientific notation.

Defining Resource Attributes

To define the resource attributes to associate with the host , click the
Consumables/Fixed Attributes tab.

The resource attributes associated with the host are listed in the Consumables/Fixed
Attributes table.

Use the Complex Configuration dialog box if you need more information about the
current complex configuration, or if you want to modify it. For details about complex
resource attributes, see “Complex Resource Attributes” on page 67.

The Consumables/Fixed Attributes table lists all resource attributes for which a value
is currently defined. You can enhance the list by clicking either the Name or the Value
column name. The Attribute Selection dialog box appears, which includes all resource
attributes that are defined in the complex.

Chapter 1 • Configuring Hosts and Clusters 27

FIGURE 1–2 Attribute Selection Dialog Box

To add an attribute to the Consumables/Fixed Attributes table, select the attribute,
and then click OK.

To modify an attribute value, double-click a Value field, and then type a value.

To delete an attribute, select the attribute, and then press Control-D or click mouse
button 3. Click OK to confirm that you want to delete the attribute.

Defining Access Permissions

To define user access permissions to the execution host based on previously
configured user access lists, click the User Access tab.

To define project access permissions to the execution host based on previously
configured projects, click the Project Access tab.

28 N1 Grid Engine 6 Administration Guide • May 2005

Defining Reporting Variables

To define reporting variables, click the Reporting Variables tab.

The Available list displays all the variables that can be written to the reporting file
when a load report is received from the execution host.

Select a reporting variable from the Available list, and then click the red right arrow to
add the selected variable to the Selected list.

To remove a reporting variable from the Selected list, select the variable, and then click
the left red arrow.

Deleting an Execution Host
To delete an execution host, on the QMON Main Control window click the Host
Configuration button, and then click the Execution Host tab.

Chapter 1 • Configuring Hosts and Clusters 29

In the Execution Host dialog box, select the host that you want to delete, and then
click Delete.

Shutting Down an Execution Host Daemon
To shut down an execution host daemon, on the QMON Main Control window click the
Host Configuration button, and then click the Execution Host tab.

In the Execution Host dialog box, select a host, and then click Shutdown.

Configuring Execution Hosts From the Command
Line
To configure execution hosts from the command line, type the following command
with appropriate options:

% qconf options

The following options are available:

� qconf -ae [exec-host]

The -ae option (add execution host) displays an editor containing an execution
host configuration template. The editor is either the default vi editor or an editor
corresponding to the EDITOR environment variable. If you specify exec-host, which
is the name of an already configured execution host, the configuration of this
execution host is used as a template. The execution host is configured by changing
the template and saving to disk. See the host_conf(5) man page for a detailed
description of the template entries to be changed.

� qconf -de hostname

The -de option (delete execution host) deletes the specified host from the list of
execution hosts. All entries in the execution host configuration are lost.

� qconf -me hostname

The -me option (modify execution host) displays an editor containing the
configuration of the specified execution host as template. The editor is either the
default vi editor or an editor corresponding to the EDITOR environment variable.
The execution host configuration is modified by changing the template and saving
to disk. See the host_conf(5) man page for a detailed description of the template
entries to be changed.

� qconf -Me filename

The -Me option (modify execution host) uses the content of filename as execution
host configuration template. The configuration in the specified file must refer to an
existing execution host. The configuration of this execution host is replaced by the
file content. This qconf option is useful for changing the configuration of offline

30 N1 Grid Engine 6 Administration Guide • May 2005

execution hosts, for example, in cron jobs, as the -Me option requires no manual
interaction.

� qconf -se hostname

The -se option (show execution host) shows the configuration of the specified
execution host as defined in host_conf.

� qconf -sel

The -sel option (show execution host list) displays a list of hosts that are
configured as execution hosts.

Configuring Administration Hosts With QMON
On the QMON Main Control window, click the Host Configuration button. The Host
Configuration dialog box appears, displaying the Administration Host tab. The
Administration Host tab looks like the following figure:

FIGURE 1–3 Administration Host Tab

Chapter 1 • Configuring Hosts and Clusters 31

Note – The Administration Host tab is displayed by default when you click the Host
Configuration button for the first time.

Use the Administration Host tab to configure hosts on which administrative
commands are allowed. The Host list displays the hosts that already have
administrative permission.

Adding an Administration Host
To add a new administration host, type its name in the Host field, and then click Add,
or press the Return key.

Deleting an Administration Host
To delete an administration host from the list, select the host, and then click Delete.

Configuring Administration Hosts From the
Command Line
To configure administration hosts from the command line, type the following
command with appropriate arguments:

% qconf arguments

Arguments to the qconf command and their consequences are as follows:

� qconf -ah hostname

The -ah option (add administration host) adds the specified host to the list of
administration hosts.

� qconf -dh hostname

The -dh option (delete administration host) deletes the specified host from the list
of administration hosts.

� qconf -sh

The -sh option (show administration hosts) displays a list of all currently
configured administration hosts.

Configuring Submit Hosts With QMON
To configure submit hosts, on the QMON Main Control window click the Host
Configuration button, and then click the Submit Host tab. The Submit Host tab is
shown in the following figure.

32 N1 Grid Engine 6 Administration Guide • May 2005

FIGURE 1–4 Submit Host Tab

Use the Submit Host tab to declare the hosts from which jobs can be submitted,
monitored, and controlled. The Host list displays the hosts that already have submit
permission.

No administrative commands are allowed from submit hosts unless the hosts are also
declared to be administration hosts. See “Configuring Administration Hosts With
QMON” on page 31 for more information.

Adding a Submit Host
To add a submit host, type its name in the Host field, and then click Add, or press the
Return key.

Deleting a Submit Host
To delete a submit host, select it, and then click Delete.

Chapter 1 • Configuring Hosts and Clusters 33

Configuring Submit Hosts From the Command
Line
To configure submit hosts from the command line, type the following command with
appropriate arguments:

% qconf arguments

The following options are available:

� qconf -as hostname

The -as option (add submit host) adds the specified host to the list of submit
hosts.

� qconf -ds hostname

The -ds option (delete submit host) deletes the specified host from the list of
submit hosts.

� qconf -ss

The -ss option (show submit hosts) displays a list of the names of all currently
configured submit hosts.

Configuring Host Groups With QMON
Host groups enable you to use a single name to refer to multiple hosts. You can group
similar hosts together in a host group. A host group can include other host groups as
well as multiple individual hosts. Host groups that are members of another host group
are subgroups of that host group.

For example, you might define a host group called @bigMachines. This host group
includes the following members:

@solaris64
@solaris32
fangorn
balrog

The initial @ sign indicates that the name is a host group. The host group
@bigMachines includes all hosts that are members of the two subgroups
@solaris64 and @solaris32. @bigMachines also includes two individual hosts,
fangorn and balrog.

On the QMON Main Control window, click the Host Configuration button. The Host
Configuration dialog box appears.

Click the Host Groups tab. The Host Groups tab looks like the following figure.

34 N1 Grid Engine 6 Administration Guide • May 2005

FIGURE 1–5 Host Groups Tab

Use the Host Groups tab to configure host groups. The Hostgroup list displays the
currently configured host groups. The Members list displays all the hosts that are
members of the selected host group.

Adding or Modifying a Host Group
To add a host group, click Add. To Modify a host group, click Modify. The
Add/Modify Host Group dialog box appears.

Chapter 1 • Configuring Hosts and Clusters 35

If you are adding a new host group, type a host group name in the Hostgroup field.
The host group name must begin with an @ sign.

If you are modifying an existing host group, the host group name is provided in the
Hostgroup field.

To add a host to the host group that you are configuring, type the host name in the
Host field, and then click the red arrow to add the name to the Members list. To add a
host group as a subgroup, select a host group name from the Defined Host Groups list,
and then click the red arrow to add the name to the Members list.

To remove a host or a host group from the Members list, select it, and then click the
trash icon.

Click Ok to save your changes and close the dialog box. Click Cancel to close the
dialog box without saving your changes.

Deleting a Host Group
To delete a host group, select it from the Hostgroup list, and then click Delete.

Configuring Host Groups From the Command
Line
To configure host groups from the command line, type the following command with
appropriate options:

% qconf options

36 N1 Grid Engine 6 Administration Guide • May 2005

The following options are available:

� qconf -ahgrp [host-group-name]

The -ahgrp option (add host group) adds a new host group to the list of host
groups. See the hostgroup(5) man page for a detailed description of the
configuration format.

� qconf -Ahgrp [filename]

The -Ahgrp option (add host group from file) displays an editor containing a host
group configuration defined in filename. The editor is either the default vi editor or
an editor corresponding to the EDITOR environment variable. The host group is
configured by changing the configuration and saving to disk.

� qconf -dhgrp host-group-name

The -dhgrp option (delete host group) deletes the specified host group from the
list of host groups. All entries in the host group configuration are lost.

� qconf -mhgrp host-group-name

The -mhgrp option (modify host group) displays an editor containing the
configuration of the specified host group as template. The editor is either the
default vi editor or an editor corresponding to the EDITOR environment variable.
The host group configuration is modified by changing the template and saving to
disk.

� qconf -Mhgrp filename

The -Mhgrp option (modify host group from file) uses the content of filename as
host group configuration template. The configuration in the specified file must
refer to an existing host group. The configuration of this host group is replaced by
the file content.

� qconf -shgrp host-group-name

The -shgrp option (show host group) shows the configuration of the specified
host group.

� qconf -shgrp_tree host-group-name

The -shgrp_tree option (show host group as tree) shows the configuration of the
specified host group and its sub-hostgroups as a tree.

� qconf -shgrp_resolved host-group-name

The -shgrp_resolved option (show host group with resolved host list) shows
the configuration of the specified host group with a resolved host list.

� qconf -shgrpl

The -shgrpl option (show host group list) displays a list of all host groups.

Monitoring Execution Hosts With qhost
Use the qhost command to retrieve a quick overview of the execution host status:

% qhost

Chapter 1 • Configuring Hosts and Clusters 37

This command produces output that is similar to the following example:

EXAMPLE 1–1 Sample qhost Output

HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
arwen aix43 1 - - - - -
baumbart irix65 2 0.00 1.1G 91.5M 128.0M 0.0
boromir hp11 1 - 128.0M - 256.0M -
carc lx24-amd64 2 0.00 3.8G 989.8M 1.0G 0.0
denethor aix51 1 4.54G - - - -
durin lx24-x86 1 0.37 123.1M 46.5M 213.6M 26.6M
eomer sol-sparc64 1 0.13 256.0M 248.0M 513.0M 93.0M
lolek tru64 1 0.02 1.0G 790.0M 1.0G 8.0K
mungo lx22-alpha 1 1.00 248.9M 78.8M 129.8M 2.5M
nori sol-x86 2 0.38 1023.0M 372.0M 512.0M 37.0M
pippin darwin 1 0.00 640.0M 264.0M 0.0 0.0

smeagol hp11 1 0.35 512.0M 425.0M 1.0G 95.0M

See the qhost(1) man page for a description of the output format and for more
options.

Invalid Host Names
The following is a list of host names that are invalid, reserved, or otherwise not
allowed to be used:

global
template
all
default
unknown
none

Killing Daemons From the Command Line
To kill grid engine system daemons from the command line, use one of the following
commands:

% qconf -ke[j] {hostname,... | all}
% qconf -ks

% qconf -km

38 N1 Grid Engine 6 Administration Guide • May 2005

You must have manager or operator privileges to use these commands. See Chapter 4
for more information about manager and operator privileges.

� The qconf –ke command shuts down the execution daemons. However, it does
not cancel active jobs. Jobs that finish while no sge_execd is running on a system
are not reported to sge_qmaster until sge_execd is restarted. The job reports
are not lost, however.

The qconf -kej command kills all currently active jobs and brings down all
execution daemons.

Use a comma-separated list of the execution hosts you want to shut down, or
specify all to shut down all execution hosts in the cluster.

� The qconf -ks command shuts down the scheduler sge_schedd.

� The qconf -km command forces the sge_qmaster process to terminate.

If you want to wait for any active jobs to finish before you run the shutdown
procedure, use the qmod -dq command for each cluster queue, queue instance, or
queue domain before you run the qconf sequence described earlier. For information
about cluster queues, queue instances, and queue domains, see “Configuring Queues”
on page 45.

% qmod -dq {cluster-queue | queue-instance | queue-domain}

The qmod -dq command prevents new jobs from being scheduled to the disabled
queue instances. You should then wait until no jobs are running in the queue instances
before you kill the daemons.

Restarting Daemons From the Command Line
Log in as root on the machine on which you want to restart grid engine system
daemons.

Type the following commands to run the startup scripts:

% sge-root/cell/common/sgemaster
% sge-root/cell/common/sgeexecd

These scripts looks for the daemons normally running on this host and then start the
corresponding ones.

Chapter 1 • Configuring Hosts and Clusters 39

Basic Cluster Configuration
The basic cluster configuration is a set of information that is configured to reflect site
dependencies and to influence grid engine system behavior. Site dependencies include
valid paths for programs such as mail or xterm. A global configuration is provided
for the master host as well as for every host in the grid engine system pool. In
addition, you can configure the system to use a configuration local to each host to
override particular entries in the global configuration.

The cluster administrator should adapt the global configuration and local host
configurations to the site’s needs immediately after the installation. The configurations
should be kept up to date afterwards.

The sge_conf(5) man page contains a detailed description of the configuration
entries.

Displaying a Cluster Configuration With QMON
On the QMON Main Control window, click the Cluster Configuration button. The
Cluster Configuration dialog box appears.

FIGURE 1–6 Cluster Configuration Dialog Box

In the Host list, select the name of a host. The current configuration for the selected
host is displayed under Configuration.

40 N1 Grid Engine 6 Administration Guide • May 2005

Displaying the Global Cluster Configuration With
QMON
On the QMON Main Control window, click the Cluster Configuration button.

In the Host list, select global.

The configuration is displayed in the format that is described in the sge_conf(5) man
page.

Adding and Modifying Global and Host
Configurations With QMON
In the Cluster Configuration dialog box (Figure 1–6), select a host name or the name
global, and then click Add or Modify. The Cluster Settings dialog box appears.

The Cluster Settings dialog box enables you to change all parameters of a global
configuration or a local host configuration.

Chapter 1 • Configuring Hosts and Clusters 41

All fields of the dialog box are accessible only if you are modifying the global
configuration. If you modify a local host, its configuration is reflected in the dialog
box. You can modify only those parameters that are feasible for local host changes.

If you are adding a new local host configuration, the dialog box fields are empty.

The Advanced Settings tab shows a corresponding behavior, depending on whether
you are modifying a configuration or are adding a new configuration. The Advanced
Settings tab provides access to more rarely used cluster configuration parameters.

When you finish making changes, click OK to save your changes and close the dialog
box. Click Cancel to close the dialog box without saving changes.

See the sge_conf(5) man page for a complete description of all cluster configuration
parameters.

Deleting a Cluster Configuration With QMON
On the QMON Main Control window, click the Cluster Configuration button.

In the Host list, select the name of a host whose configuration you want to delete, and
then click Delete.

42 N1 Grid Engine 6 Administration Guide • May 2005

Displaying the Basic Cluster Configurations From
the Command Line
To display the current cluster configuration, use the qconf -sconf command. See
the qconf(1) man page for a detailed description.

Type one of the following commands:

% qconf -sconf
% qconf -sconf global

% qconf -sconf host

� The qconf –sconf and qconf –sconf global commands are equivalent. They
display the global configuration.

� The qconf -sconf host command displays the specified local host’s
configuration.

Modifying the Basic Cluster Configurations From
the Command Line

Note – You must be an administrator to use the qconf command to change cluster
configurations.

Type one of the following commands:

% qconf -mconf global

% qconf -mconf host

� The qconf -mconf global command modifies the global configuration.

� The qconf -mconf host command modifies the local configuration of the specified
execution host or master host.

The qconf commands that are described here are examples of the many available
qconf commands. See the qconf(1) man page for others.

Chapter 1 • Configuring Hosts and Clusters 43

44 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 2

Configuring Queues and Queue
Calendars

This chapter provides background information about configuring queues and queue
calendars. It also includes instructions for how to configure them.

The following is a list of specific tasks for which instructions are included in this
chapter.

� “Configuring Queues With QMON” on page 47
� “Configuring Queues From the Command Line” on page 61
� “Configuring Queue Calendars With QMON” on page 63
� “Configuring Queue Calendars From the Command Line” on page 65

Configuring Queues
Queues are containers for different categories of jobs. Queues provide the
corresponding resources for concurrent execution of multiple jobs that belong to the
same category.

In N1 Grid Engine 6, a queue can be associated with one host or with multiple hosts.
Because queues can extend across multiple hosts, they are called cluster queues. Cluster
queues enable you to manage a cluster of execution hosts by means of a single cluster
queue configuration.

Each host that is associated with a cluster queue receives an instance of that cluster
queue, which resides on that host. This guide refers to these instances as queue
instances. Within any cluster queue, you can configure each queue instance separately.
By configuring individual queue instances, you can manage a heterogeneous cluster of
execution hosts by means of a single cluster queue configuration.

45

When you modify a cluster queue, all of its queue instances are modified
simultaneously. Within a single cluster queue, you can specify differences in the
configuration of queue instances. Consequently, a typical setup might have only a few
cluster queues, and the queue instances controlled by those cluster queues remain
largely in the background.

Note – The distinction between cluster queues and queue instances is important. For
example, jobs always run in queue instances, not in cluster queues.

When you configure a cluster queue, you can associate any combination of the
following host objects with the cluster queue:

� One execution host
� A list of separate execution hosts
� One or more host groups

A host group is a group of hosts that can be treated collectively as identical. Host
groups enable you to manage multiple hosts by means of a single host group
configuration. For more information about host groups, see “Configuring Host Groups
With QMON” on page 34.

When you associate individual hosts with a cluster queue, the name of the resulting
queue instance on each host combines the cluster queue name with the host name. The
cluster queue name and the host name are separated by an @ sign. For example, if you
associate the host myexechost with the cluster queue myqueue, the name of the
queue instance on myexechost is myqueue@myexechost.

When you associate a host group with a cluster queue, you create what is known as a
queue domain. Queue domains enable you to manage groups of queue instances that
are part of the same cluster queue and whose assigned hosts are part of the same host
group. A queue domain name combines a cluster queue name with a host group
name, separated by an @ sign. For example, if you associate the host group
myhostgroup with the cluster queue myqueue, the name of the queue domain is
myqueue@@myhostgroup.

Note – Queue domain names always include two @ signs, because all host group
names begin with an @ sign..

Jobs do not wait in queue instances. Jobs start running immediately as soon as they
are dispatched. The scheduler’s list of pending jobs is the only waiting area for jobs.

Configuring queues registers the queue attributes with sge_qmaster. As soon as
queues are configured, they are instantly visibly to the whole cluster and to all users
on all hosts belonging to the grid engine system.

For further details, see the queue_conf(5) man page.

46 N1 Grid Engine 6 Administration Guide • May 2005

Configuring Queues With QMON
On the QMON Main Control window, click the Queue Control button. The Cluster
Queues dialog box appears.

The Cluster Queues dialog box and its facilities for monitoring and manipulating the
status of cluster queues and queue instances are described in “Monitoring and
Controlling Queues With QMON” in N1 Grid Engine 6 User’s Guide.

To add a new cluster queue, click Add.

To modify an existing cluster queue, select it from the Cluster Queue list, and then
click Modify.

The Clone button enables you to import all parameters of an existing cluster queue.
You select the queue you want to clone from a list of existing queues.

Chapter 2 • Configuring Queues and Queue Calendars 47

When you click Add, the Queue Configuration – Add dialog box appears. When you
click Modify, the Modify queue-name dialog box appears. When the Queue
Configuration dialog box appears for the first time, it displays the General
Configuration tab.

FIGURE 2–1 Queue Configuration– General Configuration Tab

If you are modifying an existing queue, the name of the queue is displayed in the
Queue Name field. The hosts where the queue instances reside are displayed in the
Hostlist field.

If you are adding a new cluster queue, you must specify a queue name and the names
of the hosts on which the queue instances are to reside.

In the Hostlist field, you can specify the names of individual hosts. You can also
specify the names of previously defined host groups. Queue instances of this cluster
queue will reside on all individual hosts and on all members of the host groups you
specify, including all members of any host subgroups. For more information about
host groups, see “Configuring Host Groups With QMON” on page 34.

The following 11 tabs for specifying parameter sets are available to define a queue:

� General Configuration – see “Configuring General Parameters” on page 49
� Execution Method – see “Configuring Execution Method Parameters” on page 50
� Checkpointing – see “Configuring the Checkpointing Parameters” on page 51
� Parallel Environment – see “Configuring Parallel Environments” on page 52
� Load/Suspend Thresholds – see “Configuring Load and Suspend Thresholds”

on page 53
� Limits – see “Configuring Limits” on page 55

48 N1 Grid Engine 6 Administration Guide • May 2005

� Complex – see “Configuring Complex Resource Attributes” on page 56
� Subordinates – see “Configuring Subordinate Queues” on page 57
� User Access – see “Configuring User Access Parameters” on page 58
� Project Access – see “Configuring Project Access Parameters” on page 59
� Owners – see “Configuring Owners Parameters” on page 60

To set default parameters for the cluster queue, select @/ in the Attributes for
Host/Hostgroup list, and then click the tab containing the parameters that you want
to set.

Default parameters are set for all queue instances on all hosts listed under Hostlist.
You can override the default parameter values on a host or a host group that you
specify. To set override parameters for a host or a host group, first select the name
from the Attributes for Host/Hostgroup list. Then click the tab containing the
parameters that you want to set. The values of the parameters that you set override
the cluster queue’s default parameters on the selected host or host group.

To set a host-specific parameter, you must first enable the parameter for configuration.
Click the lock icon at the left of the parameter you want to set, and then change the
parameter’s value.

The Refresh button loads the settings of other objects that were modified while the
Queue Configuration dialog box was open.

Click OK to register all queue configuration changes with sge_qmaster and close the
dialog box. Click Cancel to close the dialog box without saving your changes.

Configuring General Parameters
To configure general parameters, click the General Configuration tab. The General
Configuration tab is shown in Figure 2–1.

You can specify the following parameters:

� Sequence Nr. The sequence number of the queue.

� Processors. A specifier for the processor set to be used by the jobs running in that
queue. For some operating system architectures, this specifier can be a range, such
as 1-4,8,10, or just an integer identifier of the processor set. See the
arc_depend_*.asc files in the doc directory of your N1 Grid Engine 6 software
distribution for more information.

Caution – Do not change this value unless you are certain that you need to change
it.

� tmp Directory. Temporary directory path.

� Shell. Default command interpreter to use for running the job scripts.

Chapter 2 • Configuring Queues and Queue Calendars 49

� Shell Start Mode. The mode in which to start the job script.

� Initial State. The state in which a newly added queue comes up. Also, the state in
which a queue instance is restored if the sge_execd running on the queue
instance host gets restarted.

� Rerun Jobs. The queue’s default rerun policy to be enforced on jobs that were
aborted, for example, due to system crashes. The user can override this policy
using the qsub -r command or the Submit Job dialog box. See “Extended Job
Example” in N1 Grid Engine 6 User’s Guide.

� Calendar. A calendar attached to the queue. This calendar defines on-duty and
off-duty times for the queue.

� Notify Time. The time to wait between delivery of SIGUSR1/SIGUSR2 notification
signals and suspend or kill signals.

� Job’s Nice. The nice value with which to start the jobs in this queue. 0 means use
the system default.

� Slots. The number of jobs that are allowed to run concurrently in the queue. Slots
are also referred to as job slots.

� Type. The type of the queue and of the jobs that are allowed to run in this queue.
Type can be Batch, Interactive, or both.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring Execution Method Parameters
To configure execution method parameters, click the Execution Method tab. The
Execution Method tab is shown in the following figure.

50 N1 Grid Engine 6 Administration Guide • May 2005

You can specify the following parameters:

� Prolog. A queue-specific prolog script. The prolog script is run with the same
environment as the job before the job script is started.

� Epilog. A queue-specific epilog script. The epilog script is run with the same
environment as the job after the job is finished.

� Starter Method, Suspend Method, Resume Method, Terminate Method. Use these
fields to override the default methods for applying these actions to jobs.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring the Checkpointing Parameters
To configure the checkpointing parameters, click the Checkpointing tab. The
Checkpointing tab is shown in the following figure.

Chapter 2 • Configuring Queues and Queue Calendars 51

You can specify the following parameters:

� MinCpuTime. The periodic checkpoint interval.

� Referenced Ckpt Objects. A list of checkpointing environments associated with the
queue.

To reference a checkpointing environment from the queue, select the name of a
checkpointing environment from the Available list, and then click the right arrow to
add it to the Referenced list.

To remove a checkpointing environment from the Referenced list, select it, and then
click the left arrow.

To add or modify checkpointing environments, click the button below the red arrows
to open the Checkpointing Configuration dialog box. For more information, see
“Configuring Checkpointing Environments With QMON” on page 166.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring Parallel Environments
To configure parallel environments, click the Parallel Environment tab. The Parallel
Environment tab is shown in the following figure.

52 N1 Grid Engine 6 Administration Guide • May 2005

You can specify the following parameter:

� Referenced PE. A list of parallel environments associated with the queue.

To reference a parallel environment from the queue, select the name of a parallel
environment from the Available PEs list, and then click the right arrow to add it to the
Referenced PEs list.

To remove a checkpointing environment from the Referenced PEs list, select it, and
then click the left arrow.

To add or modify parallel environments, click the button below the red arrows to open
the Parallel Environment Configuration dialog box. For more information, see
“Configuring Parallel Environments With QMON” on page 156.

See the queue_conf(5) man page for detailed information about this parameter.

Configuring Load and Suspend Thresholds
To configure load and suspend thresholds, click the Load/Suspend Thresholds tab.
The Load/Suspend Thresholds tab is shown in the following figure.

Chapter 2 • Configuring Queues and Queue Calendars 53

You can specify the following parameters:

� The Load Thresholds and the Suspend Thresholds tables, which define overload
thresholds for load parameters and consumable resource attributes. See “Complex
Resource Attributes” on page 67.

In the case of load thresholds, overload prevents the queue from receiving further
jobs. In the case of suspend thresholds, overload suspends jobs in the queue in
order to reduce the load.

The tables display the currently configured thresholds.

To change an existing threshold, select it, and then double-click the corresponding
Value field.

To add new thresholds, click Load or Value. A selection list appears with all valid
attributes that are attached to the queue. The Attribute Selection dialog box is
shown in Figure 1–2. To add an attribute to the Load column of the corresponding
threshold table, select an attribute, and then click OK.

To delete an existing threshold, select it, and then type Control-D or click mouse
button 3. You are prompted to confirm that you want to delete the selection.

� Suspend interval. The time interval between suspension of other jobs in case the
suspend thresholds are still exceeded.

� Jobs suspended per interval. The number of jobs to suspend per time interval in
order to reduce the load on the system that is hosting the configured queue.

See the queue_conf(5) man page for detailed information about these parameters.

54 N1 Grid Engine 6 Administration Guide • May 2005

Configuring Limits
To configure limits parameters, click the Limits tab. The Limits tab is shown in the
following figure.

You can specify the following parameters:

� Hard Limit and Soft Limit. The hard limit and the soft limit to impose on the jobs
that are running in the queue.

To change a value of a limit, click the button at the right of the field whose value you
want to change. A dialog box appears where you can type either Memory or Time
limit values.

Chapter 2 • Configuring Queues and Queue Calendars 55

See the queue_conf(5) and the setrlimit(2) man pages for detailed information
about limit parameters and their interpretation for different operating system
architectures.

Configuring Complex Resource Attributes
To configure resource attributes, click the Complex tab. The Complex tab is shown in
the following figure.

56 N1 Grid Engine 6 Administration Guide • May 2005

You can specify the following parameters:

� Consumables/Fixed Attributes. Value definitions for selected attributes from the
set of resource attributes that are available for this queue.

The available resource attributes are assembled by default from the complex.

Resource attributes are either consumable or fixed. The definition of a consumable
value defines a capacity managed by the queue. The definition of a fixed value
defines a queue-specific value. See “Complex Resource Attributes” on page 67 for
further details.

The attributes for which values are explicitly defined are displayed in the
Consumable/Fixed Attributes table. To change an attribute, select it, and then
double-click the corresponding Value field.

To add new attribute definitions, click Load or Value. The Attribute Selection
dialog box appears with a list of all valid attributes that are attached to the queue.
The Attribute Selection dialog box is shown in Figure 1–2.

To add an attribute to the Load column of the attribute table, select it, and then
click OK.

To delete an attribute, select it, and then press Control-D or click mouse button 3.
You are prompted to confirm that you want to delete the attribute.

See the queue_conf(5) page for detailed information about these attributes.

Use the Complex Configuration dialog box to check or modify the current complex
configuration before you attach user-defined resource attributes to a queue or before
you detach them from a queue. To access the Complex Configuration dialog box, click
the Complex Configuration button on the QMON Main Control window. See Figure 3–1
for an example.

Configuring Subordinate Queues
To configure subordinate queues, click the Subordinates tab. The Subordinates tab is
shown in the following figure.

Chapter 2 • Configuring Queues and Queue Calendars 57

Use the subordinate queue facility to implement high priority and low priority queues
as well as standalone queues.

You can specify the following parameters:

� Queue. A list of the queues that are subordinated to the configured queue.

Subordinated queues are suspended if the configured queue becomes busy.
Subordinated queues are resumed when the configured queue is no longer busy.

� Max Slots. For any subordinated queue, you can configure the number of job slots
that must be filled in the configured queue to trigger a suspension. If no maximum
slot value is specified, all job slots must be filled to trigger suspension of the
corresponding queue.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring User Access Parameters
To configure user access parameters, click the User Access tab. The User Access tab is
shown in the following figure.

58 N1 Grid Engine 6 Administration Guide • May 2005

You can specify the following parameters:

� Available Access Lists. The user access lists that can be included in the Allow
Access list or the Deny Access list of the queue.

Users or user groups belonging to access lists that are included in the Allow Access
list have access to the queue. Users who are included in the Deny Access list cannot
access the queue. If the Allow Access list is empty, access is unrestricted unless
explicitly stated otherwise in the Deny Access list.

To add or modify user access lists, click the button between the Available Access Lists
and the Allow Access and Deny Access lists to open the User Configuration dialog
box. For more information, see “Configuring User Access Lists With QMON” on page
98.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring Project Access Parameters
To configure project access parameters, click the Project Access tab. The Project Access
tab is shown in the following figure.

Chapter 2 • Configuring Queues and Queue Calendars 59

You can specify the following parameters:

� Available Projects. The projects that are allowed access or denied access to the
queue.

Jobs submitted to a project belonging to the list of allowed projects have access to
the queue. Jobs that are submitted to denied projects are not dispatched to the
queue.

To add or modify project access, click the button between the Available Projects list
and the Allow Project Access and Deny Project Access lists to open the Project
Configuration dialog box. For more information, see “Defining Projects With QMON”
on page 104.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring Owners Parameters
To configure owners parameters, click the Owners tab. The Owners tab is shown in the
following figure.

60 N1 Grid Engine 6 Administration Guide • May 2005

You can specify the following parameters:

� Owner List. The list of queue owners.

Typically, users are set up to be owners of certain queue instances in order to allow
them to suspend or disable jobs when they need to. For example, users might
occasionally need certain machines for important work, and those machines might
be strongly affected by jobs that are running in the background.

Queue owners can do the following:

� Suspend. Stop execution of all jobs running in the queue and close the queue
� Resume. Unsuspend the queue, and then open it
� Disable. Close the queue, but do not affect running jobs
� Enable. Open the queue

Jobs that are suspended explicitly while a queue is suspended are not resumed
when the queue is resumed. Explicitly suspended jobs must be resumed explicitly.

All possible user accounts can be added to the owner list. To delete a user account
from the queue owner list, select it, and then click the trash can icon.

See the queue_conf(5) man page for detailed information about these parameters.

Configuring Queues From the Command Line
To configure queues from the command line, type the following command with the
appropriate options:

Chapter 2 • Configuring Queues and Queue Calendars 61

qconf options

The qconf command has the following options:

� qconf -aq [cluster-queue]

The -aq option (add cluster queue) displays an editor containing a template for
cluster queue configuration. The editor is either the default vi editor or an editor
defined by the EDITOR environment variable. If cluster-queue is specified, the
configuration of this cluster queue is used as template. Configure the cluster queue
by changing the template and then saving it. See the queue_conf(5) man page for
a detailed description of the template entries to change.

� qconf -Aq filename

The -Aq option (add cluster queue from file) uses the file filename to define a
cluster queue. The definition file might have been produced by the qconf -sq
queue command.

� qconf -cq queue[,...]

The -cq option (clean queue) cleans the status of the specified cluster queues,
queue domains, or queue instances to be idle and free from running jobs. The
status is reset without respect to the current status. This option is useful for
eliminating error conditions, but you should not use it in normal operation mode.

� qconf -dq cluster-queue[,...]

The -dq option (delete cluster queue) deletes the cluster queues specified in the
argument list from the list of available queues.

� qconf -mq cluster-queue

The -mq option (modify cluster queue) modifies the specified cluster queue. The
-mq option displays an editor containing the configuration of the cluster queue to
be changed. The editor is either the default vi editor or an editor defined by the
EDITOR environment variable. Modify the cluster queue by changing the
configuration and then saving your changes.

� qconf -Mq filename

The -Mq option (modify cluster queue from file) uses the file filename to define the
modified cluster queue configuration. The definition file might have been
produced by the qconf -sq queue command and subsequent modification.

� qconf -sq [queue[,...]]

The -sq option (show queue) without arguments displays the default template
cluster queue, queue domain, or queue instance configuration. The -sq option
with arguments displays the current configuration of the specified queues.

� qconf -sql

The -sql option (show cluster queue list) displays a list of all currently configured
cluster queues.

The qconf command provides the following set of options that you can use to change
specific queue attributes:

62 N1 Grid Engine 6 Administration Guide • May 2005

-aattr – Add attributes
-Aattr – Add attributes from a file
-dattr – Delete attributes
-Dattr – Delete attributes listed in a file
-mattr – Modify attributes
-Mattr – Modify attributes from a file
-rattr – Replace attributes
-Rattr – Replace attributes from a file
-sobjl – Show list of configuration objects

For a description of how to use these options and for some examples of their use, see
“Using Files to Modify Queues, Hosts, and Environments” on page 180. For detailed
information about these options, see the qconf(1) man page.

Configuring Queue Calendars
Queue calendars define the availability of queues according to the day of the year, the
day of the week, or the time of day. You can configure queues to change their status at
specified times. You can change the queue status to disabled, enabled, suspended, or
resumed (unsuspended).

The grid engine system enables you to define a site-specific set of calendars, each of
which specifies status changes and the times at which the changes occur. These
calendars can be associated with queues. Each queue can attach a single calendar,
thereby adopting the availability profile defined in the attached calendar.

The syntax of the calendar format is described in detail in the calendar_conf(5)
man page. A few examples are given in the next sections, along with a description of
the corresponding administration facilities.

Configuring Queue Calendars With QMON
In the QMON Main Control window, click the Calendar Configuration button. The
Calendar Configuration dialog box appears.

Chapter 2 • Configuring Queues and Queue Calendars 63

The Calendars list displays the available calendars.

In the Calendars list, click the calendar configuration that you want to modify or
delete.

Do one of the following:

� To delete the selected calendar, click Delete.
� To modify the selected calendar, click Modify.
� To add access lists, click Add.

In all cases, the Add/Modify Calendar dialog box appears.

If you click Modify or Delete, the Calendar Name field displays the name of the
selected calendar. If you click Add, type the name of the calendar you are defining.

The Year and Week fields enable you to define the calendar events, using the syntax
described in the calendar_conf(5) man page.

The example of the calendar configuration shown in the previous figure is appropriate
for queues that should be available outside office hours and on weekends. In addition,
the Christmas holidays are defined to be handled like weekends.

See the calendar_conf(5) man page for a detailed description of the syntax and for
more examples.

64 N1 Grid Engine 6 Administration Guide • May 2005

By attaching a calendar configuration to a queue, the availability profile defined by the
calendar is set for the queue. Calendars are attached in the General Configuration tab
of the Modify queue-name dialog box. The Calendar field contains the name of the
calendar to attach. The button next to the Calendar field lists the currently configured
calendars. See “Configuring Queues” on page 45 for more details about configuring
queues.

Configuring Queue Calendars From the Command
Line
To configure queue calendars from the command line, type the following command
with appropriate options:

% qconf options

The following options are available:

� qconf -acal calendar-name

The -acal option (add calendar) adds a new calendar configuration named
calendar-name to the cluster. An editor with a template configuration appears,
enabling you to define the calendar.

� qconf -Acal filename

The -Acal option (add calendar from file) adds a new calendar configuration to
the cluster. The added calendar is read from the specified file.

Chapter 2 • Configuring Queues and Queue Calendars 65

� qconf -dcal calendar-name [,...]

The -dcal option (delete calendar) deletes the specified calendar.

� qconf -mcal calendar-name

The -mcal option (modify calendar) modifies an existing calendar configuration
named calendar-name. An editor opens calendar-name, enabling you to make changes
to the definition.

� qconf -Mcal filename

The -Mcal option (modify calendar from file) modifies an existing calendar
configuration. The calendar to modify is read from the specified file.

� qconf -scal calendar-name

The -scal option (show calendar) displays the configuration for calendar-name.

� qconf -scall

The-scall option (show calendar list) displays a list of all configured calendars.

66 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 3

Configuring Complex Resource
Attributes

This chapter describes how to configure resource attribute definitions. Resource
attribute definitions are stored in an entity called the grid engine system complex. In
addition to background information relating to the complex and its associated
concepts, this chapter provides detailed instructions on how to accomplish the
following tasks:

� “Configuring Complex Resource Attributes With QMON” on page 68
� “Setting Up Consumable Resources” on page 75
� “Configuring Complex Resource Attributes From the Command Line” on page 86
� “Writing Your Own Load Sensors” on page 88

Complex Resource Attributes
The complex configuration provides all pertinent information about the resource
attributes users can request for jobs with the qsub -l or qalter -l commands. The
complex configuration also provides information about how the grid engine system
should interpret these resource attributes.

The complex also builds the framework for the system’s consumable resources facility.
The resource attributes that are defined in the complex can be attached to the global
cluster, to a host, or to a queue instance. The attached attribute identifies a resource
with the associated capability. During the scheduling process, the availability of
resources and the job requirements are taken into account. The grid engine system also
performs the bookkeeping and the capacity planning that is required to prevent
oversubscription of consumable resources.

Typical consumable resource attributes include:

� Available free memory
� Unoccupied licenses of a software package

67

� Free disk space
� Available bandwidth on a network connection

Attribute definitions in the grid engine complex define how resource attributes should
be interpreted.

The definition of a resource attribute includes the following:

� Name of the attribute

� Shortcut to reference the attribute name

� Value type of the attribute, for example, STRING or TIME

� Relational operator used by the scheduler

� Requestable flag, which determines whether users can request the attribute for a
job

� Consumable flag, which identifies the attribute as a consumable resource

� Default request value that is taken into account for consumable attributes if jobs do
not explicitly specify a request for the attribute

� Urgency value, which determines job priorities on a per resource basis

Use the QMON Complex Configuration dialog box, which is shown in Figure 3–1, to
define complex resource attributes.

Configuring Complex Resource Attributes With
QMON
In the QMON Main Control window, click the Complex Configuration button. The
Complex Configuration dialog box appears.

68 N1 Grid Engine 6 Administration Guide • May 2005

FIGURE 3–1 Complex Configuration Dialog Box

The Complex Configuration dialog box enables you to add, modify, or delete complex
resource attributes.

To add a new attribute, first make sure that no line in the Attributes table is selected.
In the fields above the Attributes table, type or select the values that you want, and
then click Add.

Note – If you want to add a new attribute and an existing attribute is selected, you
must clear the selection. To deselect a highlighted attribute, hold down the Control
key and click mouse button 1.

You can add a new attribute by copying an existing attribute and then modifying it.
Make sure that the attribute name and its shortcut are unique.

To modify an attribute listed in the Attributes table, select it. The values of the selected
attribute are displayed above the Attributes table. Change the attribute values, and
then click Modify.

To save configuration changes to a file, click Save. To load values from a file into the
complex configuration, click Load, and then select the name of a file from the list that
appears.

To delete an attribute in the Attribute table, select it, and then click Delete.

See the complex(5) man page for details about the meaning of the rows and columns
in the table.

Chapter 3 • Configuring Complex Resource Attributes 69

To register your new or modified complex configuration with sge_qmaster, click
Commit.

Assigning Resource Attributes to Queues, Hosts,
and the Global Cluster
Resource attributes can be used in the following ways:

� As queue resource attributes
� As host resource attributes
� As global resource attributes

A set of default resource attributes is already attached to each queue and host. Default
resource attributes are built in to the system and cannot be deleted, nor can their type
be changed.

User-defined resource attributes must first be defined in the complex before you can
assign them to a queue instance, a host, or the global cluster. When you assign a
resource attribute to one of these targets, you specify a value for the attribute.

The following sections describe each attribute type in detail.

Queue Resource Attributes
Default queue resource attributes are a set of parameters that are defined in the queue
configuration. These parameters are described in the queue_conf(5) man page.

You can add new resource attributes to the default attributes. New attributes are
attached only to the queue instances that you modify. When the configuration of a
particular queue instance references a resource attribute that is defined in the complex,
that queue configuration provides the values for the attribute definition. For details
about queue configuration see “Configuring Queues” on page 45.

For example, the queue configuration value h_vmem is used for the virtual memory
size limit. This value limits the amount of total memory that each job can consume. An
entry in the complex_values list of the queue configuration defines the total
available amount of virtual memory on a host or assigned to a queue. For detailed
information about consumable resources, see “Consumable Resources” on page 74.

Host Resource Attributes
Host resource attributes are parameters that are intended to be managed on a host
basis.

The default host-related attributes are load values. You can add new resource
attributes to the default attributes, as described earlier in “Queue Resource Attributes”
on page 70.

70 N1 Grid Engine 6 Administration Guide • May 2005

Every sge_execd periodically reports load to sge_qmaster. The reported load
values are either the standard load values such as the CPU load average, or the load
values defined by the administrator, as described in “Load Parameters” on page 87.

The definitions of the standard load values are part of the default host resource
attributes, whereas administrator-defined load values require extending the host
resource attributes.

Host-related attributes are commonly extended to include nonstandard load
parameters. Host-related attributes are also extended to manage host-related resources
such as the number of software licenses that are assigned to a host, or the available
disk space on a host’s local file system.

If host–related attributes are associated with a host or with a queue instance on that
host, a concrete value for a particular host resource attribute is determined by one of
the following items:

� The queue configuration, if the attribute is also assigned to the queue configuration
� A reported load value
� The explicit definition of a value in the complex_values entry of the

corresponding host configuration. For details, see “Configuring Hosts” on page 24.

In some cases, none of these values are available. For example, say the value is
supposed to be a load parameter, but sge_execd does not report a load value for the
parameter. In such cases, the attribute is not defined, and the qstat –F command
shows that the attribute is not applicable.

For example, the total free virtual memory attribute h_vmem is defined in the queue
configuration as limit and is also reported as a standard load parameter. The total
available amount of virtual memory on a host can be defined in the
complex_values list of that host. The total available amount of virtual memory
attached to a queue instance on that host can be defined in the complex_values list
of that queue instance. Together with defining h_vmem as a consumable resource, you
can efficiently exploit memory of a machine without risking memory oversubscription,
which often results in reduced system performance that is caused by swapping. For
more information about consumable resources, see “Consumable Resources” on page
74.

Note – Only the Shortcut, Relation, Requestable, Consumable, and Default columns
can be changed for the default resource attributes. No default attributes can be
deleted.

Global Resource Attributes
Global resource attributes are cluster-wide resource attributes, such as available
network bandwidth of a file server or the free disk space on a network-wide available
file system.

Chapter 3 • Configuring Complex Resource Attributes 71

Global resource attributes can also be associated with load reports if the corresponding
load report contains the GLOBAL identifier, as described in “Load Parameters”
on page 87. Global load values can be reported from any host in the cluster. No
global load values are reported by default, therefore there are no default global
resource attributes.

Concrete values for global resource attributes are determined by the following items:

� Global load reports.

� Explicit definition in the complex_values parameter of the global host
configuration. See “Configuring Hosts” on page 24.

� In association with a particular host or queue and an explicit definition in the
corresponding complex_values lists.

Sometimes none of these cases apply. For example, a load value might not yet be
reported. In such cases, the attribute does not exist.

Adding Resource Attributes to the Complex
By adding resource attributes to the complex, the administrator can extend the set of
attributes managed by thegrid engine system. The administrator can also restrict the
influence of user-defined attributes to particular queues, hosts, or both.

User-defined attributes are a named collection of attributes with the corresponding
definitions as to how the grid engine software is to handle these attributes. You can
attach one or more user-defined attributes to a queue, to a host, or globally to all hosts
in the cluster. Use the complex_values parameter for the queue configuration and
the host configuration. For more information, see “Configuring Queues” on page 45
and “Configuring Hosts” on page 24. The attributes defined become available to the
queue and to the host, respectively, in addition to the default resource attributes.

The complex_values parameter in the queue configuration and the host
configuration must set concrete values for user-defined attributes that are associated
with queues and hosts.

For example, say the user-defined resource attributes permas, pamcrash, and
nastran, shown in the following figure, are defined.

72 N1 Grid Engine 6 Administration Guide • May 2005

For at least one or more queues, add the resource attributes to the list of associated
user-defined attributes as shown in the Complex tab of the Modify queue-name dialog
box. For details on how to configure queues, see “Configuring Queues” on page 45
and its related sections.

Then the displayed queue is configured to manage up to 10 licenses of the software
package permas. Furthermore, the attribute permas becomes requestable for jobs, as
expressed in the Available Resources list in the Requested Resources dialog box.

Chapter 3 • Configuring Complex Resource Attributes 73

For details about how to submit jobs, see Chapter 3, “Submitting Jobs,” in N1 Grid
Engine 6 User’s Guide.

Alternatively, the user could submit jobs from the command line and could request
attributes as follows:

% qsub -l pm=1 permas.sh

Note – You can use the pm shortcut instead of the full attribute name permas.

Consequently, the only eligible queues for these jobs are the queues that are associated
with the user-defined resource attributes and that have permas licenses configured
and available.

Consumable Resources
Consumable resources provide an efficient way to manage limited resources such as
available memory, free space on a file system, network bandwidth, or floating software
licenses. Consumable resources are also called consumables. The total available capacity
of a consumable is defined by the administrator. The consumption of the
corresponding resource is monitored by grid engine software internal bookkeeping.
The grid engine system accounts for the consumption of this resource for all running
jobs. Jobs are dispatched only if the internal bookkeeping indicates that sufficient
consumable resources are available.

Consumables can be combined with default load parameters or user-defined load
parameters. Load values can be reported for consumable attributes. Conversely, the
Consumable flag can be set for load attributes. Load measures the availability of the
resource. Consumable resource management takes both the load and the internal
bookkeeping into account, ensuring that neither exceeds a given limit. For more
information about load parameters, see “Load Parameters” on page 87.

74 N1 Grid Engine 6 Administration Guide • May 2005

To enable consumable resource management, you must define the total capacity of a
resource. You can define resource capacity globally for the cluster, for specified hosts,
and for specified queues. These categories can supersede each other in the given order.
Thus a host can restrict availability of a global resource, and a queue can restrict host
resources and global resources.

You define resource capacities by using the complex_values attribute in the queue
and host configurations. The complex_values definition of the global host
specifies global cluster consumable settings. For more information, see the
host_conf(5) and queue_conf(5) man pages, as well as “Configuring Queues”
on page 45 and “Configuring Hosts” on page 24.

To each consumable attribute in a complex_values list, a value is assigned that
denotes the maximum available amount for that resource. The internal bookkeeping
subtracts from this total the assumed resource consumption by all running jobs as
expressed through the jobs’ resource requests.

A parallel job consumes as many consumable resources as it consumes job slots. For
example, the following command consumes a total of 800 Mbytes of memory:

qsub -l mem=100M -pe make=8

Memory usage is split across the queues and hosts on which the job runs. If four tasks
run on host A and four tasks run on host B, the job consumes 400 Mbytes on each host.

Setting Up Consumable Resources
Only numeric attributes can be configured as consumables. Numeric attributes are
attributes whose type is INT, DOUBLE, MEMORY, or TIME.

In the QMON Main Control window, click the Complex Configuration button. The
Complex Configuration dialog box appears, as shown in Figure 3–1.

To enable the consumable management for an attribute, set the Consumable flag for
the attribute in the complex configuration. For example, the following figure shows
that the Consumable flag is set for the virtual_free memory resource.

Chapter 3 • Configuring Complex Resource Attributes 75

FIGURE 3–2 Complex Configuration Dialog Box: virtual_free

Set up other consumable resources, guided by the examples detailed in the following
sections:

� “Example 1: Floating Software License Management” on page 77
� “Example 2: Space Sharing for Virtual Memory” on page 81
� “Example 3: Managing Available Disk Space” on page 84

Then, for each queue or host for which you want the grid engine software to do the
required capacity planning, you must define the capacity in a complex_values list.
An example is shown in the following figure, where 1 Gbyte of virtual memory is
defined as the capacity value of the current host.

FIGURE 3–3 Add/Modify Exec Host: virtual_free

76 N1 Grid Engine 6 Administration Guide • May 2005

The virtual memory requirements of all jobs running concurrently in any queue on
that host are accumulated. The requirements are then subtracted from the capacity of 1
Gbyte to determine available virtual memory. If a job request for virtual_free
exceeds the available amount, the job is not dispatched to a queue on that host.

Note – Jobs can be forced to request a resource and thus to specify their assumed
consumption through the FORCED value of the Requestable parameter.

For consumable attributes that are not explicitly requested by the job, the
administrator can predefine a default value for resource consumption. Doing so is
meaningful only if requesting the attribute is not forced, as explained in the previous
note. 200 Mbytes is set as the default value.

Examples of Setting Up Consumable Resources
Use the following examples to guide you in setting up consumable resources for your
site.

Example 1: Floating Software License Management

Suppose you are using the software package pam-crash in your cluster, and you
have access to 10 floating licenses. You can use pam-crash on every system as long as
no more than 10 invocations of the software are active. The goal is to configure the
grid engine system in a way that prevents scheduling pam-crash jobs while all 10
licenses are occupied by other running pam-crash jobs.

With consumable resources, you can achieve this goal easily. First you must add the
number of available pam-crash licenses as a global consumable resource to the
complex configuration.

Chapter 3 • Configuring Complex Resource Attributes 77

The name of the consumable attribute is set to pam-crash. You can use pc as a
shortcut in the qalter -l, qselect -l, qsh -l, qstat -l, or qsub -l commands
instead.

The attribute type is defined to be an integer counter.

The Requestable flag is set to FORCED. This setting specifies that users must request
how many pam-crash licenses that their job will occupy when the job is submitted.

The Consumable flag specifies that the attribute is a consumable resource.

The setting Default is irrelevant since Requestable is set to FORCED, which means that
a request value must be received for this attribute with any job.

Consumables receive their value from the global, host, or queue configurations
through the complex_values lists. See the host_conf(5) and queue_conf(5) man
pages, as well as “Configuring Queues” on page 45 and “Configuring Hosts” on page
24.

To activate resource planning for this attribute and for the cluster, the number of
available pam-crash licenses must be defined in the global host configuration.

78 N1 Grid Engine 6 Administration Guide • May 2005

The value for the attribute pam-crash is set to 10, corresponding to 10 floating
licenses.

Note – The table Consumables/Fixed Attributes corresponds to the
complex_values entry that is described in the host configuration file format
host_conf(5).

Assume that a user submits the following job:

% qsub -l pc=1 pam-crash.sh

The job starts only if fewer than 10 pam-crash licenses are currently occupied. The
job can run anywhere in the cluster, however, and the job occupies one pam-crash
license throughout its run time.

One of your hosts in the cluster might not be able to be included in the floating license.
For example, you might not have pam-crash binaries for that host. In such a case,
you can exclude the host from the pam-crash license management. You can exclude
the host by setting to zero the capacity that is related to that host for the consumable
attribute pam-crash. Use the Execution Host tab of the Host Configuration dialog
box.

Chapter 3 • Configuring Complex Resource Attributes 79

Note – The pam-crash attribute is implicitly available to the execution host because
the global attributes of the complex are inherited by all execution hosts. By setting the
capacity to zero, you could also restrict the number of licenses that a host can manage
to a nonzero value such as two. In this case, a maximum of two pam-crash jobs could
coexist on that host.

Similarly, you might want to prevent a certain queue from running pam-crash jobs.
For example, the queue might be an express queue with memory and CPU-time limits
not suitable for pam-crash. In this case, set the corresponding capacity to zero in the
queue configuration, as shown in the following figure.

80 N1 Grid Engine 6 Administration Guide • May 2005

Note – The pam-crash attribute is implicitly available to the queue because the global
attributes of the complex are inherited by all queues.

Example 2: Space Sharing for Virtual Memory

Administrators must often tune a system to avoid performance degradation caused by
memory oversubscription, and consequently swapping of a machine. The grid engine
software can support you in this task through the Consumable Resources facility.

The standard load parameter virtual_free reports the available free virtual
memory, that is, the combination of available swap space and the available physical
memory. To avoid swapping, the use of swap space must be minimized. In an ideal
case, all the memory required by all processes running on a host should fit into
physical memory.

The grid engine software can guarantee the availability of required memory for all
jobs started through the grid engine system, given the following assumptions and
configurations:

� virtual_free is configured as a consumable resource, and its capacity on each
host is set to the available physical memory, or lower.

� Jobs request their anticipated memory usage, and the value that jobs request is not
exceeded during run time.

Chapter 3 • Configuring Complex Resource Attributes 81

An example of a possible virtual_free resource definition is shown in Figure 3–2.
A corresponding execution host configuration for a host with 1 Gbyte of main memory
is shown in Figure 3–3.

In the virtual_free resource definition example, the Requestable flag is set to YES
instead of to FORCED, as in the example of a global configuration. This means that
users need not indicate the memory requirements of their jobs. The value in the
Default field is used if an explicit memory request is missing. The value of 1 Gbyte as
default request in this case means that a job without a request is assumed to occupy all
available physical memory.

Note – virtual_free is one of the standard load parameters of the grid engine
system. The additional availability of recent memory statistics is taken into account
automatically by the system in the virtual memory capacity planning. If the load
report for free virtual memory falls below the value obtained by grid engine software
internal bookkeeping, the load value is used to avoid memory oversubscription.
Differences in the reported load values and the internal bookkeeping can occur easily
if jobs are started without using the grid engine system.

If you run different job classes with different memory requirements on one machine,
you might want to partition the memory that these job classes use. This functionality
is called space sharing. You can accomplish this functionality by configuring a queue for
each job class. Then you assign to each queue a portion of the total memory on that
host.

In the example, the queue configuration attaches half of the total memory that is
available to host carc to the queue fast.q for the host carc. Hence the accumulated
memory consumption of all jobs that are running in queue fast.q on host carc
cannot exceed 500 Mbytes. Jobs in other queues are not taken into account.
Nonetheless, the total memory consumption of all running jobs on host carc cannot
exceed 1 Gbyte.

82 N1 Grid Engine 6 Administration Guide • May 2005

Note – The attribute virtual_free is available to all queues through inheritance
from the complex.

Users might submit jobs to a system configured similarly to the example in either of
the following forms:

% qsub -l vf=100M honest.sh

% qsub dont_care.sh

The job submitted by the first command can be started as soon as at least 100 Mbytes
of memory are available. This amount is taken into account in the capacity planning
for the virtual_free consumable resource. The second job runs only if no other job
is on the system, as the second job implicitly requests all the available memory. In
addition, the second job cannot run in queue fast.q because the job exceeds the
queue’s memory capacity.

Chapter 3 • Configuring Complex Resource Attributes 83

Example 3: Managing Available Disk Space

Some applications need to manipulate huge data sets stored in files. Such applications
therefore depend on the availability of sufficient disk space throughout their run time.
This requirement is similar to the space sharing of available memory, as discussed in
the preceding example. The main difference is that the grid engine system does not
provide free disk space as one of its standard load parameters. Free disk space is not a
standard load parameter because disks are usually partitioned into file systems in a
site-specific way. Site-specific partitioning does not allow identifying the file system of
interest automatically.

Nevertheless, available disk space can be managed efficiently by the system through
the consumables resources facility. You should use the host resource attribute
h_fsize for this purpose.

First, the attribute must be configured as a consumable resource, as shown in the
following figure.

In the case of local host file systems, a reasonable capacity definition for the disk space
consumable can be put in the host configuration, as shown in the following figure.

84 N1 Grid Engine 6 Administration Guide • May 2005

Submission of jobs to a grid engine system that is configured as described here works
similarly to the previous examples:

% qsub -l hf=5G big-sort.sh

The reason the h_fsize attribute is recommended here is that h_fsize also is used
as the hard file size limit in the queue configuration. The file size limit restricts the
ability of jobs to create files that are larger than what is specified during job
submission. The qsub command in this example specifies a file size limit of 5 Gbytes.
If the job does not request the attribute, the corresponding value from the queue
configuration or host configuration is used. If the Requestable flag for h_fsize is set
to FORCED in the example, a request must be included in the qsub command. If the
Requestable flag is not set, a request is optional in the qsub command.

By using the queue limit as the consumable resource, you control requests that the
user specifies instead of the real resource consumption by the job scripts. Any violation
of the limit is sanctioned, which eventually aborts the job. The queue limit ensures that
the resource requests on which the grid engine system internal capacity planning is
based are reliable. See the queue_conf(5) and the setrlimit(2) man pages for
details.

Note – Some operating systems provide only per-process file size limits. In this case, a
job might create multiple files with a size up to the limit. On systems that support
per-job file size limitation, the grid engine system uses this functionality with the
h_fsize attribute. See the queue_conf(5) man page for further details.

You might want applications that are not submitted to the grid engine system to
occupy disk space concurrently. If so, the internal bookkeeping might not be sufficient
to prevent application failure due to lack of disk space. To avoid this problem, you can
periodically receive statistics about disk space usage, which indicates total disk space
consumption, including the one occurring outside the grid engine system.

Chapter 3 • Configuring Complex Resource Attributes 85

The load sensor interface enables you to enhance the set of standard load parameters
with site-specific information, such as the available disk space on a file system. See
“Adding Site-Specific Load Parameters” on page 87 for more information.

By adding an appropriate load sensor and reporting free disk space for h_fsize, you
can combine consumable resource management and resource availability statistics. The
grid engine system compares job requirements for disk space with the available
capacity and with the most recent reported load value. Available capacity is derived
from the internal resource planning. Jobs get dispatched to a host only if both criteria
are met.

Configuring Complex Resource Attributes From
the Command Line
To configure the complex from the command line, type the following command with
appropriate options:

% qconf options

See the qconf(1) man page for a detailed definition of the qconf command format
and the valid syntax.

The following options enable you to modify the grid engine system complex:

� -mc – The -mc option opens an editor filled in with a template complex
configuration or with an existing complex configuration for modification.

� -Mc – The qconf -Mc option takes a complex configuration file as an argument.

The following command prints the current complex configuration to the standard
output stream in the file format defined in the complex(5) man page:

% qconf -sc

A sample output is shown in the following example.

EXAMPLE 3–1 qconf -sc Sample Output

#name shortcut type relop requestable consumable default urgency
#---
nastran na INT <= YES NO 0 0
pam-crash pc INT <= YES YES 1 0
permas pm INT <= FORCED YES 1 0

#---- # start a comment but comments are not saved across edits -----------

86 N1 Grid Engine 6 Administration Guide • May 2005

Load Parameters
This section explains the grid engine system’s load parameters. Instructions are
included for writing your own load sensors.

Default Load Parameters
By default, sge_execd periodically reports several load parameters and their
corresponding values to sge_qmaster. These values are stored in the sge_qmaster
internal host object, which is described in “About Hosts and Daemons” on page 20.
However, the values are used internally only if a complex resource attribute with a
corresponding name is defined. Such complex resource attributes contain the
definition as to how load values are to be interpreted. See “Assigning Resource
Attributes to Queues, Hosts, and the Global Cluster” on page 70 for more information.

After the primary installation, a standard set of load parameters is reported. All
attributes required for the standard load parameters are defined as host-related
attributes. Subsequent releases of N1 Grid Engine 6 software may provide extended
sets of default load parameters, therefore the set of load parameters that is reported by
default is documented in the file sge-root/doc/load_parameters.asc.

How load attributes are defined determines their accessibility. By defining load
parameters as global resource attributes, you make them available for the entire
cluster and for all hosts. By defining load parameters as host-related attributes, you
provide the attributes for all hosts but not for the global cluster.

Note – Do not define load attributes as queue attributes. Queue attributes would not be
available to any host nor to the cluster.

Adding Site-Specific Load Parameters
The set of default load parameters might not be adequate to completely describe the
load situation in a cluster. This possibility is especially likely with respect to
site-specific policies, applications, and configurations. Therefore grid engine software
provides the means to extend the set of load parameters. For this purpose,
sge_execd offers an interface to feed load parameters and the current load values
into sge_execd. Afterwards, these parameters are treated like the default load
parameters. As for the default load parameters, corresponding attributes must be
defined in the complex for the site-specific load parameters to become effective. See
“Default Load Parameters” on page 87 for more information.

Chapter 3 • Configuring Complex Resource Attributes 87

Writing Your Own Load Sensors
To feed sge_execd with additional load information, you must supply a load sensor.
The load sensor can be a script or a binary executable. In either case, the load sensor’s
handling of the standard input and standard output streams and its control flow must
comply with the following rules:

� The load sensor must be written as an infinite loop that waits at a certain point for
input from STDIN.

� If the string quit is read from STDIN, the load sensor is supposed to exit.
� As soon as an end-of-line is read from STDIN, a retrieval cycle for loading data is

supposed to start.

The load sensor then performs whatever operation is necessary to compute the desired
load figures. At the end of the cycle, the load sensor writes the result to STDOUT.

Note – If load retrieval takes a long time, the load measurement process can be started
immediately after sending a load report. When quit is received, the load values are
then available to be sent.

Load Sensor Rules Format
The format for the load sensor rules is as follows:

� A load value report starts with a line that contains nothing but the word begin.
� Individual load values are separated by newlines.
� Each load value consists of three parts separated by colons (:) and contains no

blanks.
� The first part of a load value is either the name of the host for which load is

reported or the special name global.
� The second part of the load sensor is the symbolic name of the load value, as

defined in the complex. See the complex(5) man page for details. If a load value is
reported for which no entry in the complex exists, the reported load value is not
used.

� The third part of the load sensor is the measured load value. A load value report
ends with a line that contains the word end.

Example of a Load Sensor Script
The following example shows a load sensor. The load sensor is a Bourne shell script.

EXAMPLE 3–2 Load Sensor – Bourne Shell Script

#!/bin/sh

88 N1 Grid Engine 6 Administration Guide • May 2005

EXAMPLE 3–2 Load Sensor – Bourne Shell Script (Continued)

myhost=‘uname -n‘

while [1]; do
wait for input
read input
result=$?
if [$result != 0]; then

exit 1
fi
if [$input = quit]; then

exit 0
fi
#send users logged in
logins=‘who | cut -f1 -d" " | sort | uniq | wc -l | sed "s/^ *//"‘
echo begin
echo "$myhost:logins:$logins"
echo end

done

we never get here

exit 0

Save this script to the file load.sh. Assign executable permission to the file with the
chmod command. To test the script interactively from the command line, type
load.sh and repeatedly press the Return key.

As soon as the procedure works, you can install it for any execution host. To install the
procedure, configure the load sensor path as the load_sensor parameter for the
cluster configuration, global configuration, or the host-specific configuration. See
“Basic Cluster Configuration” on page 40 or the sge_conf(5) man page for more
information.

The corresponding QMON window might look like the following figure:

Chapter 3 • Configuring Complex Resource Attributes 89

The reported load parameter logins is usable as soon as a corresponding attribute is
added to the complex. The required definition might look like the last table entry
shown in the following figure.

90 N1 Grid Engine 6 Administration Guide • May 2005

Chapter 3 • Configuring Complex Resource Attributes 91

92 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 4

Managing User Access

This chapter contains information about managing user accounts and other related
accounts. Topics in this chapter include the following:

� User access
� Projects and project access
� Path-aliasing
� Default requests

In addition to the background information, this chapter includes detailed instructions
on how to accomplish the following tasks:

� “Configuring Manager Accounts With QMON” on page 96
� “Configuring Manager Accounts From the Command Line” on page 96
� “Configuring Operator Accounts With QMON” on page 97
� “Configuring Operator Accounts From the Command Line” on page 97
� “Configuring User Access Lists With QMON” on page 98
� “Configuring User Access Lists From the Command Line” on page 100
� “Configuring User Objects With QMON” on page 101
� “Configuring User Objects From the Command Line” on page 103
� “Using Path Aliasing” on page 106
� “Defining Projects With QMON” on page 104
� “Defining Projects From the Command Line” on page 106

93

Setting Up a User
You need to perform the following tasks to set up a user for the grid engine system:

� Assign required logins.

To submit jobs from host A for execution on host B, users must have identical
accounts on both hosts. The accounts must have identical user names. No login is
required on the machine where sge_qmaster runs.

� Set access permissions.

The grid engine software enables you to restrict user access to the entire cluster, to
queues, and to parallel environments. See “Configuring Users” on page 101 for a
detailed description.

In addition, you can grant users permission to suspend or enable certain queues.
See “Configuring Owners Parameters” on page 60 for more information.

� Declare a Grid Engine System user.

In order to add users to the share tree or to define functional or override policies
for users, you must declare those users to the grid engine system. For more
information, see “Configuring Policy-Based Resource Management With QMON”
on page 127 and “Configuring User Objects With QMON” on page 101.

� Set up project access.

If projects are used for the definition of share-based, functional, or override
policies, you should give the user access to one or more projects. Otherwise the
user’s jobs might end up in the lowest possible priority class, which would result
in the jobs having access to very few resources. See “Configuring Policy-Based
Resource Management With QMON” on page 127 for more information.

� Set file access restrictions.

Users of the grid engine system must have read access to the directory
sge-root/cell/common.

Before a job starts, the execution daemon creates a temporary working directory for
the job and changes ownership of the directory to the job owner. The execution
daemon runs as root. The temporary directory is removed as soon as the job
finishes. The temporary working directory is created under the path defined by the
queue configuration parameter tmpdir. See the queue_conf(5) man page for
more information.

Make sure that temporary directories can be created under the tmpdir location.
The directories should be set to grid engine system user ownership. Users should
be able to write to the temporary directories.

� Set up site dependencies.

By definition, batch jobs do not have a terminal connection. Therefore UNIX
commands like stty in the command interpreter’s startup resource file (for
example, .cshrc for csh) can lead to errors. Check for the occurrence of stty in

94 N1 Grid Engine 6 Administration Guide • May 2005

startup files. Avoid the commands that are described in Chapter 6, “Verifying the
Installation,” in N1 Grid Engine 6 Installation Guide.

Because batch jobs are usually run off line, only two ways exist to notify a job
owner about error events and the like. One way is to log the error messages to a
file, the other way is to send email.

Under some rare circumstances, for example, if the error log file can’t be opened,
email is the only way to directly notify the user. Error messages are logged to the
grid engine system log file anyway, but usually the user would not look at the
system log file. Therefore the email system should be properly installed for grid
engine users.

� Set up grid engine system definition files.

You can set up the following definition files for grid engine users:

� qmon – Resource file for the grid engine system GUI. See “Customizing
QMON” in N1 Grid Engine 6 User’s Guide.

� sge_aliases – Aliases for the path to the current working directory. See
“Using Path Aliasing” on page 106.

� sge_request – Default request definition file. See “Configuring Default
Requests” on page 108.

Configuring User Access
The grid engine system has the following four categories of users:

� Managers. Managers have full capabilities to manipulate the grid engine system.
By default, the superusers of the master host and of any machine that hosts a
queue instance have manager privileges.

� Operators. Operators can perform many of the same commands as managers,
except that operators cannot add, delete, or modify queues.

� Owners. Queue owners are restricted to suspending and resuming, or disabling
and enabling, the queues that they own. These privileges are necessary for
successful use of qidle. Users are commonly declared to be owners of the queue
instances that reside on their desktop workstations.

� Users. Users have certain access permissions, as described in “Configuring Users”
on page 101, but users have no cluster or queue management capabilities.

The following sections describe each category in more detail.

Configuring Manager Accounts
You can configure Manager accounts with QMON or from the command line.

Chapter 4 • Managing User Access 95

Configuring Manager Accounts With QMON

On the QMON Main Control window, click the User Configuration button. The Manager
tab appears, which enables you to declare which accounts are allowed to run any
administrative command.

This tab lists all accounts that are already declared to have administrative permission.

To add a new manager account, type its name in the field above the manager account
list, and then click Add or press the Return key.

To delete a manager account, select it, and then click Delete.

Configuring Manager Accounts From the Command Line
To configure a manager account from the command line, type the following command
with appropriate options:

qconf options

The following options are available:

� qconf -am user-name [,...]

The -am option (add manager) adds one or more users to the list of grid engine
system managers. By default, the root accounts of all trusted hosts are grid engine
system managers. See “About Hosts and Daemons” on page 20 for more
information.

� qconf -dm user-name [,...]

The -dm option (delete manager) deletes the specified users from the list of grid
engine system managers.

� qconf -sm

96 N1 Grid Engine 6 Administration Guide • May 2005

The -sm option (show managers) displays a list of all grid engine system
managers.

Configuring Operator Accounts
You can configure operator accounts with QMON or from the command line.

Configuring Operator Accounts With QMON

On the QMON Main Control window, click the User Configuration button, and then
click the Operator tab.

The Operator tab enables you to declare which accounts are allowed to have restricted
administrative permission, unless the accounts are also declared to be manager
accounts. See “Configuring Manager Accounts With QMON” on page 96.

This tab lists all accounts that are already declared to have operator permission.

To add a new operator account, type its name in the field above the operator account
list, and then click Add or press the Return key.

To delete an operator account, select it, and then click Delete.

Configuring Operator Accounts From the Command Line
To configure an operator account from the command line, type the following
command with appropriate options:

qconf options

Chapter 4 • Managing User Access 97

The following options are available:

� qconf -ao user-name[,...]

The -ao option (add operator) adds one or more users to the list of grid engine
system operators.

� qconf -do user-name[,...]

The -do option (delete operator) deletes the specified users from the list of grid
engine system operators.

� qconf -so

The -so option (show operators) displays a list of all grid engine system operators.

Configuring User Access Lists
Any user with a valid login ID on at least one submit host and one execution host can
use the grid engine system. However, grid engine system managers can prohibit
access for certain users to certain queues or to all queues. Furthermore, managers can
restrict the use of facilities such as specific parallel environments. See “Configuring
Parallel Environments” on page 155 for more information.

In order to define access permissions, you must define user access lists, which are made
up of named sets of users. You use user names and UNIX group names to define user
access lists. The user access lists are then used either to deny or to allow access to a
specific resource in any of the following configurations:

� Cluster configuration – see “Basic Cluster Configuration” on page 40
� Queue configuration – see “Configuring Subordinate Queues” on page 57
� Configuring of parallel environment interfaces – see “Configuring Parallel

Environments With QMON” on page 156.

Configuring User Access Lists With QMON

On the QMON Main Control window, click the User Configuration button, and then
click the Userset tab. The Userset tab appears.

98 N1 Grid Engine 6 Administration Guide • May 2005

FIGURE 4–1 Userset Tab

In the grid engine system, a userset can be either an Access List or a Department, or
both. The two check boxes below the Usersets list indicate the type of the selected
userset. This section describes access lists. Departments are explained in “Defining
Usersets As Projects and Departments” on page 101.

The Usersets lists displays all available access lists. To display the contents of an access
list, select it. The contents are displayed in the Users/Groups list.

Note – The names of groups are prefixed with an @ sign.

To add a new userset, click Add.

To modify an existing userset, select it, and then click Modify.

To delete a userset, select it, and then click Delete.

When you click Add or Modify, an Access List Definition dialog box appears.

FIGURE 4–2 Access List Definition Dialog Box

Chapter 4 • Managing User Access 99

To add a new access list definition, type the name of the access list in the Userset
Name field. If you are modifying an existing access list, its name is displayed in the
Userset Name field.

To add a new user or group to the access list, type a user or group name in the
User/Group field. Be sure to prefix group names with an @ sign.

The Users/Groups list displays all currently defined users and groups.

To delete a user or group from the Users/Groups list, select it, and then click the trash
icon.

To save your changes and close the dialog box, click OK. Click Cancel to close the
dialog box without saving changes.

Configuring User Access Lists From the Command Line
To configure user access lists from the command line, type the following command
with appropriate options.

qconf options

The following options are available:

� qconf -au user-name[,...]access-list-name[,...]

The -au option (add user) adds one or more users to the specified access lists.

� qconf -Au filename

The -Au option (add user access list from file) uses a configuration file, filename, to
add an access list.

� qconf -du user-name[,...] access-list-name [,...]

The -du option (delete user) deletes one or more users from the specified access
lists.

� qconf -dul access-list-name[,...]

The -dul option (delete user list) completely removes userset lists.

� qconf -mu access-list-name

The -mu option (modify user access list) modifies the specified access lists.

� qconf -Mu filename

The -Mu option (modify user access list from file) uses a configuration file, filename,
to modify the specified access lists.

� qconf -su access-list-name[,...]

The -su option (show user access list) displays the specified access lists.

� qconf -sul

The -sul option (show user access lists) displays all access lists currently defined.

100 N1 Grid Engine 6 Administration Guide • May 2005

Defining Usersets As Projects and Departments
Usersets are also used to define grid engine system projects and departments. For
details about projects, see “Defining Projects” on page 103.

Departments are used for the configuration of the functional policy and the override
policy. Departments differ from access lists in that a user can be a member of only one
department, whereas one user can be included in multiple access lists. For more
details, see “Configuring the Functional Policy” on page 147 and “Configuring the
Override Policy” on page 151.

A Userset is identified as a department by the Department flag, which is shown in
Figure 4–1 and Figure 4–2. A Userset can be defined as both a department and an
access list at the same time. However, the restriction of only a single appearance by
any user in any department applies.

Configuring Users
You must declare user names before you define the share-based, functional, or
override policies for users. See “Configuring Policy-Based Resource Management With
QMON” on page 127.

If you do not want to explicitly declare user names before you define policies, the grid
engine system can automatically create users for you, based on predefined default
values. The automatic creation of users can significantly reduce the administrative
burden for sites with many users.

To have the system create users automatically, set the Enforce User parameter on the
Cluster Settings dialog box to Auto. To set default values for automatically created
users, specify values for the following Automatic User Defaults on the Cluster Settings
dialog box:

� Override Tickets
� Functional Shares
� Default Project
� Delete Time

For more information about the cluster configuration, see “Basic Cluster
Configuration” on page 40.

Configuring User Objects With QMON

On the QMON Main Control window, click the User Configuration button, and then
click the User tab. The User tab looks like the following figure:

Chapter 4 • Managing User Access 101

To add a new user, type a user name in the field above the User list, and then click
Add or press the Return key.

To delete a user, select the user name in the User list, and then click Delete.

The Delete Time column is read-only. The column indicates the time at which
automatically created users are to be deleted from the grid engine system. Zero
indicates that the user will never be deleted.

You can assign a default project to each user. The default project is attached to each job
that users submit, unless those users request another project to which they have
access. For details about projects, see “Defining Projects” on page 103.

To assign a default project, select a user, and then click the Default Project column
heading. A Project Selection dialog box appears.

Select a project for the highlighted user entry.

Click OK to assign the default project and close the dialog box. Click Cancel to close
the dialog box without assigning the default project.

102 N1 Grid Engine 6 Administration Guide • May 2005

Configuring User Objects From the Command Line
To configure user objects from the command line, type the following command with
appropriate options:

qconf options

The following options are available:

� qconf -auser

The -auser option (add user) opens a template user configuration in an editor.
See the user(5) man page. The editor is either the default vi editor or the editor
specified by the EDITOR environment variable. After you save your changes and
exit the editor, the changes are registered with sge_qmaster.

� qconf -Auser filename

The -Auser option (add user from file) parses the specified file and adds the user
configuration.

The file must have the format of the user configuration template.

� qconf -duser user-name[,...]

The -duser option (delete user) deletes one or more user objects.

� qconf -muser user-name

The -muser option (modify user) enables you to modify an existing user entry.
The option loads the user configuration in an editor. The editor is either the default
vi editor or the editor specified by the EDITOR environment variable. After you
save your changes and exit the editor, the changes are registered with
sge_qmaster.

� qconf -Muser filename

The -Muser option (modify user from file) parses the specified file and modifies
the user configuration.

The file must have the format of the user configuration template.

� qconf -suser user-name

The -suser option (show user) displays the configuration of the specified user.

� qconf -suserl

The -suserl option (show user list) displays a list of all currently defined users.

Defining Projects
Projects provide a means to organize joint computational tasks from multiple users. A
project also defines resource usage policies for all jobs that belong to such a project.

Chapter 4 • Managing User Access 103

Projects are used in three scheduling policy areas:

� Share-based, when shares are assigned to projects – see “Configuring the
Share-Based Policy” on page 135

� Functional, when projects receive a percentage of the functional tickets – see
“Configuring the Functional Policy” on page 147

� Override, when an administrator grants override tickets to a project – see
“Configuring the Override Policy” on page 151

Projects must be declared before they can be used in any of the three policies.

Grid engine system managers define projects by giving them a name and some
attributes. Grid engine users can attach a job to a project when they submit the job.
Attachment of a job to a project influences the job’s dispatching, depending on the
project’s share of share-based, functional, or override tickets.

Defining Projects With QMON
Grid engine system managers can define and update definitions of projects by using
the Project Configuration dialog box.

To define a project, on the QMON Main Control window, click the Project Configuration
button. The Project Configuration dialog box appears.

FIGURE 4–3 Project Configuration Dialog Box

The currently defined projects are displayed in the Projects list.

The project definition of a selected project is displayed under Configuration.

To delete a project immediately, select it, and then click Delete.

To add a new project, click Add. To modify a project, select it, and then click Modify.
Clicking Add or Modify opens the Add/Modify Project dialog box.

104 N1 Grid Engine 6 Administration Guide • May 2005

The name of the selected project is displayed in the Name field. The project defines the
access lists of users who are permitted access or who are denied access to the project.

Users who are included in any of the access lists under User Lists have permission to
access the project. Users who are included in any of the access lists under Xuser Lists
are denied access to the project. See “Configuring Users” on page 101 for more
information.

If both lists are empty, all users can access the project. Users who are included in
different access lists that are attached to both the User Lists and the Xuser Lists are
denied access to the project.

You can add access lists to User Lists or Xuser Lists, and you can remove access lists
from either list. To do so, click the button at the right of the User Lists or the Xuser
Lists.

The Select Access Lists dialog box appears.

The Select Access Lists dialog box displays all currently defined access lists under
Available Access Lists. The dialog box displays the attached lists under Chosen Access
Lists. You can select access lists in either list. You can move access lists from one list to
the other by using the red arrows.

Click OK to save your changes and close the dialog box. Click Cancel to close the
dialog box without saving your changes.

Chapter 4 • Managing User Access 105

Defining Projects From the Command Line
To define projects from the command line, type the following command with
appropriate options:

qconf options

The following options are available:

� qconf -aprj

The -aprj option (add project) opens a template project configuration in an editor.
See the project(5) man page. The editor is either the default vi editor or the
editor specified by the EDITOR environment variable. After you save your changes
and exit the editor, the changes are registered with sge_qmaster.

� qconf -Aprj filename

The -Aprj option (add project from file) parses the specified file and adds the new
project configuration. The file must have the format of the project configuration
template.

� qconf -dprj project-name[,...]

The -dprj option (delete project) deletes one or more projects.
� qconf -mprj project-name

The -mprj option (modify project) enables you to modify an existing user entry.
The option loads the project configuration in an editor. The editor is either the
default vi editor or the editor specified by the EDITOR environment variable. After
you save your changes and exit the editor, the changes are registered with
sge_qmaster.

� qconf -Mprj filename

The -Mprj option (modify project from file) parses the specified file and modifies
the existing project configuration. The file must have the format of the project
configuration template.

� qconf -sprj project-name

The -sprj option (show project) displays the configuration of a particular project.
� qconf -sprjl

The -sprjl option (show project list) displays a list of all currently defined
projects.

Using Path Aliasing
In Solaris and in other networked UNIX environments, users often have the same
home directory, or part of it, on different machines. For example, the directory might
be made accessible across NFS. However, sometimes the home directory path is not
exactly the same on all machines.

106 N1 Grid Engine 6 Administration Guide • May 2005

For example, consider user home directories that are available across NFS and
automounter. A user might have a home directory /home/foo on the NFS server. This
home directory is accessible under this path on all properly installed NFS clients that
are running automounter. However, /home/foo on a client is just a symbolic link to
/tmp_mnt/home/foo. /tmp_mnt/home/foo is the actual location on the NFS server
from where automounter physically mounts the directory.

A user on a client host might use the qsub -cwd command to submit a job from
somewhere within the home directory tree. The -cwd flag requires the job to be run in
the current working directory. However, if the execution host is the NFS server, the
grid engine system might not be able to locate the current working directory on that
host. The reason is that the current working directory on the submit host is
/tmp_mnt/home/foo, which is the physical location on the submit host. This path is
passed to the execution host. However, if the execution host is the NFS server, the path
cannot be resolved, because its physical home directory path is /home/foo, not
/tmp_mnt/home/foo.

Other occasions that can cause similar problems are the following:

� Fixed NFS mounts with different mount point paths on different machines. An
example is the mounting of home directories under /usr/people on one host and
under /usr/users on another host.

� Symbolic links from outside into a network-available file system

To prevent such problems, grid engine software enables both the administrator and
the user to configure a path aliasing file. The locations of two such files are as follows:

� sge-root/cell/common/sge_aliases — A global cluster path-aliasing file for the
cluster

� $HOME/.sge_aliases — A user-specific path-aliasing file

Note – Only an administrator should modify the global file.

Format of Path-Aliasing Files
Both path-aliasing files share the same format:

� Blank lines and lines that begin with a # sign are skipped.

� Each line, other than a blank line or a line preceded by #, must contain four strings
separated by any number of blanks or tabs.

The first string specifies a source path, the second a submit host, the third an
execution host, and the fourth the source path replacement.

� Both the submit host and the execution host strings can be an * (asterisk), which
matches any host.

Chapter 4 • Managing User Access 107

How Path-Aliasing Files Are Interpreted
The files are interpreted as follows:

1. After qsub retrieves the physical current working directory path, the global
path-aliasing file is read, if present. The user path-aliasing file is read afterwards, as
if the user path-aliasing file were appended to the global file.

2. Lines not to be skipped are read from the top of the file, one by one. The
translations specified by those lines are stored, if necessary.

A translation is stored only if both of the following conditions are true:

� The submit host string matches the host on which the qsub command is run.
� The source path forms the initial part either of the current working directory or

of the source path replacements already stored.

3. After both files are read, the stored path-aliasing information is passed to the
execution host along with the submitted job.

4. On the execution host, the path-aliasing information is evaluated. The source path
replacement replaces the leading part of the current working directory if the
execution host string matches the execution host. In this case, the current working
directory string is changed. To be applied, subsequent path aliases must match the
replaced working directory path.

Example 4–1 is an example how the NFS automounter problem described earlier can be
resolved with an aliases file entry.

EXAMPLE 4–1 Example of Path-Aliasing File

cluster global path aliases file
src-path subm-host exec-host dest-path

/tmp_mnt/ * * /

Configuring Default Requests
Batch jobs are normally assigned to queues with respect to a request profile. The user
defines a request profile for a particular job. The user assembles a set of requests that
must be met to successfully run the job. The scheduler considers only those queues
that satisfy the set of requests for this job.

If the user does not specify any requests for a job, the scheduler considers any queue
to which the user has access without further restrictions. However, grid engine
software enables you to configure default requests that define resource requirements for
jobs even when the user does not specify resource requirements explicitly.

You can configure default requests globally for all users of a cluster, as well as
privately for any user. The default request configuration is stored in default request files.
The global request file is located under sge-root/cell/common/sge_request. The

108 N1 Grid Engine 6 Administration Guide • May 2005

user-specific request file can be located either in the user’s home directory or in the
current working directory. The working directory is where the qsub command is run.
The user-specific request file is called .sge_request.

If these files are present, they are evaluated for every job. The order of evaluation is as
follows:

1. The global default request file
2. The user default request file in the user’s home directory
3. The user default request file in the current working directory

Note – The requests specified in the job script or supplied with the qsub command
take precedence over the requests in the default request files. See Chapter 3,
“Submitting Jobs,” in N1 Grid Engine 6 User’s Guide for details about how to request
resources for jobs explicitly.

You can prevent the grid engine system from using the default request files by using
the qsub -clear command, which discards any previous requirement specifications.

Format of Default Request Files
The format of both the local and the global default request files is as follows:

� Default request files can contain any number of lines. Blank lines and lines that
begin with a # sign are skipped.

� Each line not to be skipped can contain any qsub option, as described in the
qsub(1) man page. More than one option per line is allowed. The batch script file
and the argument options to the batch script are not considered to be qsub
options. Therefore these items are not allowed in a default request file.

� The qsub -clear command discards any previous requirement specifications in
the currently evaluated request file or in request files processed earlier.

Suppose a user’s local default request file is configured the same as test.sh, the
script in Example 4–2.

EXAMPLE 4–2 Example of Default Request File

Local Default Request File
exec job on a sun4 queue offering 5h cpu
-l arch=solaris64,s_cpu=5:0:0
exec job in current working dir

-cwd

To run the script, the user types the following command:

% qsub test.sh

Chapter 4 • Managing User Access 109

The effect of running the test.sh script is the same as if the user specified all qsub
options directly in the command line, as follows:

% qsub -l arch=solaris64,s_cpu=5:0:0 -cwd test.sh

Note – Like batch jobs submitted using qsub, interactive jobs submitted using qsh
consider default request files also. Interactive or batch jobs submitted using QMON also
take these request files into account.

110 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 5

Managing Policies and the Scheduler

This chapter contains information about grid engine system policies. Topics in this
chapter include the following:

� Scheduling
� Policies

In addition to the background information, this chapter includes detailed instructions
on how to accomplish the following tasks:

� “Changing the Scheduler Configuration With QMON” on page 123
� “Configuring Policy-Based Resource Management With QMON” on page 127
� “Configuring the Share-Tree Policy With QMON” on page 138
� “Configuring the Share-Based Policy From the Command Line” on page 144
� “Configuring the Functional Share Policy With QMON” on page 147
� “Configuring the Functional Share Policy From the Command Line” on page 150
� “Configuring the Override Policy With QMON” on page 152
� “Configuring the Override Policy From the Command Line” on page 153

Administering the Scheduler
This section describes how the grid engine system schedules jobs for execution. The
section describes different types of scheduling strategies and explains how to
configure the scheduler.

111

About Scheduling
The grid engine system includes the following job-scheduling activities:

� Predispatching decisions. Activities such as eliminating queues because they are
full or overloaded, spooling jobs that are currently not eligible for execution, and
reserving resources for higher-priority jobs

� Dispatching. Deciding a job’s importance with respect to other pending jobs and
running jobs, sensing the load on all machines in the cluster, and sending the job to
a queue on a machine selected according to configured selection criteria

� Postdispatch monitoring. Adjusting a job’s relative importance as it gets resources
and as other jobs with their own relative importance enter or leave the system

The grid engine software schedules jobs across a heterogeneous cluster of computers,
based on the following criteria:

� The cluster’s current load
� The jobs’ relative importance
� The hosts’ relative performance
� The jobs’ resource requirements, for example, CPU, memory, and I/O bandwidth

Decisions about scheduling are based on the strategy for the site and on the
instantaneous load characteristics of each computer in the cluster. A site’s scheduling
strategy is expressed through the grid engine system’s configuration parameters. Load
characteristics are ascertained by collecting performance data as the system runs.

Scheduling Strategies
The administrator can set up strategies with respect to the following scheduling tasks:

� Dynamic resource management. The grid engine system dynamically controls and
adjusts the resource entitlements that are allocated to running jobs. In other words,
the system modifies their CPU share.

� Queue sorting. The software ranks the queues in the cluster according to the order
in which the queues should be filled up.

� Job sorting. Job sorting determines the order in which the grid engine system
attempts to schedule jobs.

� Resource reservation and backfilling. Resource reservation reserves resources for
jobs, blocking their use by jobs of lower priority. Backfilling enables lower-priority
jobs to use blocked resources when using those resources does not interfere with
the reservation.

112 N1 Grid Engine 6 Administration Guide • May 2005

Dynamic Resource Management
The grid engine software uses a weighted combination of the following three
ticket-based policies to implement automated job scheduling strategies:

� Share-based
� Functional (sometimes called Priority)
� Override

You can set up the grid engine system to routinely use either a share-based policy, a
functional policy, or both. You can combine these policies in any combination. For
example, you could give zero weight to one policy and use only the second policy. Or
you could give both policies equal weight.

Along with routine policies, administrators can also override share-based and
functional scheduling temporarily or, for certain purposes such as express queues,
permanently. You can apply an override to one job or to all jobs associated with a user,
a department, a project, or a job class (that is, a queue).

In addition to the three policies for mediating among all jobs, the grid engine system
sometimes lets users set priorities among the jobs they own. For example, a user might
say that jobs one and two are equally important, but that job three is more important
than either job one or job two. Users can set their own job priorities if the combination
of policies includes the share-based policy, the functional policy, or both. Also,
functional tickets must be granted to jobs.

Tickets

The share-based, functional, and override scheduling policies are implemented with
tickets. Each policy has a pool of tickets. A policy allocates tickets to jobs as the jobs
enter the multimachine grid engine system. Each routine policy that is in force
allocates some tickets to each new job. The policy might also reallocate tickets to
running jobs at each scheduling interval.

Tickets weight the three policies. For example, if no tickets are allocated to the
functional policy, that policy is not used. If the functional ticket pool and the
share-based ticket pool have an equal number of tickets, both policies have equal
weight in determining a job’s importance.

Tickets are allocated to the routine policies at system configuration by grid engine
system managers. Managers and operators can change ticket allocations at any time
with immediate effect. Additional tickets are injected into the system temporarily to
indicate an override. Policies are combined by assignment of tickets. When tickets are
allocated to multiple policies, a job gets a portion of each policy’s tickets, which
indicates the job’s importance in each policy in force.

The grid engine system grants tickets to jobs that are entering the system to indicate
their importance under each policy in force. At each scheduling interval, each running
job can gain tickets, lose tickets, or keep the same number of tickets. For example, a job

Chapter 5 • Managing Policies and the Scheduler 113

might gain tickets from an override. A job might lose tickets because it is getting more
than its fair share of resources. The number of tickets that a job holds represent the
resource share that the grid engine system tries to grant that job during each
scheduling interval.

You configure a site’s dynamic resource management strategy during installation.
First, you allocate tickets to the share-based policy and to the functional policy. You
then define the share tree and the functional shares. The share-based ticket allocation
and the functional ticket allocation can change automatically at any time. The
administrator manually assigns or removes tickets.

Queue Sorting
The following means are provided to determine the order in which the grid engine
system attempts to fill up queues:

� Load reporting. Administrators can select which load parameters are used to
compare the load status of hosts and their queue instances. The wide range of
standard load parameters that are available, and an interface for extending this set
with site-specific load sensors, are described in “Load Parameters” on page 87.

� Load scaling. Load reports from different hosts can be normalized to reflect a
comparable situation. See “Configuring Execution Hosts With QMON” on page 24.

� Load adjustment. The grid engine software can be configured to automatically
correct the last reported load as jobs are dispatched to hosts. The corrected load
represents the expected increase in the load situation caused by recently started
jobs. This artificial increase of load can be automatically reduced as the load impact
of these jobs takes effect.

� Sequence number. Queues can be sorted following a strict sequence.

Job Sorting
Before the grid engine system starts to dispatch jobs, the jobs are brought into priority
order, highest priority first. The system then attempts to find suitable resources for the
jobs in priority sequence.

Without any administrator influence, the order is first-in-first-out (FIFO). The
administrator has the following means to control the job order:

� Ticket-based job priority. Jobs are always treated according to their relative
importance as defined by the number of tickets that the jobs have. Pending jobs are
sorted in ticket order. Any change that the administrator applies to the ticket policy
also changes the sorting order.

� Urgency-based job priority. Jobs can have an urgency value that determines their
relative importance. Pending jobs are sorted according to their urgency value. Any
change applied to the urgency policy also changes the sorting order.

114 N1 Grid Engine 6 Administration Guide • May 2005

� POSIX priority. You can use the –p option to the qsub command to implement
site-specific priority policies. The –p option specifies a range of priorities from
–1023 to 1024. The higher the number, the higher the priority. The default priority
for jobs is zero.

� Maximum number of user or user group jobs. You can restrict the maximum
number of jobs that a user or a UNIX user group can run concurrently. This
restriction influences the sorting order of the pending job list, because the jobs of
users who have not exceeded their limit are given preference.

For each priority type, a weighting factor can be specified. This weighting factor
determines the degree to which each type of priority affects overall job priority. To
make it easier to control the range of values for each priority type, normalized values
are used instead of the raw ticket values, urgency values, and POSIX priority values.

The following formula expresses how a job’s priority values are determined:

job_priority = weight_urgency * normalized_urgency_value +
weight_ticket * normalized_ticket_value +

weight_POSIX_priority * normalized_POSIX_priority_value

You can use the qstat command to monitor job priorities:

� Use qstat –prio to monitor job priorities overall, including POSIX priority.
� Use qstat –ext to monitor job priorities based on the ticket policy.
� Use qstat –urg to monitor job priorities based on the urgency policy.
� Use qstat –prito diagnose job priority issues when urgency policy, ticket based

policies and -p <priority> are used concurrently
� Use qstat –explainto diagnose various queue instance based error conditions.

About the Urgency Policy

The urgency policy defines an urgency value for each job. The urgency value is
derived from the sum of three contributions:

� Resource requirement contribution
� Waiting time contribution
� Deadline contribution

The resource requirement contribution is derived from the sum of all hard resource
requests, one addend for each request.

If the resource request is of the type numeric, the resource request addend is the
product of the following three elements:

� The resource’s urgency value as defined in the complex. For more information, see
“Configuring Complex Resource Attributes With QMON” on page 68.

� The assumed slot allocation of the job.
� The per slot request specified by the qsub –l command.

Chapter 5 • Managing Policies and the Scheduler 115

If the resource request is of the type string, the resource request addend is the
resource’s urgency value as defined in the complex.

The waiting time contribution is the product of the job’s waiting time, in seconds, and
the waiting-weight value specified in the Policy Configuration dialog box.

The deadline contribution is zero for jobs without a deadline. For jobs with a deadline,
the deadline contribution is the weight-deadline value, which is defined in the Policy
Configuration dialog box, divided by the free time, in seconds, until the deadline
initiation time.

For information about configuring the urgency policy, see “Configuring the Urgency
Policy” on page 129.

Resource Reservation and Backfilling
Resource reservation enables you to reserve system resources for specified pending jobs.
When you reserve resources for a job, those resources are blocked from being used by
jobs with lower priority.

Jobs can reserve resources depending on criteria such as resource requirements, job
priority, waiting time, resource sharing entitlements, and so forth. The scheduler
enforces reservations in such a way that jobs with the highest priority get the earliest
possible resource assignment. This avoids such well-known problems as “job
starvation”.

You can use resource reservation to guarantee that resources are dedicated to jobs in
job-priority order.

Consider the following example. Job A is a large pending job, possibly parallel, that
requires a large amount of a particular resource. A stream of smaller jobs B(i) require a
smaller amount of the same resource. Without resource reservation, a resource
assignment for job A cannot be guaranteed, assuming that the stream of B(i) jobs does
not stop. The resource cannot be guaranteed even though job A has a higher priority
than the B(i) jobs.

With resource reservation, job A gets a reservation that blocks the lower priority jobs
B(i). Resources are guaranteed to be available for job A as soon as possible.

Backfilling enables a lower-priority job to use resources that are blocked due to a
resource reservation. Backfilling work only if there is a runnable job whose
prospective run time is small enough to allow the blocked resource to be used without
interfering with the original reservation.

In the example described earlier, a job C, of very short duration, could use backfilling
to start before job A.

116 N1 Grid Engine 6 Administration Guide • May 2005

Because resource reservation causes the scheduler to look ahead, using resource
reservation affects system performance. In a small cluster, the effect on performance is
negligible when there are only a few pending jobs. In larger clusters, however, and in
clusters with many pending jobs, the effect on performance might be significant.

To offset this potential performance degradation, you can limit the overall number of
resource reservations that can be made during a scheduling interval. You can limit
resource reservation in two ways:

� To limit the absolute number of reservations that can be made during a scheduling
interval, set the Maximum Reservation parameter on the Scheduler Configuration
dialog box. For example, if you set Maximum Reservation to 20, no more than 20
reservations can be made within an interval.

� To limit reservation scheduling to only those jobs that are important, use the –R y
option of the qsub command. In the example described earlier, there is no need to
schedule B(i) job reservations just for the sake of guaranteeing the resource
reservation for job A. Job A is the only job that you need to submit with the –R y
option.

You can configure the scheduler to monitor how it is influenced by resource
reservation. When you monitor the scheduler, information about each scheduling run
is recorded in the file sge-root/cell/common/schedule.

The following example shows what schedule monitoring does. Assume that the
following sequence of jobs is submitted to a cluster where the global license
consumable resource is limited to 5 licenses:

qsub -N L4_RR -R y -l h_rt=30,license=4 -p 100 $SGE_ROOT/examples/jobs/sleeper.sh 20
qsub -N L5_RR -R y -l h_rt-30,license=5 $SGE_ROOT/examples/jobs/sleeper.sh 20

qsub -N L1_RR -R y -l h_rt=31,license=1 $SGE_ROOT/examples/jobs/sleeper.sh 20

Assume that the default priority settings in the scheduler configuration are being
used:

weight_priority 1.000000
weight_urgency 0.100000

weight_ticket 0.010000

The –p 100 priority of job L4_RR supersedes the license-based urgency, which results
in the following prioritization:

job-ID prior name

3127 1.08000 L4_RR
3128 0.10500 L5_RR

3129 0.00500 L1_RR

In this case, traces of these jobs can be found in the schedule file for 6 schedule
intervals:

::::::::
3127:1:STARTING:1077903416:30:G:global:license:4.000000
3127:1:STARTING:1077903416:30:Q:all.q@carc:slots:1.000000

Chapter 5 • Managing Policies and the Scheduler 117

3128:1:RESERVING:1077903446:30:G:global:license:5.000000
3128:1:RESERVING:1077903446:30:Q:all.q@bilbur:slots:1.000000
3129:1:RESERVING:1077903476:31:G:global:license:1.000000
3129:1:RESERVING:1077903476:31:Q:all.q@es-ergb01-01:slots:1.000000
::::::::
3127:1:RUNNING:1077903416:30:G:global:license:4.000000
3127:1:RUNNING:1077903416:30:Q:all.q@carc:slots:1.000000
3128:1:RESERVING:1077903446:30:G:global:license:5.000000
3128:1:RESERVING:1077903446:30:Q:all.q@es-ergb01-01:slots:1.000000
3129:1:RESERVING:1077903476:31:G:global:license:1.000000
3129:1:RESERVING:1077903476:31:Q:all.q@es-ergb01-01:slots:1.000000
::::::::
3128:1:STARTING:1077903448:30:G:global:license:5.000000
3128:1:STARTING:1077903448:30:Q:all.q@carc:slots:1.000000
3129:1:RESERVING:1077903478:31:G:global:license:1.000000
3129:1:RESERVING:1077903478:31:Q:all.q@bilbur:slots:1.000000
::::::::
3128:1:RUNNING:1077903448:30:G:global:license:5.000000
3128:1:RUNNING:1077903448:30:Q:all.q@carc:slots:1.000000
3129:1:RESERVING:1077903478:31:G:global:license:1.000000
3129:1:RESERVING:1077903478:31:Q:all.q@es-ergb01-01:slots:1.000000
::::::::
3129:1:STARTING:1077903480:31:G:global:license:1.000000
3129:1:STARTING:1077903480:31:Q:all.q@carc:slots:1.000000
::::::::
3129:1:RUNNING:1077903480:31:G:global:license:1.000000

3129:1:RUNNING:1077903480:31:Q:all.q@carc:slots:1.000000

Each section shows, for a schedule interval, all resource usage that was taken into
account. RUNNING entries show usage of jobs that were already running at the start of
the interval. STARTING entries show the immediate uses that were decided within the
interval. RESERVING entries show uses that are planned for the future, that is,
reservations.

The format of the schedule file is as follows:

jobID The job ID

taskID The array task ID, or 1 in the case of nonarray jobs

state Can be RUNNING, SUSPENDED, MIGRATING, STARTING,
RESERVING

start-time Start time in seconds after 1.1.1070

duration Assumed job duration in seconds

level-char Can be P (for parallel environment), G (for global), H (for host), or
Q (for queue)

object-name The name of the parallel environment, host, or queue

resource-name The name of the consumable resource

usage The resource usage incurred by the job

The line :::::::: marks the beginning of a new schedule interval.

118 N1 Grid Engine 6 Administration Guide • May 2005

Note – The schedule file is not truncated. Be sure to turn monitoring off if you do not
have an automated procedure that is set up to truncate the file.

What Happens in a Scheduler Interval
The Scheduler schedules work in intervals. Between scheduling actions, the grid
engine system keeps information about significant events such as the following:

� Job submission
� Job completion
� Job cancellation
� An update of the cluster configuration
� Registration of a new machine in the cluster

When scheduling occurs, the scheduler first does the following:

� Takes into account all significant events
� Sorts jobs and queues according to the administrator’s specifications
� Takes into account all the jobs’ resource requirements
� Reserves resources for jobs in a forward-looking schedule

Then the grid engine system does the following tasks, as needed:

� Dispatches new jobs
� Suspends running jobs
� Increases or decreases the resources allocated to running jobs
� Maintains the status quo

If share-based scheduling is used, the calculation takes into account the usage that has
already occurred for that user or project.

If scheduling is not at least in part share-based, the calculation ranks all the jobs
running and waiting to run. The calculation then takes the most important job until
the resources in the cluster (CPU, memory, and I/O bandwidth) are used as fully as
possible.

Scheduler Monitoring
If the reasons why a job does not get started are unclear to you, run the qalter -w v
command for the job. The grid engine software assumes an empty cluster and checks
whether any queue that is suitable for the job is available.

Chapter 5 • Managing Policies and the Scheduler 119

Further information can be obtained by running the qstat -j job-id command. This
command prints a summary of the job’s request profile. The summary also includes
the reasons why the job was not scheduled in the last scheduling run. Running the
qstat -j command without a job ID summarizes the reasons for all jobs not being
scheduled in the last scheduling interval.

Note – Collection of job scheduling information must be switched on in the scheduler
configuration sched_conf(5). Refer to the schedd_job_info parameter description
in the sched_conf(5) man page, or to “Changing the Scheduler Configuration With
QMON” on page 123.

To retrieve even more detail about the decisions of the scheduler sge_schedd, use the
-tsm option of the qconf command. This command forces sge_schedd to write
trace output to the file.

Configuring the Scheduler
Refer to “Configuring Policy-Based Resource Management With QMON” on page 127
for details on the scheduling administration of resource-sharing policies of the grid
engine system. The following sections focus on administering the scheduler
configuration sched_conf and related issues.

Default Scheduling
The default scheduling is a first-in-first-out policy. In other words, the first job that is
submitted is the first job the scheduler examines in order to dispatch it to a queue. If
the first job in the list of pending jobs finds a queue that is suitable and available, that
job is started first. A job ranked behind the first job can be started first only if the first
job fails to find a suitable free resource.

The default strategy is to select queue instances on the least-loaded host, provided that
the queues deliver suitable service for the job’s resource requirements. If several
suitable queues share the same load, the queue to be selected is unpredictable.

Scheduling Alternatives
You can modify the job scheduling and queue selection strategy in various ways:

� Changing the scheduling algorithm
� Scaling system load
� Selecting queue by sequence number

120 N1 Grid Engine 6 Administration Guide • May 2005

� Selecting queue by share
� Restricting the number of jobs per user or per group

The following sections explore these alternatives in detail.

Changing the Scheduling Algorithm

The scheduler configuration parameter algorithm provides a selection for the
scheduling algorithm in use. See the sched_conf(5) man page for further
information. Currently, default is the only allowed setting.

Scaling System Load

To select the queue to run a job, the grid engine system uses the system load
information on the machines that host queue instances. This queue selection scheme
builds up a load-balanced situation, thus guaranteeing better use of the available
resources in a cluster.

However, the system load may not always tell the truth. For example, if a multi-CPU
machine is compared to a single CPU system, the multiprocessor system usually
reports higher load figures, because it probably runs more processes. The system load
is a measurement strongly influenced by the number of processes trying to get CPU
access. But multi-CPU systems are capable of satisfying a much higher load than
single-CPU machines. This problem is addressed by processor-number-adjusted sets
of load values that are reported by default by sge_execd. Use these load parameters
instead of the raw load values to avoid the problem described earlier. See “Load
Parameters” on page 87 and the sge-root/doc/load_parameters.asc file for
details.

Another example of potentially improper interpretation of load values is when
systems have marked differences in their performance potential or in their price
performance ratio. In both cases, equal load values do not mean that arbitrary hosts
can be selected to run a job. In this situation, the administrator should define load
scaling factors for the relevant execution hosts and load parameters. See “Configuring
Execution Hosts With QMON” on page 24, and related sections.

Note – The scaled load parameters are also compared against the load threshold lists
load-thresholds and migr-load-thresholds. See the queue_conf(5) man page for details.

Another problem associated with load parameters is the need for an
application-dependent and site-dependent interpretation of the values and their
relative importance. The CPU load might be dominant for a certain type of application
that is common at a particular site. By contrast, the memory load might be more
important for another site and for the application profile to which the site’s compute

Chapter 5 • Managing Policies and the Scheduler 121

cluster is dedicated. To address this problem, the grid engine system enables the
administrator to specify a load formula in the scheduler configuration file sched_conf.
See the sched_conf(5) man page for more details. Site-specific information on
resource usage and capacity planning can be taken into account by using site-defined
load parameters and consumable resources in the load formula. See the sections
“Adding Site-Specific Load Parameters” on page 87) and “Consumable Resources”
on page 74.

Finally, the time dependency of load parameters must be taken into account. The load
that is imposed by the jobs that are running on a system varies in time. Often the load,
for example, the CPU load, requires some amount of time to be reported in the
appropriate quantity by the operating system. If a job recently started, the reported
load might not provide an accurate representation of the load that the job has imposed
on that host. The reported load adapts to the real load over time. But the period of
time in which the reported load is too low might lead to an oversubscription of that
host. The grid engine system enables the administrator to specify load adjustment
factors that are used in the scheduler to compensate for this problem. See the
sched_conf(5) man page for detailed information on how to set these load
adjustment factors.

Load adjustments are used to virtually increase the measured load after a job is
dispatched. In the case of oversubscribed machines, this helps to align with load
thresholds. If you do not need load adjustments, you should turn them off. Load
adjustments impose additional work on the scheduler in connection with sorting hosts
and load thresholds verification.

To disable load adjustments, on the Load Adjustment tab of the Scheduler
Configuration dialog box, set the Decay Time to zero, and delete all load adjustment
values in the table. See “Changing the Scheduler Configuration With QMON” on page
123.

Selecting Queue by Sequence Number

Another way to change the default scheme for queue selection is to set the global
cluster configuration parameter queue_sort_method to seq_no instead of to the
default load. In this case, the system load is no longer used as the primary method to
select queues. Instead, the sequence numbers that are assigned to the queues by the
queue configuration parameter seq_no define a fixed order for queue selection. The
queues must be suitable for the considered job, and they must be available. See the
queue_conf(5) and sched_conf(5) man pages for more details.

This queue selection policy is useful if the machines that offer batch services at your
site are ranked in a monotonous price per job order. For example, a job running on
machine A costs 1 unit of money. The same job costs 10 units on machine B. And on
machine C the job costs 100 units. Thus the preferred scheduling policy is to first fill
up host A and then to use host B. Host C is used only if no alternative remains.

122 N1 Grid Engine 6 Administration Guide • May 2005

Note – If you have changed the method of queue selection to seq_no, and the
considered queues all share the same sequence number, queues are selected by the
default load.

Selecting Queue by Share

The goal of this method is to place jobs so as to attempt to meet the targeted share of
global system resources for each job. This method takes into account the resource
capability represented by each host in relation to all the system resources. This method
tries to balance the percentage of tickets for each host (that is, the sum of tickets for all
jobs running on a host) with the percentage of the resource capability that particular
host represents for the system. See “Configuring Execution Hosts With QMON”
on page 24 for instructions on how to define the capacity of a host.

The host’s load, although of secondary importance, is also taken into account in the
sorting. Choose this sorting method for a site that uses the share-tree policy.

Restricting the Number of Jobs per User or Group

The administrator can assign an upper limit to the number of jobs that any user or any
UNIX group can run at any time. In order to enforce this feature, do one of the
following:

� Set maxujobs or maxgjobs, or both, as described in the sched_conf(5) man
page.

� On the General Parameters tab of the Scheduler Configuration dialog box, use the
Max Jobs/User field to set the maximum number of jobs a user or user group can
run concurrently.

Changing the Scheduler Configuration With QMON
On the QMON Main Control window, click the Scheduler Configuration button.

The Scheduler Configuration dialog box appears. The dialog box has two tabs:

� General Parameters tab
� Load Adjustment tab

To change general scheduling parameters, click the General Parameters tab. The
General Parameters tab looks like the following figure.

Chapter 5 • Managing Policies and the Scheduler 123

Use the General Parameters tab to set the following parameters:

� Algorithm. The scheduling algorithm. See “Changing the Scheduling Algorithm”
on page 121.

� Schedule Interval. The regular time interval between scheduler runs.

� Reprioritize Interval. The regular time interval to reprioritize jobs on the execution
hosts, based on the current ticket amount for running jobs. To turn reprioritizing
off, set this parameter to zero.

� Max Jobs/User. The maximum number of jobs that are allowed to run concurrently
per user and per UNIX group. See “Restricting the Number of Jobs per User or
Group” on page 123.

� Sort by. The queue sorting scheme, either sorting by load or sorting by sequence
number. See “Selecting Queue by Sequence Number” on page 122.

� Job Scheduling Information. Whether job scheduling information is accessible
through qstat -j, or whether this information should be collected only for a
range of job IDs. You should turn on general collection of job scheduling
information only temporarily, in case an extremely high number of jobs are
pending.

Scheduler monitoring can help you find out the reason why certain jobs are not
dispatched. However, providing this information for all jobs at all times can
consume resources. Such information is usually not needed.

124 N1 Grid Engine 6 Administration Guide • May 2005

� Load Formula. The load formula to use to sort hosts and queues.

� Flush Submit Seconds. The number of seconds that the scheduler waits after a job
is submitted before the scheduler is triggered. To disable the flush after a job is
submitted, set this parameter to zero.

� Flush Finish Seconds. The number of seconds that the scheduler waits after a job
has finished before the scheduler is triggered. To disable the flush after a job has
finished, set this parameter to zero.

� Maximum Reservation. The maximum number of resource reservations that can
be scheduled within a scheduling interval. See “Resource Reservation and
Backfilling” on page 116.

� Params. Use this setting to specify additional parameters to pass to the scheduler.
Params can be PROFILE or MONITOR. If you specify PROFILE, the scheduler logs
profiling information that summarizes each scheduling run. If you specify
MONITOR, the scheduler records information for each scheduling run in the file
sge-root/cell/common/schedule.

By default, the grid engine system schedules job runs in a fixed schedule interval. You
can use the Flush Submit Seconds and Flush Finish Seconds parameters to configure
immediate scheduling. For more information, see “Immediate Scheduling” on page
189.

To change load adjustment parameters, click the Load Adjustment tab. The Load
Adjustment tab looks like the following figure:

Chapter 5 • Managing Policies and the Scheduler 125

Use the Load Adjustment tab to set the following parameters:

� Decay Time. The decay time for the load adjustment.

� A table of load adjustment values listing all load and consumable attributes for
which an adjustment value is currently defined.

To add load values to the list, click the Load or the Value column heading. A
selection list appears with all resource attributes that are attached to the hosts.

The Attribute Selection dialog box is shown in Figure 1–2. To add a resource
attribute to the Load column of the Consumable/Fixed Attributes table, select one
of the attributes, and then click OK.

To modify an existing value, double-click the Value field.

To delete a resource attribute, select it, and then press Control-D or click mouse
button 3. A dialog box asks you to confirm the deletion.

See “Scaling System Load” on page 121 for background information. See the
sched_conf(5) man page for more details about the scheduler configuration.

126 N1 Grid Engine 6 Administration Guide • May 2005

Administering Policies
This section describes how to configure policies to manage cluster resources.

The grid engine software orchestrates the delivery of computational power, based on
enterprise resource policies that the administrator manages. The system uses these
policies to examine available computer resources in the grid. The system gathers these
resources, and then it allocates and delivers them automatically, in a way that
optimizes usage across the grid.

To enable cooperation in the grid, project owners must do the following:

� Negotiate policies

� Ensure that policies for manual overrides for unique project requirements are
flexible

� Automatically monitor and enforce policies

As administrator, you can define high-level usage policies that are customized for
your site. Four such policies are available:

� Urgency policy – See “Configuring the Urgency Policy” on page 129
� Share-based policy – See “Configuring the Share-Based Policy” on page 135
� Functional policy – See “Configuring the Functional Policy” on page 147
� Override policy – See “Configuring the Override Policy” on page 151

Policy management automatically controls the use of shared resources in the cluster to
achieve your goals. High-priority jobs are dispatched preferentially. These jobs receive
greater CPU entitlements when they are competing with other, lower-priority jobs.
The grid engine software monitors the progress of all jobs. It adjusts their relative
priorities correspondingly, and with respect to the goals that you define in the policies.

This policy-based resource allocation grants each user, team, department, and all
projects an allocated share of system resources. This allocation of resources extends
over a specified period of time, such as a week, a month, or a quarter.

Configuring Policy-Based Resource Management
With QMON
On the QMON Main Control window, click the Policy Configuration button. The Policy
Configuration dialog box appears.

Chapter 5 • Managing Policies and the Scheduler 127

FIGURE 5–1 Policy Configuration Dialog Box

The Policy Configuration dialog box shows the following information:

� Policy Importance Factor
� Urgency Policy
� Ticket Policy. You can readjust the policy-related tickets.

From this dialog box you can access specific configuration dialog boxes for the three
ticket-based policies.

Specifying Policy Priority
Before the grid engine system dispatches jobs, the jobs are brought into priority order,
highest priority first. Without any administrator influence, the order is first-in-first-out
(FIFO).

128 N1 Grid Engine 6 Administration Guide • May 2005

On the Policy Configuration dialog box, under Policy Importance Factor, you can
specify the relative importance of the three priority types that control the sorting order
of jobs:

� Priority. Also called POSIX priority. The –p option of the qsub command specifies
site-specific priority policies.

� Urgency Policy. Jobs can have an urgency value that determines their relative
importance. Pending jobs are sorted according to their urgency value.

� Ticket Policy. Jobs are always treated according to their relative importance as
defined by the number of tickets that the jobs have. Pending jobs are sorted in
ticket order.

For more information about job priorities, see “Job Sorting” on page 114.

You can specify a weighting factor for each priority type. This weighting factor
determines the degree to which each type of priority affects overall job priority. To
make it easier to control the range of values for each priority type, normalized values
are used instead of the raw ticket values, urgency values, and POSIX priority values.

The following formula expresses how a job’s priority values are determined:

Job priority = Urgency * normalized urgency value +
Ticket * normalized ticket value +

Priority * normalized priority value

Urgency, Ticket, and Priority are the three weighting factors you specify under Policy
Importance Factor. For example, if you specify Priority as 1, Urgency as 0.1, and Ticket
as 0.01, job priority that is specified by the qsub –p command is given the most
weight, job priority that is specified by the Urgency Policy is considered next, and job
priority that is specified by the Ticket Policy is given the least weight.

Configuring the Urgency Policy
The Urgency Policy defines an urgency value for each job. This urgency value is
determined by the sum of the following three contributing elements:

� Resource requirement. Each resource attribute defined in the complex can have an
urgency value. For information about the setting urgency values for resource
attributes, see “Configuring Complex Resource Attributes With QMON” on page 68.
Each job request for a resource attribute adds the attribute’s urgency value to the
total.

� Deadline. The urgency value for deadline jobs is determined by dividing the
Weight Deadline specified in the Policy Configuration dialog box by the free time,
in seconds, until the job’s deadline initiation time specified by the qsub –dl
command.

Chapter 5 • Managing Policies and the Scheduler 129

� Waiting time. The urgency value for a job’s waiting time is determined by
multiplying the job’s waiting time by the Weight Waiting Time specified in the
Policy Configuration dialog box. The job’s waiting time is measured in seconds.

For details about how the grid engine system arrives at the urgency value total, see
“About the Urgency Policy” on page 115.

Configuring Ticket-Based Policies
The tickets that are currently assigned to individual policies are listed under Current
Active Tickets. The numbers reflect the relative importance of the policies. The
numbers indicate whether a certain policy currently dominates the cluster or whether
policies are in balance.

Tickets provide a quantitative measure. For example, you might assign twice as many
tickets to the share-based policy as you assign to the functional policy. This means that
twice the resource entitlement is allocated to the share-based policy than is allocated to
the functional policy. In this sense, tickets behave very much like stock shares.

The total number of all tickets has no particular meaning. Only the relations between
policies counts. Hence, total ticket numbers are usually quite high to allow for fine
adjustment of the relative importance of the policies.

Under Edit Tickets, you can modify the number of tickets that are allocated to the
share tree policy and the functional policy. For details, see “Editing Tickets” on page
131.

Select the Share Override Tickets check box to control the total ticket amount
distributed by the override policy. Clear the check box to control the importance of
individual jobs relative to the ticket pools that are available for the other policies and
override categories. For detailed information, see “Sharing Override Tickets” on page
131.

Select the Share Functional Tickets check box to give a category member a constant
entitlement level for the sum of all its jobs. Clear the check box to give each job the
same entitlement level, based on its category member’s entitlement. For detailed
information, see “Sharing Functional Ticket Shares” on page 132.

You can set the maximum number of jobs that can be scheduled in the functional
policy. The default value is 200.

You can set the maximum number of pending subtasks that are allowed for each array
job. The default value is 50. Use this setting to reduce scheduling overhead.

You can specify the Ticket Policy Hierarchy to resolve certain cases of conflicting
policies. The resolving of policy conflicts applies particularly to pending jobs. For
detailed information, see “Setting the Ticket Policy Hierarchy” on page 134.

130 N1 Grid Engine 6 Administration Guide • May 2005

To refresh the information displayed, click Refresh.

To save any changes that you make to the Policy Configuration, click Apply. To close
the dialog box without saving changes, click Done.

Editing Tickets
You can edit the total number of share-tree tickets and functional tickets. Override
tickets are assigned directly through the override policy configuration. The other ticket
pools are distributed automatically among jobs that are associated with the policies
and with respect to the actual policy configuration.

Note – All share-based tickets and functional tickets are always distributed among the
jobs associated with these policies. Override tickets might not be applicable to the
currently active jobs. Consequently, the active override tickets might be zero, even
though the override policy has tickets defined.

Sharing Override Tickets
The administrator assigns tickets to the different members of the override categories,
that is, to individual users, projects, departments, or jobs. Consequently, the number of
tickets that are assigned to a category member determines how many tickets are
assigned to jobs under that category member. For example, the number of tickets that
are assigned to user A determines how many tickets are assigned to all jobs of user A.

Note – The number of tickets that are assigned to the job category does not determine
how many tickets are assigned to jobs in that category.

Use the Share Override Tickets check box to set the share_override_tickets
parameter of sched_conf(5). This parameter controls how job ticket values are
derived from their category member ticket value. When you select the Share Override
Tickets check box, the tickets of the category members are distributed evenly among
the jobs under this member. If you clear the Share Override Tickets check box, each job
inherits the ticket amount defined for its category member. In other words, the
category member tickets are replicated for all jobs underneath.

Select the Share Override Tickets check box to control the total ticket amount
distributed by the override policy. With this setting, ticket amounts that are assigned
to a job can become negligibly small if many jobs are under one category member. For
example, ticket amounts might diminish if many jobs belong to one member of the
user category.

Chapter 5 • Managing Policies and the Scheduler 131

Clear the Share Override Tickets check box to control the importance of individual
jobs relative to the ticket pools that are available for the other policies and override
categories. With this setting, the number of jobs that are under a category member
does not matter. The jobs always get the same number of tickets. However, the total
number of override tickets in the system increases as the number of jobs with a right
to receive override tickets increases. Other policies can lose importance in such cases.

Sharing Functional Ticket Shares
The functional policy defines entitlement shares for the functional categories. Then the
policy defines shares for all members of each of these categories. The functional policy
is thus similar to a two-level share tree. The difference is that a job can be associated
with several categories at the same time. The job belongs to a particular user, for
instance, but the job can also belong to a project, a department, and a job class.

However, as in the share tree, the entitlement shares that a job receives from a
functional category is determined by the following:

� The shares that are defined for its corresponding category member (for example, its
project)

� The shares that are given to the category (project instead of user, department, and
so on)

Use the Share Functional Tickets check box to set the share_functional_shares
parameter of sched_conf(5). This parameter defines how the category member
shares are used to determine the shares of a job. The shares assigned to the category
members, such as a particular user or project, can be replicated for each job. Or shares
can be distributed among the jobs under the category member.

� Selecting the Share Functional Tickets check box means that functional shares are
replicated among jobs.

� Clearing the Share Functional Tickets check box means that functional shares are
distributed among jobs.

Those shares are comparable to stock shares. Such shares have no effect for the jobs
that belong to the same category member. All jobs under the same category member
have the same number of shares in both cases. But the share number has an effect
when comparing the share amounts within the same category. Jobs with many siblings
that belong to the same category member receive relatively small share portions if you
select the Share Functional Tickets check box. On the other hand, if you clear the Share
Functional Tickets check box, all sibling jobs receive the same share amount as their
category member.

Select the Share Functional Tickets check box to give a category member a constant
entitlement level for the sum of all its jobs. The entitlement of an individual job can get
negligibly small, however, if the job has many siblings.

132 N1 Grid Engine 6 Administration Guide • May 2005

Clear the Share Functional Tickets check box to give each job the same entitlement
level, based on its category member’s entitlement. The number of job siblings in the
system does not matter.

Note – A category member with many jobs underneath can dominate the functional
policy.

Be aware that the setting of share functional shares does not determine the total
number of functional tickets that are distributed. The total number is always as
defined by the administrator for the functional policy ticket pool. The share functional
shares parameter influences only how functional tickets are distributed within the
functional policy.

EXAMPLE 5–1 Functional Policy Example

The following example describes a common scenario where a user wishes to translate
the SGE-5.3 Scheduler Option -user_sort true to an N1GE 6.1 Configuration but
does not understand the share override functional policy ticket feature.

For a plain user-based equal share, you configure your global configuration
sge_conf(5) with

-enforce_user auto
-auto_user_fshare 100

Then you use -weight_tickets_functional 10000 in the scheduler
configuration sched_conf(5). This action causes the functional policy to be used for
user-based equal share scheduling with 100 shares for each user.

Tuning Scheduling Run Time
Pending jobs are sorted according to the number of tickets that each job has, as
described in “Job Sorting” on page 114. The scheduler reports the number of tickets
each pending job has to the master daemon sge_qmaster. However, on systems with
very large numbers of jobs, you might want to turn off ticket reporting. When you
turn off ticket reporting, you disable ticket-based job priority. The sort order of jobs is
based only on the time each job is submitted.

To turn off the reporting of pending job tickets to sge_qmaster, clear the Report
Pending Job Tickets check box on the Policy Configuration dialog box. Doing so sets
the report_pjob_tickets parameter of sched_conf(5) to false.

Chapter 5 • Managing Policies and the Scheduler 133

Setting the Ticket Policy Hierarchy
Ticket policy hierarchy provides the means to resolve certain cases of conflicting ticket
policies. The resolving of ticket policy conflicts applies particularly to pending jobs.

Such cases can occur in combination with the share-based policy and the functional
policy. With both policies, assigning priorities to jobs that belong to the same leaf-level
entities is done on a first-come-first-served basis. Leaf-level entities include:

� User leaves in the share tree

� Project leaves in the share tree

� Any member of the following categories in the functional policy: user, project,
department, or queue

Members of the job category are not included among leaf-level entities. So, for
example, the first job of the same user gets the most, the second gets the next most, the
third next, and so on.

A conflict can occur if another policy mandates an order that is different. So, for
example, the override policy might define the third job as the most important, whereas
the first job that is submitted should come last.

A policy hierarchy might gives the override policy higher priority over the share-tree
policy or the functional policy. Such a policy hierarchy ensures that high-priority jobs
under the override policy get more entitlements than jobs in the other two policies.
Such jobs must belong to the same leaf level entity (user or project) in the share tree.

The Ticket Policy Hierarchy can be a combination of up to three letters. These letters
are the first letters of the names of the following three ticket policies:

� S – Share-based
� F – Functional
� O – Override

Use these letters to establish a hierarchy of ticket policies. The first letter defines the
top policy. The last letter defines the bottom of the hierarchy. Policies that are not listed
in the policy hierarchy do not influence the hierarchy. However, policies that are not
listed in the hierarchy can still be a source for tickets of jobs. However, those tickets do
not influence the ticket calculations in other policies. All tickets of all policies are
added up for each job to define its overall entitlement.

The following examples describe two settings and how they influence the order of the
pending jobs.

policy_hierarchy=OS

1. The override policy assigns the appropriate number of tickets to each pending job.

134 N1 Grid Engine 6 Administration Guide • May 2005

2. The number of tickets determines the entitlement assignment in the share tree in
case two jobs belong to the same user or to the same leaf-level project. Then the
share tree tickets are calculated for the pending jobs.

3. The tickets from the override policy and from the share-tree policy are added
together, along with all other active policies not in the hierarchy. The job with the
highest resulting number of tickets has the highest entitlement.

policy_hierarchy=OF

1. The override policy assigns the appropriate number of tickets to each pending job.
Then the tickets from the override policy are added up.

2. The resulting number of tickets influences the entitlement assignment in the
functional policy in case two jobs belong to the same functional category member.
Based on this entitlement assignment, the functional tickets are calculated for the
pending jobs.

3. The resulting value is added to the ticket amount from the override policy. The job
with the highest resulting number of tickets has the highest entitlement.

All combinations of the three letters are theoretically possible, but only a subset of the
combinations are meaningful or have practical relevance. The last letter should always
be S or F, because only those two policies can be influenced due to their characteristics
described in the examples.

The following form is recommended for policy_hierarchy settings:

[O][S|F]

If the override policy is present, O should occur as the first letter only, because the
override policy can only influence. The share-based policy and the functional policy
can only be influenced. Therefore S or F should occur as the last letter.

Configuring the Share-Based Policy
Share-based scheduling grants each user and project its allocated share of system
resources during an accumulation period such as a week, a month, or a quarter.
Share-based scheduling is also called share tree scheduling. It constantly adjusts each
user’s and project’s potential resource share for the near term, until the next
scheduling interval. Share-based scheduling is defined for user or for project, or for
both.

Share-based scheduling ensures that a defined share is guaranteed to the instances
that are configured in the share tree over time. Jobs that are associated with share-tree
branches where fewer resources were consumed in the past than anticipated are
preferred when the system dispatches jobs. At the same time, full resource usage is
guaranteed, because unused share proportions are still available for pending jobs
associated with other share-tree branches.

Chapter 5 • Managing Policies and the Scheduler 135

By giving each user or project its targeted share as far as possible, groups of users or
projects also get their targeted share. Departments or divisions are examples of such
groups. Fair share for all entities is attainable only when every entity that is entitled to
resources contends for those resources during the accumulation period. If a user, a
project, or a group does not submit jobs during a given period, the resources are
shared among those who do submit jobs.

Share-based scheduling is a feedback scheme. The share of the system to which any user
or user-group, or project or project-group, is entitled is a configuration parameter. The
share of the system to which any job is entitled is based on the following factors:

� The share allocated to the job’s user or project

� The accumulated past usage for each user and user group, and for each project and
project group. This usage is adjusted by a decay factor. “Old” usage has less impact.

The grid engine software keeps track of how much usage users and projects have
already received. At each scheduling interval, the Scheduler adjusts all jobs’ share of
resources. Doing so ensures that all users, user groups, projects, and project groups get
close to their fair share of the system during the accumulation period. In other words,
resources are granted or are denied in order to keep everyone more or less at their
targeted share of usage.

The Half-Life Factor
Half-life is how fast the system “forgets” about a user’s resource consumption. The
administrator decides whether to penalize a user for high resource consumption, be it
six months ago or six days ago. The administrator also decides how to apply the
penalty. On each node of the share tree, grid engine software maintains a record of
users’ resource consumption.

With this record, the system administrator can decide how far to look back to
determine a user’s underusage or overusage when setting up a share-based policy. The
resource usage in this context is the mathematical sum of all the computer resources
that are consumed over a “sliding window of time.”

The length of this window is determined by a “half-life” factor, which in the grid
engine system is an internal decay function. This decay function reduces the impact of
accrued resource consumption over time. A short half-life quickly lessens the impact
of resource overconsumption. A longer half-life gradually lessens the impact of
resource overconsumption.

This half-life decay function is a specified unit of time. For example, consider a
half-life of seven days that is applied to a resource consumption of 1,000 units. This
half-life decay factor results in the following usage “penalty” adjustment over time.

� 500 after 7 days
� 250 after 14 days

136 N1 Grid Engine 6 Administration Guide • May 2005

� 125 after 21 days
� 62.5 after 28 days

The half-life-based decay diminishes the impact of a user’s resource consumption over
time, until the effect of the penalty is negligible.

Note – Override tickets that a user receives are not subjected to a past usage penalty,
because override tickets belong to a different policy system. The decay function is a
characteristic of the share-tree policy only.

Compensation Factor
Sometimes the comparison shows that actual usage is well below targeted usage. In
such a case, the adjusting of a user’s share or a project’s share of resource can allow a
user to dominate the system. Such an adjustment is based on the goal of reaching
target share. This domination might not be desirable.

The compensation factor enables an administrator to limit how much a user or a project
can dominate the resources in the near term.

For example, a compensation factor of two limits a user’s or project’s current share to
twice its targeted share. Assume that a user or a project should get 20 percent of the
system resources over the accumulation period. If the user or project currently gets
much less, the maximum it can get in the near term is only 40 percent.

The share-based policy defines long-term resource entitlements of users or projects as
per the share tree. When combined with the share-based policy, the compensation
factor makes automatic adjustments in entitlements.

If a user or project is either under or over the defined target entitlement, the grid engine
system compensates. The system raises or lowers that user’s or project’s entitlement for
a short term over or under the long-term target. This compensation is calculated by a
share tree algorithm.

The compensation factor provides an additional mechanism to control the amount of
compensation that the grid engine system assigns. The additional compensation factor
(CF) calculation is carried out only if the following conditions are true:

� Short-term-entitlement is greater than long-term-entitlement multiplied by the CF

� The CF is greater than 0

If either condition is not true, or if both conditions are not true, the compensation as
defined and implemented by the share-tree algorithm is used.

Chapter 5 • Managing Policies and the Scheduler 137

The smaller the value of the CF, the greater is its effect. If the value is greater than 1,
the grid engine system’s compensation is limited. The upper limit for compensation is
calculated as long-term-entitlement multiplied by the CF. And as defined earlier, the
short-term entitlement must exceed this limit before anything happens based on the
compensation factor.

If the CF is 1, the grid engine system compensates in the same way as with the raw
share-tree algorithm. So a value of one has an effect that is similar to a value of zero.
The only difference is an implementation detail. If the CF is one, the CF calculations
are carried out without an effect. If the CF is zero, the calculations are suppressed.

If the value is less than 1, the grid engine system overcompensates. Jobs receive much
more compensation than they are entitled to based on the share-tree algorithm. Jobs
also receive this overcompensation earlier, because the criterion for activating the
compensation is met at lower short-term entitlement values. The activating criterion is
short-term-entitlement > long-term-entitlement * CF.

Hierarchical Share Tree
The share-based policy is implemented through a hierarchical share tree. The share tree
specifies, for a moving accumulation period, how system resources are to be shared
among all users and projects. The length of the accumulation period is determined by
a configurable decay constant. The grid engine system bases a job’s share entitlement
on the degree to which each parent node in the share tree reaches its accumulation
limit. A job’s share entitlement is based on its leaf node share allocation, which in turn
depends on the allocations of its parent nodes. All jobs associated with a leaf node
split the associated shares.

The entitlement derived from the share tree is combined with other entitlements, such
as entitlements from a functional policy, to determine a job’s net entitlement. The share
tree is allotted the total number of tickets for share-based scheduling. This number
determines the weight of share-based scheduling among the four scheduling policies.

The share tree is defined during installation. The share tree can be altered at any time.
When the share tree is edited, the new share allocations take effect at the next
scheduling interval.

Configuring the Share-Tree Policy With QMON

On the QMON Policy Configuration dialog box (Figure 5–1), click Share Tree Policy. The
Share Tree Policy dialog box appears.

138 N1 Grid Engine 6 Administration Guide • May 2005

Node Attributes

Under Node Attributes, the attributes of the selected node are displayed:

� Identifier. A user, project, or agglomeration name.

� Shares. The number of shares that are allocated to this user or project.

Note – Shares define relative importance. They are not percentages. Shares also do
not have quantitative meaning. The specification of hundreds or even thousands of
shares is generally a good idea, as high numbers allow fine tuning of importance
relationships.

� Level Percentage. This node’s portion of the total shares at the level of the same
parent node in the tree. The number of this node’s shares divided by the sum of its
and its sibling’s shares.

� Total Percentage. This node’s portion of the total shares in the entire share tree.
The long-term targeted resource share of the node.

Chapter 5 • Managing Policies and the Scheduler 139

� Actual Resource Usage. The percentage of all the resources in the system that this
node has consumed so far in the accumulation period. The percentage is expressed
in relation to all nodes in the share tree.

� Targeted Resource Usage. Same as Actual Resource Usage, but only taking the
currently active nodes in the share tree into account. Active nodes have jobs in the
system. In the short term, the grid engine system attempts to balance the
entitlement among active nodes.

� Combined Usage. The total usage for the node. Combined Usage is the sum of the
usage that is accumulated at this node. Leaf nodes accumulate the usage of all jobs
that run under them. Inner nodes accumulate the usage of all descendant nodes.
Combined Usage includes CPU, memory, and I/O usage according to the ratio
specified under Share Tree Policy Parameters. Combined usage is decayed at the
half-life decay rate that is specified by the parameters.

When a user node or a project node is removed and then added back, the user’s or
project’s usage is retained. A node can be added back either at the same place or at a
different place in the share tree. You can zero out that usage before you add the node
back to the share tree. To do so, first remove the node from the users or projects
configured in the grid engine system. Then add the node back to the users or projects
there.

Users or projects that were not in the share tree but that ran jobs have nonzero usage
when added to the share tree. To zero out usage when you add such users or projects
to the tree, first remove them from the users or projects configured in the grid engine
system. Then add them to the tree.

To add an interior node under the selected node, click Add Node. A blank Node Info
window appears, where you can enter the node’s name and number of shares. You can
enter any node name or share number.

To add a leaf node under the selected node, click Add Leaf. A blank Node Info
window appears, where you can enter the node’s name and number of shares. The
node’s name must be an existing grid engine user (“Configuring User Objects With
QMON” on page 101) or project (“Defining Projects” on page 103)

The following rules apply when you are adding a leaf node:

� All nodes have a unique path in share tree.

� A project is not referenced more than once in share tree.

� A user appears only once in a project subtree.

� A user appears only once outside of a project subtree.

� A user does not appear as a nonleaf node.

� All leaf nodes in a project subtree reference a known user or the reserved name
default. See a detailed description of this special user in “About the Special User
default” on page 142.

� Project subtrees do not have subprojects.

140 N1 Grid Engine 6 Administration Guide • May 2005

� All leaf nodes not in a project subtree reference a known user or known project.

� All user leaf nodes in a project subtree have access to the project.

To edit the selected node, click Modify. A Node Info window appears. The window
displays the mode’s name and its number of shares.

To cut or copy the selected node to a buffer, click Cut or Copy. To Paste under the
selected node the contents of the most recently cut or copied node, click Paste.

To delete the selected node and all its descendents, click Delete.

To clear the entire share-tree hierarchy, click Clear Usage. Clear the hierarchy when the
share-based policy is aligned to a budget and needs to start from scratch at the
beginning of each budget term. The Clear Usage facility also is handy when setting up
or modifying test N1 Grid Engine 6 software environments.

QMON periodically updates the information displayed in the Share Tree Policy dialog
box. Click Refresh to force the display to refresh immediately.

To save all the node changes that you make, click Apply. To close the dialog box
without saving changes, click Done.

To search the share tree for a node name, click Find, and then type a search string.
Node names are indicated which begin with the case sensitive search string. Click Find
Next to find the next occurrence of the search string.

Click Help to open the online help system.

Share Tree Policy Parameters

To display the Share Tree Policy Parameters, click the arrow at the right of the Node
Attributes.

� CPU [%] slider — This slider’s setting indicates what percentage of Combined
Usage CPU is. When you change this slider, the MEM and I/O sliders change to
compensate for the change in CPU percentage.

� MEM [%] slider — This slider’s setting indicates what percentage of Combined
Usage memory is. When you change this slider, the CPU and I/O sliders change to
compensate for the change in MEM percentage.

� I/O [%] slider — This slider’s setting indicates what percentage of Combined
Usage I/O is. When you change this slider, the CPU and MEM sliders change to
compensate for the change in I/O percentage.

Note – CPU [%], MEM [%], and I/O [%] always add up to 100%

Chapter 5 • Managing Policies and the Scheduler 141

� Lock Symbol — When a lock is open, the slider that it guards can change freely.
The slider can change either because the slider was moved or because it is
compensating for another slider’s being moved.

When a lock is closed, the slider that it guards cannot change. If two locks are
closed and one lock is open, no sliders can be changed.

� Half-life — Use this field to specify the half-life for usage. Usage is decayed during
each scheduling interval so that any particular contribution to accumulated usage
has half the value after a duration of half-life.

� Days/Hours selection menu — Select whether half-life is to be measured in days
or hours.

� Compensation Factor — This field accepts a positive integer for the compensation
factor. Reasonable values are in the range between 2 and 10.

The actual usage of a user or project can be far below its targeted usage. The
compensation factor prevents such users or projects from dominating resources
when they first get those resources. See “Compensation Factor” on page 137 for
more information.

About the Special User default

You can use the special user default to reduce the amount of share-tree maintenance
for sites with many users. Under the share-tree policy, a job’s priority is determined
based on the node the job maps to in the share tree. Users who are not explicitly
named in the share tree are mapped to the default node, if it exists.

The specification of a single default node allows for a simple share tree to be
created. Such a share tree makes user-based fair sharing possible.

You can use the default user also in cases where the same share entitlement is
assigned to most users. Same share entitlement is also known as equal share
scheduling.

The default user configures all user entries under the default node, giving the
same share amount to each user. Each user who submits jobs receives the same share
entitlement as that configured for the default user. To activate the facility for a
particular user, you must add this user to the list of grid engine users.

The share tree displays “virtual” nodes for all users who are mapped to the default
node. The display of virtual nodes enables you to examine the usage and the fair-share
scheduling parameters for users who are mapped to the default node.

You can also use the default user for “hybrid” share trees, where users are
subordinated under projects in the share tree. The default user can be a leaf node
under a project node.

142 N1 Grid Engine 6 Administration Guide • May 2005

The short-term entitlements of users vary according to differences in the amount of
resources that the users consume. However, long-term entitlements of users remain
the same.

You might want to assign lower or higher entitlements to some users while
maintaining the same long-term entitlement for all other users. To do so, configure a
share tree with individual user entries next to the default user for those users with
special entitlements.

In Example A, all users submitting to Project A get equal long-term entitlements. The
users submitting to Project B only contribute to the accumulated resource
consumption of Project B. Entitlements of Project B users are not managed.

EXAMPLE 5–2 Example A

Compare Example A with Example B:

EXAMPLE 5–3 Example B

In Example B, treatment for Project A is the same as for Example A. But all default
users who submit jobs to Project B, except users A and B, receive equal long-term
resource entitlements. Default users have 20 shares. User A, with 10 shares, receives
half the entitlement of the default users. User B, with 40 shares, receives twice the
entitlement as the default users.

Chapter 5 • Managing Policies and the Scheduler 143

Configuring the Share-Based Policy From the Command
Line

Note – Use QMON to configure the share tree policy, because a hierarchical tree is
well-suited for graphical display and for editing. However, if you need to integrate
share tree modifications in shell scripts, for example, you can use the qconf command
and its options.

To configure the share-based policy from the command line, use the qconf command
with appropriate options.

� The qconf options -astree, -mstree, -dstree, and -sstree, enable you to do
the following:

� Add a new share tree
� Modify an existing share tree
� Delete a share tree
� Display the share tree configuration

See the qconf(1) man page for details about these options. The share_tree(5)
man page contains a description of the format of the share tree configuration.

� The -astnode, -mstnode, -dstnode, and -sstnode options do not address the
entire share tree, but only a single node. The node is referenced as path through all
parent nodes down the share tree, similar to a directory path. The options enable
you to add, modify, delete, and display a node. The information contained in a
node includes its name and the attached shares.

� The weighting of the usage parameters CPU, memory, and I/O are contained in the
scheduler configuration as usage_weight. The weighting of the half-life is
contained in the scheduler configuration as halftime. The compensation factor is
contained in the scheduler configuration as compensation_factor. You can
access the scheduler configuration from the command line by using the -msconf
and the -ssconf options of qconf. See the sched_conf(5) man page for details
about the format.

� How to Create Project-Based Share-Tree Scheduling
The objective of this setup is to guarantee a certain share assignment of all the cluster
resources to different projects over time.

1. Specify the number of share-tree tickets (for example, 1000000) in the scheduler
configuration.

Steps

144 N1 Grid Engine 6 Administration Guide • May 2005

See “Configuring Policy-Based Resource Management With QMON” on page 127,
and the sched_conf(5) man page.

2. (Optional) Add one user for each scheduling-relevant user.

See “Configuring User Objects With QMON” on page 101, and the user(5) man
page.

3. Add one project for each scheduling-relevant project.

See “Defining Projects With QMON” on page 104, and the project(5) man page.

4. Use QMON to set up a share tree that reflects the structure of all
scheduling-relevant projects as nodes.

See “Configuring the Share-Tree Policy With QMON” on page 138.

5. Assign share tree shares to the projects.

For example, if you are creating project-based share-tree scheduling with
first-come, first-served scheduling among jobs of the same project, a simple
structure might look like the following:

If you are creating project-based share-tree scheduling with equal shares for each
user, a simple structure might look like the following:

If you are creating project-based share-tree scheduling with individual user shares
in each project, add users as leaves to their projects. Then assign individual shares.
A simple structure might look like the following:

Chapter 5 • Managing Policies and the Scheduler 145

If you want to assign individual shares to only a few users, designate the user
default in combination with individual users below a project node. For example,
you can condense the tree illustrated previously into the following:

146 N1 Grid Engine 6 Administration Guide • May 2005

Configuring the Functional Policy
Functional scheduling is a nonfeedback scheme for determining a job’s importance.
Functional scheduling associates a job with the submitting user, project, department,
and job class. Functional scheduling is sometimes called priority scheduling. The
functional policy setup ensures that a defined share is guaranteed to each user, project,
or department at any time. Jobs of users, projects, or departments that have used
fewer resources than anticipated are preferred when the system dispatches jobs to idle
resources.

At the same time, full resource usage is guaranteed, because unused share proportions
are distributed among those users, projects, and departments that need the resources.
Past resource consumption is not taken into account.

Functional policy entitlement to system resources is combined with other entitlements
in determining a job’s net entitlement. For example, functional policy entitlement
might be combined with share-based policy entitlement.

The total number of tickets that are allotted to the functional policy determines the
weight of functional scheduling among the three scheduling policies. During
installation, the administrator divides the total number of functional tickets among the
functional categories of user, department, project, job, and job class.

Functional Shares
Functional shares are assigned to every member of each functional category: user,
department, project, job, and job class. These shares indicate what proportion of the
tickets for a category each job associated with a member of the category is entitled to.
For example, user davidson has 200 shares, and user donlee has 100. A job
submitted by davidson is entitled to twice as many user-functional-tickets as
donlee’s job, no matter how many tickets there are.

The functional tickets that are allotted to each category are shared among all the jobs
that are associated with a particular category.

Configuring the Functional Share Policy With QMON

At the bottom of the QMON Policy Configuration dialog box, click Functional Policy.
The Functional Policy dialog box appears.

Chapter 5 • Managing Policies and the Scheduler 147

Function Category List

Select the functional category for which you are defining functional shares: user,
project, department, or job.

Functional Shares Table

The table under Functional Shares is scrollable. The table displays the following
information:

� A list of the members of the category currently selected from the Function Category
list.

� The number of functional shares for each member of the category. Shares are used
as a convenient indication of the relative importance of each member of the
functional category. You can edit this field.

� The percentage of the functional share allocation for this category of functional
ticket that this number of functional shares represents. This field is a feedback
device and is not editable.

QMON periodically updates the information displayed in the Functional Policy dialog
box. Click Refresh to force the display to refresh immediately.

To save all node changes that you make, click Apply. To close the dialog box without
saving changes, click Done.

148 N1 Grid Engine 6 Administration Guide • May 2005

Changing Functional Configurations

Click the jagged arrow above the Functional Shares table to open a configuration
dialog box.

� For User functional shares, the User Configuration dialog box appears. Use the
User tab to switch to the appropriate mode for changing the configuration of grid
engine users. See “Configuring User Objects With QMON” on page 101.

� For Department functional shares, the User Configuration dialog box appears. Use
the Userset tab to switch to the appropriate mode for changing the configuration of
departments that are represented as usersets. See “Defining Usersets As Projects
and Departments” on page 101.

� For Project functional shares, the Project Configuration dialog box appears. See
“Defining Projects With QMON” on page 104.

� For Job functional shares, the Job Control dialog box appears. See “Monitoring and
Controlling Jobs With QMON” in N1 Grid Engine 6 User’s Guide.

Ratio Between Sorts of Functional Tickets

To display the Ratio Between Sorts Of Functional Tickets, click the arrow at the right of
the Functional Shares table .

User [%], Department [%], Project [%], Job [%] and Job Class [%] always add up to
100%.

When you change any of the sliders, all other unlocked sliders change to compensate
for the change.

When a lock is open, the slider that it guards can change freely. The slider can change
either because it is moved or because the moving of another slider causes this slider to
change. When a lock is closed, the slider that it guards cannot change. If four locks are
closed and one lock is open, no sliders can change.

� User slider – Indicates the percentage of the total functional tickets to allocate to
the users category

� Departments slider – Indicates the percentage of the total functional tickets to
allocate to the departments category

� Project slider – Indicates the percentage of the total functional tickets to allocate to
the projects category

� Job slider – Indicates the percentage of the total functional tickets to allocate to the
jobs category

Chapter 5 • Managing Policies and the Scheduler 149

Configuring the Functional Share Policy From the
Command Line

Note – You can assign functional shares to jobs only using QMON. No command-line
interface is available for this function.

To configure the functional share policy from the command line, use the qconf
command with the appropriate options.

� Use the qconf -muser command to configure the user category. The -muser
option modifies the fshare parameter of the user entry file. See the user(5) man
page for information about the user entry file.

� Use the qconf -mu command to configure the department category. The -mu
option modifies the fshare parameter of the access list file. See the
access_list(5) man page for information about the access list file, which is used
to represent departments.

� Use the qconf -mprj command to configure the project category. The -mprj
option modifies the fshare parameter of the project entry file. See the project(5)
man page for information about the project entry file.

� Use the qconf -mq command to configure the job class category. The -mq option
modifies the fshare parameter of the queue configuration file. See the
queue_conf(5) man page for information about the queue configuration file,
which is used to represent job classes.

� The weighting between different categories is defined in the scheduler
configuration sched_conf and can be changed using qconf -msconf. The
parameters to change are weight_user, weight_department,
weight_project, weight_job, and weight_jobclass. The parameter values
range between 0 and 1, and the total sum of parameters must add up to 1.

� How to Create User-Based, Project-Based, and
Department-Based Functional Scheduling
Use this setup to create a certain share assignment of all the resources in the cluster to
different users, projects, or departments. First-come, first-served scheduling is used
among jobs of the same user, project, or department.

1. In the Scheduler Configuration dialog box, select the Share Functional Tickets
check box.

See “Sharing Functional Ticket Shares” on page 132, and the sched_conf(5) man
page.

Steps

150 N1 Grid Engine 6 Administration Guide • May 2005

2. Specify the number of functional tickets (for example, 1000000) in the scheduler
configuration.

See “Configuring Policy-Based Resource Management With QMON” on page 127,
and the sched_conf(5) man page.

3. Add scheduling-relevant items:

� Add one user for each scheduling-relevant user.

See “Configuring User Objects With QMON” on page 101, and the user(5) man
page.

� Add one project for each scheduling-relevant project.

See “Defining Projects With QMON” on page 104, and the project(5) man page.

� Add each scheduling-relevant department.

4. Assign functional shares to each user, project, or department.

See “Configuring User Access Lists With QMON” on page 98, and the
access_list(5) man page.

Assign the shares as a percentage of the whole. Examples follow:

For users:

� UserA (10)
� UserB (20)
� UserC (20)
� UserD (20)

For projects:

� ProjectA (55)
� ProjectB (45)

For departments:

� DepartmentA (90)
� DepartmentB (5)
� DepartmentC (5)

Configuring the Override Policy
Override scheduling enables a grid engine system manager or operator to dynamically
adjust the relative importance of one job or of all jobs that are associated with a user, a
department, a project, or a job class. This adjustment adds tickets to the specified job,
user, department, project, or job class. By adding override tickets, override scheduling
increases the total number of tickets that a user, department, project, or job has. As a
result, the overall share of resources is increased.

Chapter 5 • Managing Policies and the Scheduler 151

The addition of override tickets also increases the total number of tickets in the
system. These additional tickets deflate the value of every job’s tickets.

You can use override tickets for the following two purposes:

� To temporarily override the share-based policy or the functional policy without
having to change the configuration of these policies.

� To establish resource entitlement levels with an associated fixed amount of tickets.
The establishment of entitlement levels is appropriate for scenarios like high,
medium, or low job classes, or high, medium, or low priority classes.

Override tickets that are assigned directly to a job go away when the job finishes. All
other tickets are inflated back to their original value. Override tickets that are assigned
to users, departments, projects, and job classes remain in effect until the administrator
explicitly removes the tickets.

The Policy Configuration dialog box displays the current number of override tickets
that are active in the system.

Note – Override entries remain in the Override dialog box. These entries can influence
subsequent work if they are not explicitly deleted by the administrator when they are
no longer needed.

Configuring the Override Policy With QMON

At the bottom of the QMON Policy Configuration dialog box, click Override Policy. The
Override Policy dialog box appears.

152 N1 Grid Engine 6 Administration Guide • May 2005

Override Category List

Select the category for which you are defining override tickets: user, project,
department, or job.

Override Table

The override table is scrollable. It displays the following information:

� A list of the members of the category for which you are defining tickets. The
categories are user, project, department, job, and job class.

� The number of override tickets for each member of the category. This field is
editable.

QMON periodically updates the information that is displayed in the Override Policy
dialog box. Click Refresh to force the display to refresh immediately.

To save all override changes that you make, click Apply. To close the dialog box
without saving changes, click Done.

Changing Override Configurations

Click the jagged arrow above the override table to open a configuration dialog box.

� For User override tickets, the User Configuration dialog box appears. Use the User
tab to switch to the appropriate mode for changing the configuration of grid engine
users. See “Configuring User Objects With QMON” on page 101.

� For Department override tickets, the User Configuration dialog box appears. Use
the Userset tab to switch to the appropriate mode for changing the configuration of
departments that are represented as usersets. See “Defining Usersets As Projects
and Departments” on page 101.

� For Project override tickets, the Project Configuration dialog box appears. See
“Defining Projects With QMON” on page 104.

� For Job override tickets, the Job Control dialog box appears. See “Monitoring and
Controlling Jobs With QMON” in N1 Grid Engine 6 User’s Guide.

Configuring the Override Policy From the Command Line

Note – You can assign override tickets to jobs only using QMON. No command line
interface is available for this function.

Chapter 5 • Managing Policies and the Scheduler 153

To configure the override policy from the command line, use the qconf command
with the appropriate options.

� Use the qconf -muser command to configure the user category. The -muser
option modifies the oticket parameter of the user entry file. See the user(5) man
page for information about the user entry file.

� Use the qconf -mu command to configure the department category. The -mu
option modifies the oticket parameter of the access list file. See the
access_list(5) man page for information about the access list file, which is used
to represent departments.

� Use the qconf -mprj command to configure the project category. The -mprj
option modifies the oticket parameter of the project entry file. See the
project(5) man page for information about the project entry file.

� Use the qconf -mq command to configure the job class category. The -mq option
modifies the oticket parameter of the queue configuration file. See the
queue_conf(5) man page for information about the queue configuration file,
which is used to represent job classes.

154 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 6

Managing Special Environments

This chapter describes how to manage and administer the following special
environments:

� Parallel environments
� Checkpointing environments

In addition to background information about these environments, this chapter
includes detailed instructions for accomplishing the following tasks:

� “Configuring Parallel Environments With QMON” on page 156
� “Configuring Parallel Environments From the Command Line” on page 161
� “Configuring Checkpointing Environments With QMON” on page 166
� “Configuring Checkpointing Environments From the Command Line” on page 168

Configuring Parallel Environments
A parallel environment (PE) is a software package that enables concurrent computing on
parallel platforms in networked environments.

A variety of systems have evolved over the past years into viable technology for
distributed and parallel processing on various hardware platforms. The following are
two examples of the most common message-passing environments:

� PVM – Parallel Virtual Machine, Oak Ridge National Laboratories
� MPI – Message Passing Interface, the Message Passing Interface Forum

Public domain as well as hardware vendor-provided implementations exist for both
tools.

All these systems show different characteristics and have segregative requirements. In
order to handle parallel jobs running on top of such systems, the grid engine system
provides a flexible, powerful interface that satisfies various needs.

155

The grid engine system provides means to run parallel jobs by means of the following
programs:

� Arbitrary message-passing environments such as PVM or MPI. See the PVM User’s
Guide and the MPI User’s Guide for details.

� Shared memory parallel programs on multiple slots, either in single queues or
distributed across multiple queues and across machines for distributed memory
parallel jobs.

Any number of different parallel environment interfaces can be configured
concurrently.

Interfaces between parallel environments and the grid engine system can be
implemented if suitable startup and stop procedures are provided. The startup
procedure and the stop procedure are described in “Parallel Environment Startup
Procedure” on page 162 and in “Termination of the Parallel Environment” on page
163, respectively.

Configuring Parallel Environments With QMON
On the QMON Main Control window, click the Parallel Environment Configuration
button. The Parallel Environment Configuration dialog box appears.

Currently configured parallel environments are displayed under PE List.

To display the contents of a parallel environment, select it. The selected parallel
environment configuration is displayed under Configuration.

To delete a parallel environment, select it, and then click Delete.

To add a new parallel environment, click Add. To modify a parallel environment,
select it, and then click Modify.

When you click Add or Modify, the Add/Modify PE dialog box appears.

156 N1 Grid Engine 6 Administration Guide • May 2005

If you are adding a new parallel environment, type its name in the Name field. If you
are modifying a parallel environment, its name is displayed in the Name field.

In the Slots box, enter the total number of job slots that can be occupied by all parallel
environment jobs running concurrently.

User Lists displays the user access lists that are allowed to access the parallel
environment. Xuser Lists displays the user access lists that are not allowed to access
the parallel environment. See “Configuring User Access Lists” on page 98 for more
information about user access lists.

Click the icons at the right of each list to modify the content of the lists. The Select
Access Lists dialog box appears.

Chapter 6 • Managing Special Environments 157

The Start Proc Args and Stop Proc Args fields are optional. Use these fields to enter the
precise invocation sequence of the parallel environment startup and stop procedures.
See the sections “Parallel Environment Startup Procedure” on page 162 and
“Termination of the Parallel Environment” on page 163, respectively. If no such
procedures are required for a certain parallel environment, you can leave the fields
empty.

The first argument is usually the name of the start or stop procedure itself. The
remaining parameters are command-line arguments to the procedures.

A variety of special identifiers, which begin with a $ prefix, are available to pass
internal runtime information to the procedures. The sge_pe(5) man page contains a
list of all available parameters.

The Allocation Rule field defines the number of parallel processes to allocate on each
machine that is used by a parallel environment. A positive integer fixes the number of
processes for each suitable host. Use the special denominator $pe_slots to cause the
full range of processes of a job to be allocated on a single host (SMP). Use the
denominators $fill_up and $round_robin to cause unbalanced distributions of
processes at each host. For more details about these allocation rules, see the sge_pe(5)
man page.

The Urgency Slots field specifies the method the grid engine system uses to assess the
number of slots that pending jobs with a slot range get. The assumed slot allocation is
meaningful when determining the resource-request-based priority contribution for
numeric resources. You can specify an integer value for the number of slots. Specify
min to use the slot range minimum. Specify max to use the slot range maximum.
Specify avg to use the average of all numbers occurring within the job’s parallel
environment range request.

The Control Slaves check box specifies whether the grid engine system generates
parallel tasks or whether the corresponding parallel environment creates its own
process. The grid engine system uses sge_execd and sge_shepherd to generate
parallel tasks. Full control over slave tasks by the grid engine system is preferable,
because the system provides the correct accounting and resource control. However,
this functionality is available only for parallel environment interfaces especially
customized for the grid engine system. See “Tight Integration of Parallel
Environments and Grid Engine Software” on page 164 for more details.

The Job Is First Task check box is meaningful only if Control Slaves is selected. If you
select Job Is First Task, the job script or one of its child processes acts as one of the
parallel tasks of the parallel application. For PVM, you usually want the job script to
be part of the parallel application, for example. If you clear the Job Is First Task check
box, the job script initiates the parallel application but does not participate. For MPI,
you usually do not want the job script to be part of the parallel application, for
example, when you use mpirun.

Click OK to save your changes and close the dialog box. Click Cancel to close the
dialog box without saving changes.

158 N1 Grid Engine 6 Administration Guide • May 2005

Displaying Configured Parallel Environment Interfaces
With QMON

On the QMON Main Control window, click the Parallel Environment Configuration
button. The Parallel Environment Configuration dialog box appears. See “Configuring
Parallel Environments With QMON” on page 156 for more information.

The following example defines a parallel job to be submitted. The job requests that the
parallel environment interface mpi (message passing interface) be used with from 4 to
16 processes. 16 is preferable.

To select a parallel environment from a list of available parallel environments, click the
button at the right of the Parallel Environment field. A selection dialog box appears.

You can add a range for the number of parallel tasks initiated by the job after the
parallel environment name in the Parallel Environment field.

Chapter 6 • Managing Special Environments 159

The qsub command corresponding to the parallel job specification described
previously is as follows:

% qsub -N Flow -p -111 -P devel -a 200012240000.00 -cwd \
-S /bin/tcsh -o flow.out -j y -pe mpi 4-16 \
-v SHARED_MEM=TRUE,MODEL_SIZE=LARGE \
-ac JOB_STEP=preprocessing,PORT=1234 \
-A FLOW -w w -r y -m s,e -q big_q\
-M me@myhost.com,me@other.address \

flow.sh big.data

This example shows how to use the qsub -pe command to formulate an equivalent
request. The qsub(1) man page provides more details about the -pe option.

Select a suitable parallel environment interface for a parallel job, keeping the following
considerations in mind:

� Parallel environment interfaces can use different message-passing systems or no
message systems.

� Parallel environment interfaces can allocate processes on single or multiple hosts.

� Access to the parallel environment can be denied to certain users.

� Only a specific set of queues can be used by a parallel environment interface.

� Only a certain number of queue slots can be occupied by a parallel environment
interface at any point of time.

Ask the grid engine system administration for the available parallel environment
interfaces best suited for your types of parallel jobs.

You can specify resource requirements along with your parallel environment request.
The specifying of resource requirements further reduces the set of eligible queues for
the parallel environment interface to those queues that fit the requirement. See
“Defining Resource Requirements” in N1 Grid Engine 6 User’s Guide.

For example, assume that you run the following command:

% qsub -pe mpi 1,2,4,8 -l nastran,arch=osf nastran.par

The queues that are suitable for this job are queues that are associated with the parallel
environment interface mpi by the parallel environment configuration. Suitable queues
also satisfy the resource requirement specification specified by the qsub -l command.

Note – The parallel environment interface facility is highly configurable. In particular,
the administrator can configure the parallel environment startup and stop procedures
to support site-specific needs. See the sge_pe(5) man page for details. Use the qsub
-v and qsub -V commands to pass information from the user who submits the job to
the startup and stop procedures. These two options export environment variables. If
you are unsure, ask the administrator whether you are required to export certain
environment variables.

160 N1 Grid Engine 6 Administration Guide • May 2005

Configuring Parallel Environments From the
Command Line
Type the qconf command with appropriate options:

qconf options

The following options are available:

� qconf -ap pe-name

The -ap option (add parallel environment) displays an editor containing a parallel
environment configuration template. The editor is either the default vi editor or an
editor defined by the EDITOR environment variable. pe-name specifies the name of
the parallel environment. The name is already provided in the corresponding field
of the template. Configure the parallel environment by changing the template and
saving to disk. See the sge_pe(5) man page for a detailed description of the
template entries to change.

� qconf -Ap filename

The -Ap option (add parallel environment from file) parses the specified file
filename and adds the new parallel environment configuration.

The file must have the format of the parallel environment configuration template.

� qconf -dp pe-name

The -dp option (delete parallel environment) deletes the specified parallel
environment.

� qconf -mp pe-name

The -mp option (modify parallel environment) displays an editor containing the
specified parallel environment as a configuration template. The editor is either the
default vi editor or an editor defined by the EDITOR environment variable.
Modify the parallel environment by changing the template and saving to disk. See
the sge_pe(5) man page for a detailed description of the template entries to
change.

� qconf -Mp filename

The -Mp option (modify parallel environment from file) parses the specified file
filename and modifies the existing parallel environment configuration.

The file must have the format of the parallel environment configuration template.

� qconf -sp pe-name

The -sp option (show parallel environment) prints the configuration of the
specified parallel environment to standard output.

� qconf -spl

The -spl option (show parallel environment list) lists the names of all currently
configured parallel environments.

Chapter 6 • Managing Special Environments 161

Parallel Environment Startup Procedure
The grid engine system starts the parallel environment by using the exec system call
to invoke a startup procedure. The name of the startup executable and the parameters
passed to this executable are configurable from within the grid engine system.

An example for such a startup procedure for the PVM environment is contained in the
distribution tree of the grid engine system. The startup procedure is made up of a shell
script and a C program that is invoked by the shell script. The shell script uses the C
program to start up PVM cleanly. All other required operations are handled by the
shell script.

The shell script is located under sge-root/pvm/startpvm.sh. The C program file is
located under sge-root/pvm/src/start_pvm.c.

Note – The startup procedure could have been a single C program. The use of a shell
script enables easier customization of the sample startup procedure.

The example script startpvm.sh requires the following three arguments:

� The path of a host file generated by grid engine software, containing the names of
the hosts from which PVM is to be started

� The host on which the startpvm.sh procedure is invoked

� The path of the PVM root directory, usually contained in the PVM_ROOT
environment variable

These parameters can be passed to the startup script as described in “Configuring
Parallel Environments With QMON” on page 156. The parameters are among the
parameters provided to parallel environment startup and stop scripts by the grid
engine system during runtime. The required host file, as an example, is generated by
the grid engine system. The name of the file can be passed to the startup procedure in
the parallel environment configuration by the special parameter name
$pe_hostfile. A description of all available parameters is provided in the
sge_pe(5) man page.

The host file has the following format:

� Each line of the file refers to a queue on which parallel processes are to run.

� The first entry of each line specifies the host name of the queue.

� The second entry specifies the number of parallel processes to run in this queue.

� The third entry denotes the queue.

� The fourth entry denotes a processor range to use in case of a multiprocessor
machine.

162 N1 Grid Engine 6 Administration Guide • May 2005

This file format is generated by the grid engine system. The file format is fixed.
Parallel environments that need a different file format must translate it within the
startup procedure. See the startpvm.sh file. PVM is an example of a parallel
environment that needs a different file format.

When the grid engine system starts the parallel environment startup procedure, the
startup procedure launches the parallel environment. The startup procedure should
exit with a zero exit status. If the exit status of the startup procedure is not zero, grid
engine software reports an error and does not start the parallel job.

Note – You should test any startup procedures first from the command line, without
using the grid engine system. Doing so avoids all errors that can be hard to trace if the
procedure is integrated into the grid engine system framework.

Termination of the Parallel Environment
When a parallel job finishes or is aborted, for example, by qdel, a procedure to halt
the parallel environment is called. The definition and semantics of this procedure are
similar to the procedures described for the startup program. The stop procedure can
also be defined in a parallel environment configuration. See, for example,
“Configuring Parallel Environments With QMON” on page 156.

The purpose of the stop procedure is to shut down the parallel environment and to
reap all associated processes.

Note – If the stop procedure fails to clean up parallel environment processes, the grid
engine system might have no information about processes that are running under
parallel environment control. Therefore the stop procedure cannot clean up these
processes. The grid engine software, of course, cleans up the processes directly
associated with the job script that the system has launched.

The distribution tree of the grid engine system also contains an example of a stop
procedure for the PVM parallel environment. This example resides under
sge-root/pvm/stoppvm.sh. It takes the following two arguments:

� The path to the host file generated by the grid engine system
� The name of the host on which the stop procedure is started

Similar to the startup procedure, the stop procedure is expected to return a zero exit
status on success and a nonzero exit status on failure.

Chapter 6 • Managing Special Environments 163

Note – You should test any stop procedures first from the command line, without
using the grid engine system. Doing so avoids all errors that can be hard to trace if the
procedure is integrated into the grid engine system framework.

Tight Integration of Parallel Environments and
Grid Engine Software
“Configuring Parallel Environments With QMON” on page 156 mentions that using
sge_execd and sge_shepherd to create parallel tasks offers benefits over parallel
environments that create their own parallel tasks. The UNIX operating system allows
reliable resource control only for the creator of a process hierarchy. Features such as
correct accounting, resource limits, and process control for parallel applications, can be
enforced only by the creator of all parallel tasks.

Most parallel environments do not implement these features. Therefore parallel
environments do not provide a sufficient interface for the integration with a resource
management system like the grid engine system. To overcome this problem, the grid
engine system provides an advanced parallel environment interface for tight
integration with parallel environments. This parallel environment interface transfers
the responsibility for creating tasks from the parallel environment to the grid engine
software.

The distribution of the grid engine system contains two examples of such a tight
integration, one for the PVM public domain version, and one for the MPICH MPI
implementation from Argonne National Laboratories. The examples are contained in
the directories sge-root/pvm and sge-root/mpi, respectively. The directories also contain
README files that describe the usage and any current restrictions. Refer to those
README files for more details.

For the purpose of comparison, the sge-root/mpi/sunhpc/loose-integration
directory contains a loose integration sample with Sun HPC ClusterTools™ software,
and the sge-root/mpi directory contain a loosely integrated variant of the interfaces for
comparison.

Note – The performance of a tight integration with a parallel environment is an
advanced task that can require expert knowledge of the parallel environment and the
grid engine system parallel environment interface. You might want to contact your
Sun support representative distributor for assistance.

164 N1 Grid Engine 6 Administration Guide • May 2005

Configuring Checkpointing
Environments
Checkpointing is a facility that does the following tasks:

1. Freezes the status of an running job or application

2. Saves this status (the checkpoint) to disk

3. Restarts the job or application from the checkpoint if the job or application has
otherwise not finished, for example, due to a system shutdown

If you move a checkpoint from one host to another host, checkpointing can migrate
jobs or applications in a cluster without significant loss of resources. Hence, dynamic
load balancing can be provided with the help of a checkpointing facility.

The grid engine system supports two levels of checkpointing:

� User-level checkpointing.

At this level, providing the checkpoint generation mechanism is entirely the
responsibility of the user or the application. Examples of user-level checkpointing
include:

� The periodic writing of restart files that are encoded in the application at
prominent algorithmic steps, combined with proper processing of these files
when the application is restarted.

� The use of a checkpoint library that must be linked to the application and that
thereby installs a checkpointing mechanism.

Note – A variety of third-party applications provides an integrated checkpoint
facility that is based on the writing of restart files. Checkpoint libraries are
available from hardware vendors or from the public domain. Refer to the
Condor project of the University of Wisconsin, for example.

� Kernel-level transparent checkpointing.

This level of checkpointing must be provided by the operating system, or by
enhancements to it, that can be applied to any job. No source code changes or
relinking of your application need to be provided to use kernel-level
checkpointing.

Kernel-level checkpointing can be applied to complete jobs, that is, the process
hierarchy created by a job. By contrast, user-level checkpointing is usually restricted to
single programs. Therefore the job in which such programs are embedded needs to
properly handle cases where the entire job gets restarted.

Chapter 6 • Managing Special Environments 165

Kernel-level checkpointing, as well as checkpointing based on checkpointing libraries,
can consume many resources. The complete virtual address space that is in use by the
job or application at the time of the checkpoint must be dumped to disk. By contrast,
user-level checkpointing based on restart files can restrict the data that is written to the
checkpoint on the important information only.

About Checkpointing Environments
The grid engine system provides a configurable attribute description for each
checkpointing method used. Different attribute descriptions reflect the different
checkpointing methods and the potential variety of derivatives from these methods on
different operating system architectures.

This attribute description is called a checkpointing environment. Default checkpointing
environments are provided with the distribution of the grid engine system and can be
modified according to the site’s needs.

New checkpointing methods can be integrated in principal. However, the integration
of new methods can be a challenging task. This integration should be performed only
by experienced personnel or by your grid engine system support team.

Configuring Checkpointing Environments With
QMON
On the QMON Main Control window, click the Checkpoint Configuration button. The
Checkpointing Configuration dialog box appears.

Viewing Configured Checkpointing Environments
To view previously configured checkpointing environments, select one of the
checkpointing environment names listed under Checkpoint Objects. The
corresponding configuration is displayed under Configuration.

166 N1 Grid Engine 6 Administration Guide • May 2005

Adding a Checkpointing Environment
In the Checkpointing Configuration dialog box, click Add. The Add/Modify
Checkpoint Object dialog box appears, along with a template configuration that you
can edit.

Fill out the template with the requested information.

Click OK to register your changes with sge_qmaster. Click Cancel to close the
dialog box without saving changes.

Modifying Checkpointing Environments
In the Checkpoint Objects list, select the name of the configured checkpointing
environment you want to modify, and then click Modify. The Add/Modify
Checkpoint Object dialog box appears, along with the current configuration of the
selected checkpointing environment.

The Add/Modify Checkpoint Object dialog box enables you to change the following
information:

� Name
� Checkpoint, Migration, Restart, and Clean command strings
� Directory where checkpointing files are stored
� Occasions when checkpoints must be initiated
� Signal to send to job or application when a checkpoint is initiated

See the checkpoint(5) man page for details about these parameters.

Chapter 6 • Managing Special Environments 167

In addition, you must define the Interface to use. The Interface is also called
checkpointing method. From the Interface list under Name, select an Interface. See the
checkpoint(5) man page for details about the meaning of the different interfaces.

Note – For the checkpointing environments provided with the distribution of the grid
engine system, change only the Name parameter and the Checkpointing Directory
parameter.

Click OK to register your changes with sge_qmaster. Click Cancel to close the
dialog box without saving changes.

Deleting Checkpointing Environments
To delete a configured checkpointing environment, select it, and then click Delete.

Configuring Checkpointing Environments From
the Command Line
To configure the checkpointing environment from the command line, type the qconf
command with the appropriate options.

The following options are available:

� qconf -ackpt ckpt-name

The -ackpt option (add checkpointing environment) displays an editor containing
a checkpointing environment configuration template. The editor is either the
default vi editor or an editor corresponding to the EDITOR environment variable.
The parameter ckpt-name specifies the name of the checkpointing environment. The
parameter is already provided in the corresponding field of the template.
Configure the checkpointing environment by changing the template and saving to
disk. See the checkpoint(5) man page for a detailed description of the template
entries to be changed.

� qconf -Ackpt filename

The -Ackpt option (add checkpointing environment from file) parses the specified
file and adds the new checkpointing environment configuration.

The file must have the format of the checkpointing environment template.

� qconf -dckpt ckpt-name

The -dckpt option (delete checkpointing environment) deletes the specified
checkpointing environment.

� qconf -mckpt ckpt-name

168 N1 Grid Engine 6 Administration Guide • May 2005

The -mckpt option (modify checkpointing environment) displays an editor
containing the specified checkpointing environment as a configuration template.
The editor is either the default vi editor or an editor corresponding to the EDITOR
environment variable. Modify the checkpointing environment by changing the
template and saving to disk. See the checkpoint(5) man page for a detailed
description of the template entries to be changed.

� qconf -Mckpt filename

The -Mckpt option (modify checkpointing environment from file) parses the
specified file and modifies the existing checkpointing configuration.

The file must have the format of the checkpointing environment template.

� qconf -sckpt ckpt-name

The -sckpt option (show checkpointing environment) prints the configuration of
the specified checkpointing environment to standard output.

� qconf -sckptl

The -sckptl option (show checkpointing environment list) displays a list of the
names of all checkpointing environments currently configured.

Chapter 6 • Managing Special Environments 169

170 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 7

Other Administrative Tasks

This chapter describes how to use files and scripts to add or modify grid engine
system objects such as queues, hosts, and environments.

This chapter includes the following sections:

� “Gathering Accounting and Reporting Statistics” on page 171
� “Backing Up the Grid Engine System Configuration” on page 178
� “Using Files and Scripts for Administration Tasks” on page 179

Gathering Accounting and Reporting
Statistics
The grid engine system provides two kinds of reporting and accounting facilities:

� Accounting and Reporting Console (ARCo)
� qacct command and the accounting file

Report Statistics (ARCo)
You can use the optional Accounting and Reporting Console (ARCo) to generate live
accounting and reporting data from the grid engine system and store the data in the
reporting database, which is a standard SQL database. ARCo supports the following
SQL database systems:

� PostgreSQL
� Oracle
� MySQL

171

ARCo also provides a web-based tool for generating information queries on the
reporting database and for retrieving the results in tabular or graphical form. ARCo
enables you to store queries for later use, to run predefined queries, and to run queries
in batch mode. For more information about how to use ARCo, see Chapter 5,
“Accounting and Reporting,” in N1 Grid Engine 6 User’s Guide. For information about
how to install ARCo, see Chapter 8, “Installing the Accounting and Reporting
Console,” in N1 Grid Engine 6 Installation Guide.

Raw reporting data is generated by sge_qmaster. This raw data is stored in a
reporting file. The dbwriter program reads the raw data in the reporting file and
writes it to the SQL reporting database, where it can be accessed by ARCo.

About the dbwriter Program
The dbwriter program performs the following tasks:

� Reads raw data from the reporting file and writes this raw data to the reporting
database.

� Calculates derived values. You can configure which values to calculate, as well as
the rules that govern the calculations.

� Deletes outdated data. You can configure how long to keep data.

When dbwriter starts up, it calculates derived values. dbwriter also deletes
outdated records at startup. If dbwriter runs in continuous mode, dbwriter
continues to calculate derived values and to delete outdated records at hourly
intervals, or at whatever interval you specify.

You can specify in an XML file the values that you want to calculate and the records
that you want to delete. Use the -calculation option of the dbwriter command to
specify the path to this XML file.

For detailed information about calculating derived values, see “Calculating Derived
Values With dbwriter” on page 173.

For detailed information about deleting outdated records, see “Deleting Outdated
Records With dbwriter” on page 176.

Enabling the Reporting File
The reporting file contains the following types of data:

� Host load values and consumable resources
� Queue consumable resources
� Job logging
� Job accounting
� Share-tree usage

172 N1 Grid Engine 6 Administration Guide • May 2005

When the grid engine system is first installed, the reporting file is disabled. To use
ARCo, you must enable the reporting file for the cluster. Once enabled, the reporting
file will be generated by sge_qmaster. By default, the reporting file is located in
sge-root/cell/common. You can change the default with the -reporting option of the
dbwriter command.

For information about configuring the generation of the reporting file, see the
reporting_params parameter of the sge_conf(5) man page, and the
report_variables parameter of the sge_host(5) man page.

To enable the reporting file with QMON, on the Main Control window click the Cluster
Configuration button, select the global host, and then click Modify.

On the Cluster Settings dialog box, click the Advanced Settings tab.

In the Reporting Parameters field, set the following parameters:

� Set accounting to true. true is the default value.
� Set reporting to true.
� Set flush_time to 00:00:15. 00:00:15 is the default value.
� Set joblog to true.
� Set sharelog to 00:00:00. 00:00:00 is the default value.

To enable the reporting file from the command line, use the qconf –mconf command
to set the reporting_params attributes, as described in the preceding paragraph.

Once the reporting file is enabled, the dbwriter can read raw data from the reporting
file and write it to the reporting database.

For more information about configuring the reporting file, see the reporting(5) man
page. For complete details about installing and setting up ARCo, see Chapter 8,
“Installing the Accounting and Reporting Console,” in N1 Grid Engine 6 Installation
Guide.

Calculating Derived Values With dbwriter

The rules for calculating derived values are specified in a derived tag, which is a sub
tag of the DbWriterConfig tag. The following table lists the attributes of the derived
tag:

Attribute Description

object The object for which data is aggregated. The object is one of the
following:

� host
� queue
� project
� department
� user

Chapter 7 • Other Administrative Tasks 173

� group

interval The time range specifying how often to calculate the derived values. The
time range is one of the following:

� hour
� day
� month
� year

variable The name of the variable to hold the calculated data.

The following table lists the subelements of the derived tag:

sql The SQL statement that calculates the derived values. The statement must
produce the following columns:

� time_start – Together with time_end, specifies the time period for
the calculated value

� time_end
� value – The calculated derived value

The SQL statement can contain the following placeholders. dbwriter
replaces the placeholders for each query, based on a rule:

� __time_start__ – Start time for the query. dbwriter searches for the
last previously calculated derived value from this rule, and uses this
timestamp as the start time for the next query.

� __time_end__ – End time for the query. This timestamp specifies the
end of the last passed time range. For example, if the time range is day,
and if derived values are calculated at 00:30, 00:00 is taken as
time_end.

� __key_0__, __key_1__, . . . , __key_n__ – Components of the primary
key for the specified object type. For example, the sge_hosts table has
the primary h_hostname. If a rule is processed for the host object type,
one query is executed per entry in the sge_hosts table, the __key_0__
placeholder in the SQL statement is replaced by the hostname.

The sge_queue table has a composed primary key that is made up of
q_qname and q_hostname.

auto dbwriter generates the SQL statement for the calculation of derived values.

The autogenerated SQL statement looks like the following template:

SELECT time_start, time_end, <function>(<value_field>) as value
FROM (SELECT TRUNC(<timestart_field>, <interval>) as time_start

TRUNC(<timestart_field>, <interval>) +
INTERVAL ’1’ <interval> as time_end,

<value_field>
FROM <object value table>
WHERE <primary key field 0> = __key_0__

174 N1 Grid Engine 6 Administration Guide • May 2005

AND <primary key field 1> = __key_1__
AND . . .
AND <parent key field> =

(SELECT <parent key field> FROM <parent table>
WHERE <parent filter>)

AND <timestart_field> <= {ts __time_start__ }
AND <timeend_field> > {ts __time_end__ }

GROUP BY time_start, time_end

The SQL template parameters are as follows:

Parameter Description

<function> Aggregate function for calculating the derived value. Comes
from the function attribute of the auto tag in the XML file.

<value_field> Depends on the object of the derived value.

<timestart_field> Depends on the object of the derived value.

<timeend_field> Depends on the object of the derived value.

<interval> Comes from the interval attribute of the derived tag

<object value table> Name of the database table where the values are stored.
Depends on the object (host => host_values, user =>
user_values, . . .)

<primary key field n> Primary key that is necessary to join the value table to the
parent table. Depends on the object.

<parent key field> Name of the field that holds the ID of the parent. Depends
on the object.

<parent table> Name of the parent database table. Depends on the object
(host => host, user => user)

<parent filter> Filter for the parent table. A derived value for each entry of
the parent table is calculated, for example, u_user = ’user1’).

Here is an example of an autogenerated SQL statement:

<derive object="host" interval="day" variable="d_load">
<auto function="AVG" variable="h_load" />

</derive>

SELECT time_start, time_end, AGE(hv_dvalue)
FROM (SELECT TRUNC(hv_time_start, ’day’) as time_start,

TRUNC(hv_time_start, ’day’) +
INTERVAL ’1’ day as time_end,

hv_dvalue
FROM sge_host_values
WHERE hv_variable = ’h_load’ AND

hv_parent =
(SELECT h_id FROM sge_host
WHERE h_hostname = ’foo.bar’) AND

Chapter 7 • Other Administrative Tasks 175

hv_time_start <= {ts ’2004-05-21 00:00:00.0’} AND
hv_time_end > {ts ’2004-05-17 00:00:00.0’})

GROUP BY time_start, time_end

Deleting Outdated Records With dbwriter

To delete outdated records in the reporting database, you must specify a deletion rule
in the delete tag. The following table lists the attributes of the delete tag:

Attribute Description

scope The type of data to delete. Valid entries are the following:

� job
� job_log
� share_log
� host_values
� queue_values
� project_values
� department_values
� user_values
� group_values

time_range The unit of time_amount:

time_amount Number of units (time_range) during which a record is to be
kept.

The following table lists a subelement of the delete tag:

sub_scope For certain scopes, a subscope can be configured. The subscope
specifies an additional condition for deletion. A subscope can be
configured for all *_values scopes and for the share_log scope.

If a subscope is configured for a *_values rule, it contains a list of
variables to delete, separated by spaces.

If a subscope is specified for the share_log, it contains a list of
share-tree nodes to delete, separated by spaces.

If subscope are used, you should always have a fallback rule without
subscope, which will delete all objects that are not explicitly named by
the subscope.

Here is an example of a delete tag:

<?xml version="1.0" encoding="UTF-8"?>
<DbWriterConfig>
<!-- keep host values for 2 years -->
<delete scope="host_values" time_range="year" time_amount="2"/>

176 N1 Grid Engine 6 Administration Guide • May 2005

<!-- keep queue values one month -->
<delete scope="queue_values" time_range="month" time_amount="1">
<sub_scope>slots</sub_scope>
<sub_scope>state</sub_scope>

</delete>

</DbWriterConfig>

Accounting and Usage Statistics (qacct)
You can use the qacct command to generate alphanumeric accounting statistics. If
you specify no options, qacct displays the aggregate usage on all machines of the
cluster, as generated by all jobs that have finished and that are contained in the cluster
accounting file sge-root/cell/common/accounting. In this case, qacct reports three
times, in seconds:

� Real time – Wall clock time, which is the time between when the job starts and
when it finishes

� User time – CPU time spent in user processes

� System time – CPU time spent in system calls

Several options are available for reporting accounting information about queues,
users, and the like. In particular, you can use the qacct -l command to request
information about all jobs that have finished and that match a resource requirement
specification.

Use the qacct -j [job-id | job-name] command to get direct access to the complete
resource usage information stored by the grid engine system. This information
includes the information that is provided by the getrusage system call.

The -j option reports the resource usage entry for the jobs with job-id or with
job-name. If no argument is given, all jobs contained in the referenced accounting file
are displayed. If a job ID is specified, and if more than one entry is displayed, one of
the following is true:

� Job ID numbers have wrapped around. The range for job IDs is 1 through 999999.
� A checkpointing job that migrated is displayed.

See the qacct(1) man page for more information.

Chapter 7 • Other Administrative Tasks 177

Backing Up the Grid Engine System
Configuration
You can back up your grid engine system configuration files automatically. The
automatic backup process uses a configuration file called backup_template.conf.
The backup configuration file is located by default in
sge-root/util/install_modules/backup_template.conf.

The backup configuration file must define the following elements:

� The grid engine system root directory.

� The grid engine system cell directory.

� The grid engine system backup directory.

� Type of backup. Your backup can be just the grid engine system configuration files,
or the backup can be a compressed tar file that contains the configuration files.

� The file name of the backup file.

The backup template file looks like the following example:

##
Autobackup Configuration File Template
##

Please, enter your SGE_ROOT here (mandatory)
SGE_ROOT=""

Please, enter your SGE_CELL here (mandatory)
SGE_CELL=""

Please, enter your Backup Directory here
After backup you will find your backup files here (mandatory)
The autobackup will add a time /date combination to this dirname
to prevent an overwriting!
BACKUP_DIR=""

Please, enter true to get a tar/gz package
and false to copy the files only (mandatory)
TAR="true"

Please, enter the backup file name here. (mandatory)

BACKUP_FILE="backup.tar"

To start the automatic backup process, type the following command on the
sge_qmaster host:

inst_sge -bup -auto backup-conf

178 N1 Grid Engine 6 Administration Guide • May 2005

backup-conf is the full path to the backup configuration file.

Note – You do not need to shut down any of the grid engine system daemons before
you back up your configuration files.

Your backup is created in the directory specified by BACKUP_FILE. A backup log file
called install.pid is also created in this directory. pid is the process ID number.

Using Files and Scripts for
Administration Tasks
This section describes how to use files and scripts to add or modify grid engine system
objects such as queues, hosts, and environments.

You can use the QMON graphical user interface to perform all administrative tasks in
the grid engine system. You can also administer a grid engine system through
commands you type at a shell prompt and call from within shell scripts. Many
experienced administrators find that using files and scripts is a more flexible, quicker,
and more powerful way to change settings.

Using Files to Add or Modify Objects
Use the qconf command with the following options to add objects according to
specifications you create in a file:

qconf -Ae
qconf -Aq
qconf -Au
qconf -Ackpt

qconf -Ap

Use the qconf command with the following options to modify objects according to
specifications you create in a file:

qconf -Me
qconf -Mq
qconf -Mu
qconf -Mckpt

qconf -Mp

Chapter 7 • Other Administrative Tasks 179

The –Ae and –Me options add or modify execution hosts.

The –Aq and –Mq options add or modify queues.

The –Au and –Mu options add or modify usersets.

The –Ackpt and –Mckpt options add or modify checkpointing environments.

The –Ap and –Mp options add or modify parallel environments.

Use these options in combination with the qconf –s command to take an existing
object and modify it. You can then update the existing object or create a new object.

EXAMPLE 7–1 Modifying the Migration Command of a Checkpoint Environment

#!/bin/sh
ckptmod.sh: modify the migration command
of a checkpointing environment
Usage: ckptmod.sh <checkpoint-env-name> <full-path-to-command>
TMPFILE=tmp/ckptmod.$$

CKPT=$1
MIGMETHOD=$2

qconf -sckpt $CKPT | grep -v ’^migr_command’ > $TMPFILE
echo "migr_command $MIGMETHOD" >> $TMPFILE
qconf -Mckpt $TMPFILE

rm $TMPFILE

Using Files to Modify Queues, Hosts, and
Environments
You can modify individual queues, hosts, parallel environments, and checkpointing
environments from the command line. Use the qconf command in combination with
other commands.

� If you have already prepared a file, type the qconf command with appropriate
options:

qconf -Me
qconf -Mq
qconf -Mckpt

qconf -Mp

� If you have not prepared a file, type the qconf command with appropriate options:

qconf -me
qconf -mq
qconf -mckpt

qconf -mp

180 N1 Grid Engine 6 Administration Guide • May 2005

The –Me and –me options modify execution hosts.

The –Mq and –mq options modify queues.

The –Mckpt and –mckpt options modify checkpointing environments.

The –Mp and –mp options modify parallel environments.

The difference between the uppercase –M options and the lowercase –m options
controls the qconf command’s result. Both –M and –m mean modify, but the uppercase
–M denotes modification from an existing file, whereas the lowercase –m does not.
Instead, the lowercase –m opens a temporary file in an editor. When you save any
changes you make to this file and exit the editor, the system immediately reflects those
changes.

However, when you want to change many objects at once, or you want to change
object configuration noninteractively, use the qconf command with the options that
modify object attributes (such as –Aattr, –Mattr, and so forth).

The following commands make modifications according to specifications in a file:

qconf -Aattr {queue | exechost | pe | ckpt} filename
qconf -Mattr {queue | exechost | pe | ckpt} filename
qconf -Rattr {queue | exechost | pe | ckpt} filename
qconf -Dattr {queue | exechost | pe | ckpt} filename

The following commands make modifications according to specifications on the
command line:

qconf -aattr {queue | exechost | pe | ckpt} attribute value {queue-list | host-list}
qconf -mattr {queue | exechost | pe | ckpt} attribute value {queue-list | host-list}
qconf -rattr {queue | exechost | pe | ckpt} attribute value {queue-list | host-list}
qconf -dattr {queue | exechost | pe | ckpt} attribute value {queue-list | host-list}

The –Aattr and –aattr options add attributes.

The –Mattr and –mattr options modify attributes.

The –Rattr and –rattr options replace attributes.

The –Dattr and –dattr options delete attributes.

filename is the name of a file that contains attribute-value pairs.

attribute is the queue or host attribute that you want to change.

value is the value of the attribute you want to change.

The –aattr, –mattr, and –dattr options enable you to operate on individual
values in a list of values. The –rattr option replaces the entire list of values with the
new one that you specify, either on the command line or in the file.

Chapter 7 • Other Administrative Tasks 181

EXAMPLE 7–2 Changing the Queue Type

The following command changes the queue type of tcf27–e019.q to batch only:

% qconf -rattr queue qtype batch tcf27-e019.q

EXAMPLE 7–3 Modifying the Queue Type and the Shell Start Behavior

The following command uses the file new.cfg to modify the queue type and the shell
start behavior of tcf27–e019.q:

% cat new.cfg
qtype batch interactive checkpointing
shell_start_mode unix_behavior

% qconf -Rattr queue new.cfg tcf27-e019.q

EXAMPLE 7–4 Adding Resource Attributes

The following command adds the resource attribute scratch1 with a value of 1000M
and the resource attribute long with a value of 2:

% qconf -rattr exechost complex_values scratch1=1000M,long=2 tcf27-e019

EXAMPLE 7–5 Attaching a Resource Attribute to a Host

The following command attaches the resource attribute short to the host with a value
of 4:

% qconf -aattr exechost complex_values short=4 tcf27-e019

EXAMPLE 7–6 Changing a Resource Value

The following command changes the value of scratch1 to 500M, leaving other
values unchanged:

% qconf -mattr exechost complex_values scratch-=500M tcf27-e019

EXAMPLE 7–7 Deleting a Resource Attribute

The following command deletes the resource attribute long:

% qconf -dattr exechost complex_values long tcf27-e019

EXAMPLE 7–8 Adding a Queue to the List of Queues for a Checkpointing Environment

The following command adds tcf27–b011.q to the list of queues for the
checkpointing environment sph:

% qconf -aattr ckpt queue_list tcf27-b011.q sph

182 N1 Grid Engine 6 Administration Guide • May 2005

EXAMPLE 7–9 Changing the Number of Slots in a Parallel Environment

The following command changes the number of slots in the parallel environment
make to 50:

% qconf -mattr pe slots 50 make

Targeting Queue Instances with the qselect Command
The qselect command outputs a list of queue instances. If you specify options,
qselect lists only the queue instances that match the criteria you specify. You can use
qselect in combination with the qconf command to target specific queue instances
that you want to modify.

EXAMPLE 7–10 Listing Queues

The following command lists all queue instances on Linux machines:

% qselect -l arch=glinux

The following command lists all queue instances on machines with two CPUs:

% qselect -l num_proc=2

The following command lists all queue instances on all four-CPU 64–bit Solaris
machines:

% qselect -l arch=solaris64,num_proc=4

The following command lists queue instances that provide an application license. The
queue instances were previously configured.

% qselect -l app_lic=TRUE

You can combine qselect with qconf to do wide-reaching changes with a single
command line. To do this, put the entire qselect command inside backward
quotation marks (‘ ‘) and use it in place of the queue-list variable on the qconf
command line.

EXAMPLE 7–11 Using qselect in qconf Commands

The following command sets the prolog script to sol_prolog.sh on all queue
instances on Solaris machines:

% qconf -mattr queue prolog /usr/local/scripts/sol_prolog.sh ‘qselect -l arch=solaris‘

The following command sets the attribute fluent_license to two on all queue
instances on two-processor systems:

% qconf -mattr queue complex_values fluent_license=2 ‘qselect -l num_proc=2‘

Chapter 7 • Other Administrative Tasks 183

The most flexible way to automate the configuration of queue instances is to use the
qconf command with the qselect command. With the combination of these
commands, you can build up your own custom administration scripts.

Using Files to Modify a Global Configuration or
the Scheduler
To change a global configuration, use the qconf –mconf command. To change the
scheduler, use the qconf –msconf command.

Both of these commands open a temporary file in an editor. When you exit the editor,
any changes that you save to this temporary file are processed by the system and take
effect immediately. The editor used to open the temporary file is the editor specified
by the EDITOR environment variable. If this variable is undefined, the vi editor is
used by default.

You can use the EDITOR environment variable to automate the behavior of the qconf
command. Change the value of this variable to point to an editor program that
modifies a file whose name is given by the first argument. After the editor modifies
the temporary file and exits, the system reads in the modifications, which take effect
immediately.

Note – If the modification time of the file does not change after the edit operation, the
system sometimes incorrectly assumes that the file was not modified. Therefore you
should insert a sleep 1 instruction before writing the file, to ensure a different
modification time.

You can use this technique with any qconf –m... command. However, the
technique is especially useful for administration of the scheduler and the global
configuration, as you cannot automate the procedure in any other way.

EXAMPLE 7–12 Modifying the Schedule Interval

The following example modifies the schedule interval of the scheduler:

#!/bin/ksh
sched_int.sh: modify the schedule interval
usage: sched_int.sh <n>, where <n> is
the new interval, in seconds. n < 60

TMPFILE=/tmp/sched_int.$$
if [$MOD_SGE_SCHED_INT]; then

grep -v schedule_interval $1 > $TMPFILE
echo "schedule_interval 0:0:$MOD_SGE_SCHED_INT" >> $TMPFILE

sleep to ensure modification time changes

184 N1 Grid Engine 6 Administration Guide • May 2005

EXAMPLE 7–12 Modifying the Schedule Interval (Continued)

sleep 1
mv $TMPFILE $1

else
export EDITOR=$0
export MOD_SGE_SCHED_INT=$1
qconf -msconf

fi

This script modifies the EDITOR environment to point to itself. The script then calls
the qconf –msconf command. This second nested invocation of the script modifies
the temporary file specified by the first argument and then exits. The grid engine
system automatically reads in the changes, and the first invocation of the script
terminates.

Chapter 7 • Other Administrative Tasks 185

186 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 8

Fine Tuning, Error Messages, and
Troubleshooting

This chapter describes some ways to fine-tune your grid engine system environment.
The chapter also describes the error messaging procedures and offers tips on how to
resolve various common problems.

This chapter includes the following sections:

� “Fine-Tuning Your Grid Environment” on page 187
� “How the Grid Engine Software Retrieves Error Reports” on page 190
� “Diagnosing Problems” on page 195
� “Troubleshooting Common Problems” on page 197

Fine-Tuning Your Grid Environment
The grid engine system is a full-function, general-purpose distributed resource
management tool. The scheduler component of the system supports a wide range of
different compute farm scenarios. To get the maximum performance from your
compute environment, you should review the features that are enabled. You should
then determine which features you really need to solve your load management
problem. Disabling some of these features can improve performance on the
throughput of your cluster.

Scheduler Monitoring
Scheduler monitoring can help you to find out why certain jobs are not dispatched.
However, providing this information for all jobs at all times can consume resources.
You usually do not need this much information.

187

To disable scheduler monitoring, set schedd_job_info to false in the scheduler
configuration. See “Changing the Scheduler Configuration With QMON” on page 123,
and the sched_conf(5) man page.

Finished Jobs
In the case of array jobs, the finished job list in qmaster can become quite large. By
switching the finished job list off, you save memory and speed up the qstat process,
because qstat also fetches the finished jobs list.

To turn off the finished job list function, set finished_jobs to zero in the cluster
configuration. See “Adding and Modifying Global and Host Configurations With
QMON” on page 41, and the sge_conf(5) man page.

Job Validation
Forced validation at job submission time can be a valuable procedure to prevent
nondispatchable jobs from forever remaining in a pending state. However, job
validation can also be a time-consuming task. Job validation can be especially
time-consuming in heterogeneous environments with different execution nodes and
consumable resources, and in which all users have their own job profiles. In
homogeneous environments with only a few different jobs, a general job validation
usually can be omitted.

To disable job verification, add the qsub option –w n in the cluster-wide default
requests. See “Submitting Advanced Jobs With QMON” in N1 Grid Engine 6 User’s
Guide, and the sge_request(5) man page.

Load Thresholds and Suspend Thresholds
Load thresholds are needed if you deliberately oversubscribe your machines and you
need to prevent excessive system load. Suspend thresholds are also used to prevent
overloading the system.

Another case where you want to prevent the overloading of a node is when the
execution node is still open for interactive load. Interactive load is not under the
control of the grid engine system.

A compute farm might be more single-purpose. For example, each CPU at a compute
node might be represented by only one queue slot, and no interactive load might be
expected at these nodes. In such cases, you can omit load_thresholds.

To disable both thresholds, set load_thresholds to none and
suspend_thresholds to none. See “Configuring Load and Suspend Thresholds”
on page 53, and the queue_conf(5) man page.

188 N1 Grid Engine 6 Administration Guide • May 2005

Load Adjustments
Load adjustments are used to increase the measured load after a job is dispatched.
This mechanism prevents oversubscription of machines that is caused by the delay
between job dispatching and the corresponding load impact. You can switch off load
adjustments if you do not need them. Load adjustments impose on the scheduler some
additional work in connection with sorting hosts and load thresholds verification.

To disable load adjustments, set job_load_adjustments to none and
load_adjustment_decay_time to zero in the scheduler configuration. See
“Changing the Scheduler Configuration With QMON” on page 123, and the
sched_conf(5) man page.

Immediate Scheduling
The default for the grid engine system is to start scheduling runs in a fixed schedule
interval. A good feature of fixed intervals is that they limit the CPU time consumption
of the qmaster and the scheduler. A bad feature is that fixed intervals choke the
scheduler, artificially resulting in a limited throughput. Many compute farms have
machines specifically dedicated to qmaster and the scheduler, and such setups
provide no reason to choke the scheduler. See schedule_interval in
sched_conf(5).

You can configure immediate scheduling by using the flush_submit_sec and
flush_finish_sec parameters of the scheduler configuration. See “Changing the
Scheduler Configuration With QMON” on page 123, and the sched_conf(5) man page.

If immediate scheduling is activated, the throughput of a compute farm is limited only
by the power of the machine that is hosting sge_qmaster and the scheduler.

Urgency Policy and Resource Reservation
The urgency policy enables you to customize job priority schemes that are
resource-dependent. Such job priority schemes include the following:

� A general preference to run the largest parallel jobs first

� A preference for jobs that request particular resources in order to make use of
expensive licenses

The implementing of both objectives is especially valuable if you are using resource
reservation.

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 189

How the Grid Engine Software Retrieves
Error Reports
The grid engine software reports errors and warnings by logging messages into
certain files or by sending email, or both. The log files include message files and job
STDERR output.

As soon as a job is started, the standard error (STDERR) output of the job script is
redirected to a file. The default file name and location are used, or you can specify the
filename and the location with certain options of the qsub command. See the grid
engine system man pages for detailed information.

Separate messages files exist for the sge_qmaster, the sge_schedd, and the
sge_execds. The files have the same file name: messages. The sge_qmaster log
file resides in the master spool directory. The sge_schedd message file resides in the
scheduler spool directory. The execution daemons’ log files reside in the spool
directories of the execution daemons. See “Spool Directories Under the Root
Directory” in N1 Grid Engine 6 Installation Guide for more information about the spool
directories.

Each message takes up a single line in the files. Each message is subdivided into five
components separated by the vertical bar sign (|).

The components of a message are as follows:

1. The first component is a time stamp for the message.

2. The second component specifies the daemon that generates the message.

3. The third component is the name of the host where the daemon runs.

4. The fourth is a message type. The message type is one of the following:

� N for notice – for informational purposes
� I for info – for informational purposes
� W for warning
� E for error – an error condition has been detected
� C for critical – can lead to a program abort

Use the loglevel parameter in the cluster configuration to specify on a global
basis or a local basis what message types you want to log.

5. The fifth component is the message text.

190 N1 Grid Engine 6 Administration Guide • May 2005

Note – If an error log file is not accessible for some reason, the grid engine system
tries to log the error message to the files /tmp/sge_qmaster_messages,
/tmp/sge_schedd_messages, or /tmp/sge_execd_messages on the
corresponding host.

In some circumstances, the grid engine system notifies users, administrators, or both,
about error events by email. The email messages sent by the grid engine system do not
contain a message body. The message text is fully contained in the mail subject field.

Consequences of Different Error or Exit Codes
The following table lists the consequences of different job-related error codes or exit
codes. These codes are valid for every type of job.

TABLE 8–1 Job-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence

Job script 0 Success

99 Requeue

Rest Success: exit code in accounting file

prolog/epilog 0 Success

99 Requeue

Rest Queue error state, job requeued

The following table lists the consequences of error codes or exit codes of jobs related to
parallel environment (PE) configuration.

TABLE 8–2 Parallel-Environment-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence

pe_start 0 Success

Rest Queue set to error state, job requeued

pe_stop 0 Success

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 191

TABLE 8–2 Parallel-Environment-Related Error or Exit Codes (Continued)
Script/Method Exit or Error Code Consequence

Rest Queue set to error state, job not requeued

The following table lists the consequences of error codes or exit codes of jobs related to
queue configuration. These codes are valid only if corresponding methods were
overwritten.

TABLE 8–3 Queue-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence

Job starter 0 Success

Rest Success, no other special meaning

Suspend 0 Success

Rest Success, no other special meaning

Resume 0 Success

Rest Success, no other special meaning

Terminate 0 Success

Rest Success, no other special meaning

The following table lists the consequences of error or exit codes of jobs related to
checkpointing.

TABLE 8–4 Checkpointing-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence

Checkpoint 0 Success

Rest Success. For kernel checkpoint, however, this means
that the checkpoint was not successful.

Migrate 0 Success

Rest Success. For kernel checkpoint, however, this means
that the checkpoint was not successful. Migration will
occur.

192 N1 Grid Engine 6 Administration Guide • May 2005

TABLE 8–4 Checkpointing-Related Error or Exit Codes (Continued)
Script/Method Exit or Error Code Consequence

Restart 0 Success

Rest Success, no other special meaning

Clean 0 Success

Rest Success, no other special meaning

Running Grid Engine System Programs in Debug
Mode
For some severe error conditions, the error-logging mechanism might not yield
sufficient information to identify the problems. Therefore, the grid engine system
offers the ability to run almost all ancillary programs and the daemons in debug mode.
Different debug levels vary in the extent and depth of information that is provided.
The debug levels range from zero through 10, with 10 being the level delivering the
most detailed information and zero turning off debugging.

To set a debug level, an extension to your .cshrc or .profile resource files is
provided with the distribution of the grid engine system. For csh or tcsh users, the
file sge-root/util/dl.csh is included. For sh or ksh users, the corresponding file is
named sge-root/util/dl.sh. The files must be sourced into your standard resource
file. As csh or tcsh user, include the following line in your .cshrc file:

source sge-root/util/dl.csh

As sh or ksh user, include the following line in your .profile file:

. sge-root/util/dl.sh

As soon as you log out and log in again, you can use the following command to set a
debug level:

% dl level

If level is greater than 0, starting a grid engine system command forces the command
to write trace output to STDOUT. The trace output can contain warning messages,
status messages, and error messages, as well as the names of the program modules
that are called internally. The messages also include line number information, which is
helpful for error reporting, depending on the debug level you specify.

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 193

Note – To watch a debug trace, you should use a window with a large scroll-line buffer.
For example, you might use a scroll-line buffer of 1000 lines.

Note – If your window is an xterm, you might want to use the xterm logging
mechanism to examine the trace output later on.

If you run one of the grid engine system daemons in debug mode, the daemons keep
their terminal connection to write the trace output. You can abort the terminal
connections by typing the interrupt character of the terminal emulation you use. For
example, you might use Control-C.

To switch off debug mode, set the debug level back to 0.

Setting the dbwriter Debug Level
The sgedbwriter script starts the dbwriter program. The script is located in
sge_root/dbwriter/bin/sgedbwriter. The sgedbwriter script reads the
dbwriter configuration file, dbwriter.conf. This configuration file is located in
sge_root/cell/common/dbwriter.conf. This configuration file sets the debug level of
dbwriter. For example:

#
Debug level
Valid values: WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL
#

DBWRITER_DEBUG=INFO

You can use the –debug option of the dbwriter command to change the number of
messages that the dbwriter produces. In general, you should use the default debug
level, which is info. If you use a more verbose debug level, you substantially increase
the amount of data output by dbwriter.

You can specify the following debug levels:

warning Displays only severe errors and warnings.

info Adds a number of informational messages. info is the default debug
level.

config Gives additional information that is related to dbwriter configuration,
for example, about the processing of rules.

fine Produces more information. If you choose this debug level, all SQL
statements run by dbwriter are output.

finer For debugging.

194 N1 Grid Engine 6 Administration Guide • May 2005

finest For debugging.

all Displays information for all levels. For debugging.

Diagnosing Problems
The grid engine system offers several reporting methods to help you diagnose
problems. The following sections outline their uses.

Pending Jobs Not Being Dispatched
Sometimes a pending job is obviously capable of being run, but the job does not get
dispatched. To diagnose the reason, the grid engine system offers a pair of utilities and
options, qstat -j job-id and qalter-w v job-id.

� qstat -j job-id

When enabled, qstat -j job-id provides a list of reasons why a certain job was
not dispatched in the last scheduling run. This monitoring can be enabled or
disabled. You might want to disable monitoring because it can cause undesired
communication overhead between the sge_schedd daemon and sge_qmaster.
See schedd_job_info in the sched_conf(5) man page. The following example
shows output for a job with the ID 242059:

% qstat -j 242059
scheduling info: queue "fangorn.q" dropped because it is temporarily not available
queue "lolek.q" dropped because it is temporarily not available
queue "balrog.q" dropped because it is temporarily not available
queue "saruman.q" dropped because it is full
cannot run in queue "bilbur.q" because it is not contained in its hard queuelist (-q)

cannot run in queue "dwain.q" because it is not contained in its hard queue list (-q)

has no permission for host "ori"

This information is generated directly by the sge_schedd daemon. The
generating of this information takes the current usage of the cluster into account.
Sometimes this information does not provide what you are looking for. For
example, if all queue slots are already occupied by jobs of other users, no detailed
message is generated for the job you are interested in.

� qalter -w v job-id

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 195

This command lists the reasons why a job is not dispatchable in principle. For this
purpose, a dry scheduling run is performed. All consumable resources, as well as all
slots, are considered to be fully available for this job. Similarly, all load values are
ignored because these values vary.

Job or Queue Reported in Error State E
Job or queue errors are indicated by an uppercase E in the qstat output.

A job enters the error state when the grid engine system tries to run a job but fails for a
reason that is specific to the job.

A queue enters the error state when the grid engine system tries to run a job but fails
for a reason that is specific to the queue.

The grid engine system offers a set of possibilities for users and administrators to
gather diagnosis information in case of job execution errors. Both the queue and the
job error states result from a failed job execution. Therefore the diagnosis possibilities
are applicable to both types of error states.

� User abort mail. If jobs are submitted with the qsub -m a command, abort mail is
sent to the address specified with the -M user[@host] option. The abort mail
contains diagnosis information about job errors. Abort mail is the recommended
source of information for users.

� qacct accounting. If no abort mail is available, the user can run the qacct -j
command. This command gets information about the job error from the grid
engine system’s job accounting function.

� Administrator abort mail. An administrator can order administrator mails about
job execution problems by specifying an appropriate email address. See under
administrator_mail on the sge_conf(5) man page. Administrator mail
contains more detailed diagnosis information than user abort mail. Administrator
mail is the recommended method in case of frequent job execution errors.

� Messages files. If no administrator mail is available, you should investigate the
qmaster messages file first. You can find entries that are related to a certain job
by searching for the appropriate job ID. In the default installation, the
sge_qmaster messages file is sge-root/cell/spool/qmaster/messages.

You can sometimes find additional information in the messages of the sge_execd
daemon from which the job was started. Use qacct -j job-id to discover the host
from which the job was started, and search in sge-root/cell/spool/host/messages
for the job ID.

196 N1 Grid Engine 6 Administration Guide • May 2005

Troubleshooting Common Problems
This section provides information to help you diagnose and respond to the cause of
common problems.

� Problem — The output file for your job says, Warning: no access to tty;
thus no job control in this shell....

� Possible cause — One or more of your login files contain an stty command.
These commands are useful only if a terminal is present.

� Possible solution — No terminal is associated with batch jobs. You must
remove all stty commands from your login files, or you must bracket such
commands with an if statement. The if statement should check for a terminal
before processing. The following example shows an if statement:

/bin/csh:
stty -g # checks terminal status
if ($status == 0) # succeeds if a
terminal is present
<put all stty commands in here>
endif

� Problem — The job standard error log file says ‘tty‘:Ambiguous. However, no
reference to tty exists in the user’s shell that is called in the job script.

� Possible cause — shell_start_mode is, by default, posix_compliant.
Therefore all job scripts run with the shell that is specified in the queue
definition. The scripts do not run with the shell that is specified on the first line
of the job script.

� Possible solution — Use the -S flag to the qsub command, or change
shell_start_mode to unix_behavior.

� Problem — You can run your job script from the command line, but the job script
fails when you run it using the qsub command.

� Possible cause — Process limits might be being set for your job. To test whether
limits are being set, write a test script that performs limit and limit -h
functions. Run both functions interactively, at the shell prompt and using the
qsub command, to compare the results.

� Possible solution — Remove any commands in configuration files that sets
limits in your shell.

� Problem — Execution hosts report a load of 99.99.

1. Possible cause — The sge_execd daemon is not running on the host.

Possible solution — As root, start up the sge_execd daemon on the execution
host by running the sge-root/cell/common/sgeexecd script.

2. Possible cause — A default domain is incorrectly specified.

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 197

Possible solution — As the grid engine system administrator, run the qconf
-mconf command and change the default_domain variable to none.

3. Possible cause — The sge_qmaster host sees the name of the execution host
as different from the name that the execution host sees for itself.

Possible solution — If you are using DNS to resolve the host names of your
compute cluster, configure /etc/hosts and NIS to return the fully qualified
domain name (FQDN) as the primary host name. Of course, you can still define
and use the short alias name, for example, 168.0.0.1 myhost.dom.com
myhost.

If you are not using DNS, make sure that all of your /etc/hosts files and your
NIS table are consistent, for example, 168.0.0.1 myhost.corp myhost or
168.0.0.1 myhost

� Problem — Every 30 seconds a warning that is similar to the following message is
printed to cell/spool/host/messages:

Tue Jan 23 21:20:46 2001|execd|meta|W|local

configuration meta not defined - using global configuration

But cell/common/local_conf contains a file for each host, with FQDN.

� Possible cause — The host name resolving at your machine meta returns the
short name, but at your master machine, meta with FQDN is returned.

� Possible solution — Make sure that all of your /etc/hosts files and your NIS
table are consistent in this respect. In this example, a line such as the following
text could erroneously be included in the /etc/hosts file of the host meta:

168.0.0.1 meta meta.your.domain

The line should instead be:

168.0.0.1 meta.your.domain meta.

� Problem — Occasionally you see CHECKSUM ERROR, WRITE ERROR, or READ
ERROR messages in the messages files of the daemons.

� Possible cause — As long as these messages do not appear in a one-second
interval, you need not do anything. These messages typically can appear
between 1 and 30 times a day.

� Problem — Jobs finish on a particular queue and return the following message in
qmaster/messages:

Wed Mar 28 10:57:15 2001|qmaster|masterhost|I|job 490.1

finished on host exechost

Then you see the following error messages in the execution host’s
exechost/messages file:

Wed Mar 28 10:57:15 2001|execd|exechost|E|can’t find directory

"active_jobs/490.1" for reaping job 490.1

198 N1 Grid Engine 6 Administration Guide • May 2005

Wed Mar 28 10:57:15 2001|execd|exechost|E|can’t remove directory
"active_jobs/490.1": opendir(active_jobs/490.1) failed:

Input/output error

� Possible cause — The sge-root directory, which is automounted, is being
unmounted, causing the sge_execd daemon to lose its current working
directory.

� Possible solution — Use a local spool directory for your sge_execd host. Set
the parameter execd_spool_dir, using QMON or the qconf command.

� Problem — When submitting interactive jobs with the qrsh utility, you get the
following error message:

% qrsh -l mem_free=1G error: error: no suitable queues

However, queues are available for submitting batch jobs with the qsub command.
These queues can be queried using qhost -l mem_free=1G and qstat -f -l
mem_free=1G.

� Possible cause — The message error: no suitable queues results from
the -w e submit option, which is active by default for interactive jobs such as
qrsh. Look for -w e on the qrsh(1) man page. This option causes the submit
command to fail if the sge_qmaster does not know for sure that the job is
dispatchable according to the current cluster configuration. The intention of this
mechanism is to decline job requests in advance, in case the requests can’t be
granted.

� Possible solution — In this case, mem_free is configured to be a consumable
resource, but you have not specified the amount of memory that is to be
available at each host. The memory load values are deliberately not considered
for this check because memory load values vary. Thus they can’t be seen as part
of the cluster configuration. You can do one of the following:

� Omit this check generally by explicitly overriding the qrsh default option
-w e with the -w n option. You can also put this command into
sge-root/cell/common/sge_request.

� If you intend to manage mem_free as a consumable resource, specify the
mem_free capacity for your hosts in complex_values of host_conf by
using qconf -me hostname.

� If you don’t intend to manage mem_free as a consumable resource, make it
a nonconsumable resource again in the consumable column of complex(5)
by using qconf -mc hostname.

� Problem — qrsh won’t dispatch to the same node it is on. From a qsh shell you
get a message such as the following:

host2 [49]% qrsh -inherit host2 hostname
error: executing task of job 1 failed:

host2 [50]% qrsh -inherit host4 hostname

host4

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 199

� Possible cause — gid_range is not sufficient. gid_range should be defined
as a range, not as a single number. The grid engine system assigns each job on a
host a distinct gid.

� Possible solution — Adjust the gid_range with the qconf -mconf
command or with QMON. The suggested range is as follows:

gid_range 20000-20100

� Problem — qrsh -inherit -V does not work when used inside a parallel job.
You get the following message:

cannot get connection to "qlogin_starter"

� Possible cause — This problem occurs with nested qrsh calls. The problem is
caused by the -V option. The first qrsh -inherit call sets the environment
variable TASK_ID. TASK_ID is the ID of the tightly integrated task within the
parallel job. The second qrsh -inherit call uses this environment variable
for registering its task. The command fails as it tries to start a task with the
same ID as the already-running first task.

� Possible solution — You can either unset TASK_ID before calling qrsh
-inherit, or use the -v option instead of -V. This option exports only the
environment variables that you really need.

� Problem — qrsh does not seem to work at all. Messages like the following are
generated:

host2$ qrsh -verbose hostname
local configuration host2 not defined - using global configuration
waiting for interactive job to be scheduled ...
Your interactive job 88 has been successfully scheduled.
Establishing /share/gridware/utilbin/solaris64/rsh session
to host exehost ...
rcmd: socket: Permission denied
/share/gridware/utilbin/solaris64/rsh exited with exit code 1
reading exit code from shepherd ...
error: error waiting on socket for client to connect:
Interrupted system call
error: error reading return code of remote command
cleaning up after abnormal exit of
/share/gridware/utilbin/solaris64/rsh

host2$

� Possible cause — Permissions for qrsh are not set properly.

� Possible solution — Check the permissions of the following files, which are
located in sge-root/utilbin/. Note that rlogin and rsh must be setuid and
owned by root.

-r-s--x--x 1 root root 28856 Sep 18 06:00 rlogin*
-r-s--x--x 1 root root 19808 Sep 18 06:00 rsh*

-rwxr-xr-x 1 sgeadmin adm 128160 Sep 18 06:00 rshd*

200 N1 Grid Engine 6 Administration Guide • May 2005

Note – The sge-root directory also needs to be NFS-mounted with the setuid
option. If sge-root is mounted with nosuid from your submit client, qrsh and
associated commands will not work.

� Problem – When you try to start a distributed make, qmake exits with the
following error message:

qrsh_starter: executing child process

qmake failed: No such file or directory

� Possible cause — The grid engine system starts an instance of qmake on the
execution host. If the grid engine system environment, especially the PATH
variable, is not set up in the user’s shell resource file (.profile or .cshrc),
this qmake call fails.

� Possible solution — Use the -v option to export the PATH environment
variable to the qmake job. A typical qmake call is as follows:

qmake -v PATH -cwd -pe make 2-10 --

� Problem — When using the qmake utility, you get the following error message:

waiting for interactive job to be scheduled ...timeout (4 s)
expired while waiting on socket fd 5

Your "qrsh" request could not be scheduled, try again later.

� Possible cause — The ARCH environment variable might be set incorrectly in
the shell from which qmake was called.

� Possible solution – Set the ARCH variable correctly to a supported value that
matches an available host in your cluster, or else specify the correct value at
submit time, for example, qmake -v ARCH=solaris64 ...

Chapter 8 • Fine Tuning, Error Messages, and Troubleshooting 201

202 N1 Grid Engine 6 Administration Guide • May 2005

CHAPTER 9

Configuring DBWriter

Thedbwriter component writes and deletes the reporting data in the reporting
database. It performs the following tasks:

� Reads raw data from reporting files and writes this raw data into the reporting
database.

� Calculates derived values. You can configure which values are calculated and the
rules of how to calculate them.

� Deletes outdated data. You can configure how long to keep the data.

The sge_qmaster component generates the reporting files. You can configure the
generation of the reporting files, see the attribute reporting_params in the man page
sge_conf(5), and the attribute report_variables in the man page sge_host(5).

Setup
The installation procedure sets up these parameters. A script for starting up the
dbwriter is provided with the reporting module. Please see the N1 Grid Engine 6
Installation Guide for details. The following parameters have to be set for dbwriter.

Database System
The dbwriter can connect to different brands of database systems (supported
systems are PostgreSQL and Oracle). The following parameters have to be set:

� DRIVER — to the name of the JDBC driver to use, for example,
org.postgresql.Driver

� DRIVERJAR — to the jar archive containing the JDBC driver, for example,
lib/postgres43.jar.

203

Database Server
Which database on which host to use is set by configuring the JDBC URL: The URL
parameter is set to the JDBC URL of the database to use. Follow the guidelines of the
database vendor for the syntax to use. For, example for a PostgreSQL database:
jdbc:postgresql://<hostname>:5432/arco

Base Directory for Reporting Files
The path where dbwriter will find reporting files is set in the REPORTING_FILE
variable. The base directory is typically set to $SGE_ROOT/$SGE_CELL/common

Configuration
The task of setting up these parameters will be done by the installation procedure. You
can configure the behavior of the dbwriter with a number of command line
parameters.

Interval
The -interval parameter sets the interval, in which dbwriter looks for new reporting
files. If a reporting file is found, it is read and data is written to the reporting database.

Pid
The -pid parameter defines the path to the pid file. The dbwriter writes at startup a
pid file. This contains the process id of the dbwriter. At shutdown of the dbwriter
this file will be deleted.

PidCmd
The -pidCmd parameter defines a command which will be executed by the dbwriter
to determine it’s process id. This command should print it’s parent process id to
stdout. The dbwriter is a java application. The java virtual machine cannot
determine its own process id. The default value of the pidCmd is
$SGE_ROOT/utilbin/$ARCH/checkprog -ppid.

204 N1 Grid Engine 6 Administration Guide • May 2005

Continuous Mode
The -continuous parameter switches on the continuous mode. Without -continuous,
dbwriter will perform its tasks just once. If continuous mode is switched on, it will
run continuously and perform its tasks in each interval set with the -interval switch.

Debug Level
You can use the -debug option to configure the amount of messages output by
dbwriter. A parameter to the -debug option is the debug level. In general, using the
default debug level (-info) should be the preferred choice. Using more verbose
debug levels greatly increases the amount of data output by dbwriter. You can
specify the following debug levels:

� -warning: Display only severe errors and warnings

� info: Add a number of informational messages. This level is the default, if the
-display switch isn’t used

� -config: Give additional information that is related to dbwriter configuration,
e.g. about the processing of rules (derived values or delete rules)

� -fine: Output more information. If this level is chosen, all SQL statements
executed by dbwriter will be output.

� -finer: for debugging

� -finest: for debugging

� -all: Display information for all levels (only for debugging purposes).

Reporting File
N1 Grid Engine 6 writes one report file containing data of different types:

� host load values and consumables
� queue consumables
� job logging
� job accounting
� sharetree usage

The dbwriter command line parameter -reporting has to specify the path to the
reporting file. The dbwriter component automatically parses the reporting file; once
it has completed processing and has stored all the information into the database, it
deletes the reporting file.

Chapter 9 • Configuring DBWriter 205

Calculation of Derived Values
At dbwriter startup, and in continuous mode once an hour, derived values are
calculated. You can configure which values to calculate in an XML file, which is by
default in $SGE_ROOT/dbwriter/database/<database_type>/dbwriter.xml.
<database_type> defines the type of database being used; currently, Oracle and
Postgres are supported. The path to the configuration file is passed to dbwriter
using the -calculation parameter.

The configuration file uses an XML format, and contains entries of rules for both
derived values and deleted values (described in the next section). The rules for
derived values have the following format.

Derived Values Format
1. The top-level start tag is <derive> It must be specified with three attributes:

� object — which can be host, queue, user, group, department or project. Based on
this attribute, the derived value is ultimately stored in one of:
sge_host_values, sge_queue_values, sge_user_values,
sge_group_values, sge_department_values, sge_project_values.

� interval — which can be hour, day, month, or year.

� variable — which is the name of the new derived value.

2. A second-level start tag, either <sql> or <auto>, describing the way the value
should be derived. These tags are shown in detail as follows.

3. <sql> – This tag contains an SQL statement used for calculating the derived
values. The exact syntax of the entries depends upon the type of database being
used.

4. <auto> - for certain simple derived values, this tag can be used instead of a full
SQL query. This tag has two attributes:

� function — which gives the aggregate function to apply to the variable. This can
be any function valid for the type of database being used. Some typical
functions are AVG, SUM, VALUE, COUNT, MIN or MAX.

� variable — which can be any variable tracked in the following tables:
sge_host_values, sge_queue_values, sge_user_values,
sge_group_values, sge_department_values, sge_project_values the
variable specified must be from the table indicated by the object attribute of the
enclosing <derive> tag, for example, if the object is host, the variable must be
found in sge_host_values.

5. Two end tags matching the two start tags

206 N1 Grid Engine 6 Administration Guide • May 2005

Examples
Here is an example of a derivation rule using the <sql> tag. The sge_queue table
has a composed primary key comprising q_qname and q_hostname. For a rule
specified for the queue object_type, a query will be made for each entry in the
sge_queue table, the placeholders __key_0__ will be replaced by the queue
name,ilwill be replaced by the hostname.

<!--
average queue utilization per hour
-->

<derive object="queue" interval="hour" variable="h_utilized">
<sql>
SELECT DATE_TRUNC(’hour’, qv_time_start)

AS time_start,
DATE_TRUNC(’hour’, qv_time_start) + INTERVAL ’1 hour’

AS time_end,
AVG(qv_dvalue * 100 / qv_dconfig)

AS value
FROM sge_queue_values
WHERE qv_variable = ’slots’ AND

qv_parent = (SELECT q_id FROM sge_queue
WHERE q_qname = __key_0__

AND q_hostname = __key_1__)
AND qv_time_start <= ’__time_end__’ AND
qv_time_end > ’__time_start__’

GROUP BY time_start
</sql>

</derive>

Here is an example of a derivation rule using the <auto> tag.

<!-- average load per hour -->
<derive object="host" interval="hour" variable="h_load">

<auto function="AVG" variable="np_load_avg" />

</derive>

Deleting Outdated Records
At dbwriter startup, and in continuous mode once an hour, outdated records will be
deleted. Which values to calculate can be configured in an XML file, by default in
$SGE_ROOT/dbwriter/database/<database_type>/dbwriter.xml.
<database_type> is the type of database being used; currently, Oracle and Postgres
are supported. The path to the configuration file is passed to dbwriter using the
-deletion parameter.

The configuration file uses an XML format, and contains entries of rules for both
derived values and deleted values. Deletion rules are of the following format.

� A top-level start tag <delete> with three attributes:

� scope — which specifies the type of data to be deleted. Valid entries
are job, job_log, share_log, ip, queue_values, ip, department_values, user_values,
group_values. Based on this attribute, the values are deleted from the table with

Chapter 9 • Configuring DBWriter 207

the same name with sge_ prepended.

� time_range — which gives the unit of time_amount.

� time_amount — which is the number of units (time_range) a record is kept.

� An optional second-level start tag <sub_scope>, which specifies an additional
condition for deletion. A subscope can be configured for all *_values scopes and
the share_log scope.

� One or Two end tags matching the two start tags

If a subscope is configured for a *_values rule, it contains a space separated list of
variables to delete. If a subscope is specified for the share_log, it contains a space
separated list of sharetree nodes to delete.

Examples

The following rule indicates that the four variables given in the subscope should be
deleted from the table sge_host_values after 7 days.

<delete scope="host_values" time_range="day" time_amount="7">
<sub_scope>np_load_avg</sub_scope>
<sub_scope>cpu</sub_scope>
<sub_scope>mem_free</sub_scope>
<sub_scope>virtual_free</sub_scope>

</delete>

The following rule says to delete all variables from the table sge_host_values after
2 years.

<delete scope="host_values" time_range="year" time_amount="2"/>

The following rule says to delete all records for user fred after 1 month

<delete scope="share_log" time_range="month" time_amount="1">
<sub_scope>fred</sub_scope>

</delete>

208 N1 Grid Engine 6 Administration Guide • May 2005

Index

A
-acal qconf option, 65
-Acal qconf option, 65
access lists, for parallel environments, 157
access permissions, 25, 94

on execution hosts, 28-29
access restriction, for parallel

environments, 160
accounting, with qacct, 177
Accounting and Reporting Console, 171-177
accounting file, 177
-ackpt qconf option, 168
-Ackpt qconf option, 168
act_qmaster file, 21, 22
adding

administration hosts, 32
checkpointing environment, 167
execution hosts, 26-29, 30
global configuration, 41-42
host groups, 35-36, 37
local host configuration, 41-42
manager accounts, 96
objects, using files, 179-180
operator accounts, 97, 98
parallel environments, 156
projects, 104
queue calendars, 65
queues, 62
resource attributes to the complex, 72-74
site-specific load parameters, 87
submit hosts, 33, 34
users, 102
usersets, 99

adjusting system load, 126
administering

policies, 127-154
scheduler, 111-126

administration hosts, 20
adding, 32
configuring from the command line, 32
configuring with QMON, 31-32
deleting, 32
listing, 32

-ae qconf option, 30
-ah qconf option, 32
-ahgrp qconf option, 37
-Ahgrp qconf option, 37
algorithm (scheduling), 121
aliasing paths, 106-108
allocation rule, 158
-am qconf option, 96
-ao qconf option, 98
-ap qconf option, 161
-Ap qconf option, 161
-Aprj qconf option, 106
-aprj qconfoption, 106
-aq qconf option, 62
-Aq qconf option, 62
ARCo (Accounting and Reporting

Console), 171-177
-as qconf option, 34
assigning resource attributes to queues, hosts,

and the global cluster, 70-74
attributes, configuring queue, 62
-au qconf option, 100
-Au qconf option, 100

209

-auser qconf option, 103
-Auser qconf option, 103

B
backfilling, 112, 116-119
basic cluster configuration, 40-43
Berkeley DB

RPC server, 21, 22

C
calculating derived values, 173-176
calendar_conf, 63
calendars, See queue calendars
changing

master host, 21
scheduling algorithm, 121

checkpoint library, 165
checkpoint process hierarchies, 165
checkpointing

configuring environments, 165-169
error codes, 192
kernel-level, 165
user-level, 165

checkpointing environment
adding, 167
deleting, 168
modifying, 167-168

checkpointing environments, 166
configuring from the command line, 168-169

cleaning, queues, 62
-clear qsub option, 109
cluster configuration, 40-43

displaying, 40
displaying from the command line, 43
modifying from the command line, 43
modifying using files, 184-185

common directory, access for shadow master
hosts, 22

common problems, troubleshooting, 197-201
compensation factor, 137-138
complex resource attributes, See resource

attributes
complex_values, 72

in host_conf, 75, 79

complex_values (Continued)
in queue_conf, 75

Condor project, 165
configuring

administration hosts from the command
line, 32

administration hosts with QMON, 31-32
checkpointing environments, 165-169
checkpointing environments from the

command line, 168-169
default requests, 108-110
execution hosts from the command

line, 30-31
execution hosts with QMON, 24-30
functional policy, 147-151
general queue parameters, 49-50
global cluster, 40-43
host groups from the command line, 36-37
host groups with QMON, 34-36
hosts, 24-39
manager accounts, 95-97
operator accounts, 97-98
override policy, 151-154
parallel environments, 155-164
queue attributes, 62
queue calendars, 63-66
queue calendars from the command

line, 65-66
queue checkpointing parameters, 51-52
queue execution methods, 50-51
queue parallel environments, 52-53
queues, 45-63
queues from the command line, 61-63
resource attributes from the command

line, 86
resource attributes with QMON, 68-70
scheduler, 120-123, 123-126
shadow master evn variables, 23-24
shadow master hosts, 21-24
submit hosts from the command line, 34
submit hosts with QMON, 32-33
ticket-based policies, 130-135
urgency policy, 129-130
user access lists, 98-101
users, 101-103

consumable resources, 26, 67, 74-86
and load parameters, 74
and parallel jobs, 75

210 N1 Grid Engine 6 Administration Guide • May 2005

consumable resources (Continued)
examples of setting up, 77-86
managing disk space, 84-86
setting up, 75-77

control slaves, parallel environment
parameter, 158

cost of usage, 26
CPU, usage metric, 26
-cq qconf option, 62
critical message (C), 190

D
daemons, 20

execution, 20
master, 20
restarting, 39

dbwriter, 172
calculating derived values, 173-176
deleting outdated records, 176-177
setting debug level, 194-195

-dcal qconf option, 66
-dckpt qconf option, 168
-de qconf option, 30
debug mode, 193-195

trace output, 193
debugging

dbwriter, 194-195
with dl, 193

decay factor, 136
default load parameters, 87
default requests

configuring, 108-110
file example, 109
file format, 108, 109-110

default scheduling, 120
default user, 142-143
definition files, setting up, 95
deleting

administration hosts, 32
checkpointing environment, 168
execution hosts, 29-30, 30
global configuration, 42
host groups, 36, 37
local host configuration, 42
manager accounts, 96
operator accounts, 97, 98

deleting (Continued)
outdated records, 176-177
parallel environments, 156
projects, 104
submit hosts, 33, 34
users, 102
usersets, 99

departments, 101
derived values, calculating, 173-176
-dh qconf option, 32
-dhgrp qconf option, 37
diagnosing problems, 195-196
disabling

job validation, 188
load adjustments, 189
load thresholds, 188
queues, 39, 61
suspend thresholds, 188

disk space
and h_fsize, 84
managing, 84-86

dl, 193
-dm qconf option, 96, 98
-dp qconf option, 161
-dprj qconf option, 106
-dq qconf option, 62
-dq qmod option, 39
-ds qconf option, 34
-du qconf option, 100
-dul qconf option, 100
-duser qconf option, 103
dynamic load balancing, 165
dynamic resource management, 112, 113-114

E
editing, tickets, 131
email

error message format, 191
reporting errors, 190-195, 196

enabling
queues, 61
reporting file, 172-173, 173

environment variables, for parallel jobs, 160
environments

See also checkpointing environments, parallel
environments

211

environments (Continued)
modifying using files, 180-184

epilog script, 51
error codes

checkpointing, 192
job-related, 191-193
parallel environments, 191
queue-related, 192

error message (E), 190
error reporting, 193

with email, 190-195, 196
execution daemon, 20

shutting down with QMON, 30
execution daemons, killing, 38-39
execution hosts, 20

access permissions, 28-29
adding, 26-29, 30
configuring from the command line, 30-31
configuring with cron, 30
configuring with QMON, 24-30
deleting, 29-30, 30
listing, 31
modifying, 26-29, 30
status, 37-38

F
file access, 94
file size limit, h_fsize, 85
files, using for administration tasks, 171-185
fine-tuning, 187-189
finished jobs, turning list off, 188
first-in-first-out (FIFO), 114, 120, 129
fixed resource attributes, 26
floating licenses, managing, 77-81
free space, 74
functional policy, 113, 150-151

configuring, 147-151
sharing ticket shares, 132-133

functional shares, 147
functional tickets, sharing, 132-133

G
generating

accounting statistics, 177

generating (Continued)
reporting statistics, 171-177

global cluster, configuring, 40-43
global cluster configuration, displaying, 41
global configuration, 40-43

adding, 41-42
deleting, 42
displaying from the command line, 43
modifying, 41-42
modifying from the command line, 43
modifying using files, 184-185

global resource attributes, 71-72

H
h_fsize

hard files size limit, 85
managing disk space, 84

half-life factor, 136-137
hierarchy (ticket policy), 134-135
host_conf, complex_values entry, 79
host groups

adding, 35-36, 37
configuring from the command line, 36-37
configuring with QMON, 34-36
deleting, 36, 37
listing, 37
modifying, 35-36, 37

host resource attributes, defining, 27-28
hosts, 20

adding administration hosts, 32
adding execution hosts, 30
adding submit hosts, 34
administration, 20
configuring, 24-39
deleting administration hosts, 32
deleting execution hosts, 30
deleting submit hosts, 34
execution, 20
invalid names, 38
listing administration hosts, 32
listing execution hosts, 31
listing submit hosts, 34
master, 20
modifying execution hosts, 30
modifying using files, 180-184
resource attributes, 70-71

212 N1 Grid Engine 6 Administration Guide • May 2005

hosts (Continued)
status of execution hosts, 37-38
submit, 20

I
I/O, usage metric, 26
info message (I), 190
inheritance of resource attributes, 80, 81
interval (scheduler), 119
invalid host names, 38

J
-j qacct option, 177
-j qstat option, 195
job limits, 85
jobs

disabling validation, 188
error codes, 191-193
maximum number of, 115, 123
migrating, 165
not getting dispatched, 195-196
not scheduled, 120
parallel, 156
pending reasons, 120
resume method, 51
sorting, 112, 114-116
starter method, 51
suspend method, 51
terminate method, 51
turning finished list off, 188

K
-kej qconf option, 38-39
kernel-level checkpointing, 165
killing

execution daemons with jobs, 38-39
master daemon, 38-39
scheduler daemons, 38-39

-km qconf option, 38-39
-ks qconf option, 38-39

L
-l qacct option, 177
-l qalter option, 67
-l qsub option, 67

for parallel jobs, 160
licenses

floating, 74
managing floating, 77-81

limits
configuring, 55-56
h_fsize, 85
per job, 85
per process, 85

listing
administration hosts, 32
execution hosts, 31
host groups, 37
manager accounts, 97
operator accounts, 98
queue calendars, 66
submit hosts, 34

load, 122-123
load, site-specific, 86
load adjustments, 114, 126

disabling, 189
load balancing, dynamic, 165
load parameters, 70, 87-91, 121

adding site-specific, 87
and consumable resources, 74
default, 87
virtual_free, 82

load_parameters.asc file, 87
load reporting, 114
load scaling, 25, 114

scaling factors, 27
load sensors

format, 88
interface, 86
script example, 88-91
writing, 88-91

load thresholds
configuring, 53-54
disabling, 188

load values, 70, 72
local host configuration, 40-43

adding, 41-42
deleting, 42
modifying, 41-42

213

log file, messages, 190
login IDs, 94

M
mail program, 40
manager accounts

adding, 96
configuring, 95-97
deleting, 96
listing, 97

managers, 95
managing, disk space, 84-86
master daemon, 20

killing, 38-39
master host, 20

changing, 21
master spool directory, access for shadow

master hosts, 22
maximum number of jobs, 115, 123
-mc qconf option, 86
-Mc qconf option, 86
-mcal qconf option, 66
-Mcal qconf option, 66
-mckpt qconf option, 168
-Mckpt qconf option, 169
-mconf qconf option, 43
-me qconf option, 30
-Me qconf option, 30
memory, 74

oversubscription, 81
usage metric, 26

message-passing, 160
Message Passing Interface, 155
messages files, 196

file format, 190
log file, 190

metrics
CPU, 26
I/O, 26
memory, 26
usage, 26

-mhgrp qconf option, 37
-Mhgrp qconf option, 37
migrating jobs, 165
modifying

checkpointing environment, 167-168

modifying (Continued)
cluster configuration using files, 184-185
environments using files, 180-184
execution hosts, 26-29, 30
global configuration, 41-42
global configuration using files, 184-185
host groups, 35-36, 37
hosts using files, 180-184
local host configuration, 41-42
objects, using files, 179-180
parallel environments, 156
projects, 104
queue calendars, 66
queues, 62
queues using files, 180-184
scheduler using files, 184-185
usersets, 99

monitoring, scheduler, 187-188
-mp qconf option, 161
-Mp qconf option, 161
MPI, 155, 156, 164
MPICH, 164
-mprj qconf option, 106
-Mprj qconf option, 106
-mq qconf option, 62
-Mq qconf option, 62
-mu qconf option, 100
-Mu qconf option, 100
-muser qconf option, 103
-Muser qconf option, 103

N
network bandwidth, 74
NFS Network File System, 21

problems with, 106
node attributes, 139-141
notice message (N), 190

O
objects

using files to add, 179-180
using files to modify, 179-180

operator accounts
adding, 97, 98

214 N1 Grid Engine 6 Administration Guide • May 2005

operator accounts (Continued)
configuring, 97-98
deleting, 97, 98
listing, 98

operators, 95
override policy, 113

configuring, 151-154
sharing tickets, 131-132

override tickets, sharing, 131-132
owners of queues, 95
owners parameters, configuring, 60-61

P
pam-crash, 77
parallel environments

access lists, 157
access restrictions, 160
adding, 156
allocation rule, 158
configuring, 155-164
control slaves parameter, 158
deleting, 156
error codes, 191
modifying, 156
startup procedure, 158, 162-163
stop procedure, 158, 163-164
submitting jobs to, 156
tight integration, 164
tight integration with Grid Engine, 164

parallel jobs, 156
and consumable resources, 75
environment variables, 160
resource requirements, 160

Parallel Virtual Machine, 155
path aliasing, 106-108
path-aliasing files

example, 108
format, 107
interpretation, 108

-pe qsub option, 160
pending jobs, not getting dispatched, 195-196
permissions, access, 94
physical memory, and virtual_free, 81
policies

administering, 127-154
configuring share-based, 135-147

policies (Continued)
functional, 113, 147-151
override, 113, 151-154
priority, 128-129
share-based, 113
share-based decay factor, 136
share-tree compensation factor, 137-138
share-tree half-life factor, 136-137
share-tree parameters, 141-142
ticket-based, 130-135
urgency, 115-116, 129-130

policy-based resource management, 127-128
POSIX priority, 115, 129
priority

policies, 128-129
POSIX, 115, 129
ticket-based, 114, 129
urgency-based, 114, 129

problems
diagnosing, 195-196
troubleshooting, 197-201

process hierarchy, checkpointing, 165
process limits, 85
project access parameters, configuring, 59-60
project-based scheduling, share-tree, 144-147
projects, 101

adding, 104
defining, 103-106
deleting, 104
modifying, 104
removing from share tree, 140
user access, 94

prolog script, 51
PVM, 155, 156, 164

Q
qacct, 177

-j, 177, 196
-l, 177
referencing resource requirements, 177

qalter
-l, 67
monitoring the scheduler with, 119-120
-w, 119-120

qconf
-Acal, 65

215

qconf (Continued)
-acal, 65
-Ackpt, 168
-ackpt, 168
-ae, 30
-ah, 32
-Ahgrp, 37
-ahgrp, 37
-am, 96
-ao, 98
-Ap, 161
-ap, 161
-Aprj, 106
-aprj, 106
-Aq, 62
-aq, 62
-as, 34
-Au, 100
-au, 100
-Auser, 103
-auser, 103
-cq, 62
-dcal, 66
-dckpt, 168
-de, 30
-dh, 32
-dhgrp, 37
-dm, 96, 98
-dp, 161
-dprj, 106
-dq, 62
-ds, 34
-du, 100
-dul, 100
-duser, 103
-kej, 38-39
-km, 38-39
-ks, 38-39
-Mc, 86
-mc, 86
-mcal, 66
-Mckpt, 169
-mckpt, 168
-mconf option, 43
-Me, 30
-Mhgrp, 37
-mhgrp, 37
-Mp, 161

qconf (Continued)
-mp, 161
-Mprj, 106
-mprj, 106
-Mq, 62
-mq, 62
-Mu, 100
-mu, 100
-Muser, 103
-muser, 103
-scal, 66
-scall, 66
-sckpt, 169
-sckptl, 169
-sconf, 43
-se, 31
-sel, 31
-sh, 32
-shgrp, 37
-shgrp_resolved, 37
-shgrp_tree, 37
-shgrpl, 37
-sm, 96, 98
-sp, 161
-spl, 161
-sprj, 106
-sprjl, 106
-sq, 62
-sql, 62
-ss, 34
-su, 100
-sul, 100
-suser, 103
-suserl, 103
-tsm, 120
using with qselect, 183

qhost, 37-38
qmake

errors, 201
qmod

disabling queues, 39
-dq, 39

qmon file, 95
qrsh

errors, 199, 200
qselect, 183-184

using with qconf, 183
qsh, default requests, 110

216 N1 Grid Engine 6 Administration Guide • May 2005

qstat, –j, 195
qsub

-clear, 109
-l, 67
-l for parallel jobs, 160
-pe, 160
-V for parallel jobs, 160
-v for parallel jobs, 160

queue calendars
adding, 65
configuring, 63-66
configuring from the command line, 65-66
listing, 66
modifying, 66

queue_conf, 85
queue instances, selecting with

qselect, 183-184
queue owners, 95
queue_sort_method, 122-123
queues

adding, 62
cleaning, 62
configuring, 45-63
configuring attributes, 62
configuring checkpointing parameters, 51-52
configuring complex resource

attributes, 56-57
configuring execution methods, 50-51
configuring from the command line, 61-63
configuring general parameters, 49-50
configuring limits, 55-56
configuring load thresholds, 53-54
configuring owners parameters, 60-61
configuring parallel environments, 52-53
configuring project access parameters, 59-60
configuring subordinate queues, 57-58
configuring suspend thresholds, 53-54
configuring user access parameters, 58-59
disabled by calendar, 63
disabling, 39, 61
enabled by calendar, 63
enabling, 61
error codes, 192
modifying, 62
modifying using files, 180-184
resource attributes, 70
resumed by calendar, 63
resuming, 61

queues (Continued)
sorting, 112, 114
sorting by sequence number, 122-123
sorting by share, 123
suspended by calendar, 63
suspending, 61

R
real time, 177
removing users and projects from share

tree, 140
reporting file

enabling, 172-173, 173
reporting parameters, 173
reporting variables, 26

defining, 29
reserving resources, 112, 116-119
resource attributes, 67-91

adding, 72-74
assigning to queues, hosts, and the global

cluster, 70-74
configuring, 56-57
configuring from the command line, 86
configuring with QMON, 68-70
consumable, 26
default load parameters, 87
definition format, 68
fixed, 26
global, 71-72
host, 27-28, 70-71
inheritance, 80, 81
queue, 70

resource management
dynamic, 112, 113-114
policy-based, 127-128

resource requirements
for parallel jobs, 160
referencing with qacct, 177

resource reservation, 112, 116-119
and urgency policy, 189

resource usage, cost, 26
resources

available on host, 25
consumable, 74-86

restart files, 165
resume job method, 51

217

resuming queues, 61
RPC server, 21, 22

S
-scal qconf option, 66
scaling factors, 26

defining, 26
scaling system load, 121-122
scheduler, 20

administering, 111-126
configuring, 120-123, 123-126
interval, 119
modifying using files, 184-185
monitoring, 120, 187-188
monitoring with qalter, 119-120

scheduler daemons, killing, 38-39
scheduling

changing the algorithm, 121
default, 120
immediate, 189
overview, 112
strategies, 112-120, 120-123

-sckpt qconf option, 169
-sckptl qconf option, 169
-sconf qconf option, 43
scripts, using for administration tasks, 171-185
-se qconf option, 31
-sel qconf option, 31
selecting, queue instances with

qselect, 183-184
seq_no, 122-123
sequence number

sorting queues by, 114, 122-123
setrlimit, 85
sge_aliases file, 95
.sge_aliases file

file format, 107
sge_aliases file

file format, 107
global path aliasing, 107

.sge_aliases file
user path aliasing, 107

SGE_CHECK_INTERVAL, 23-24
SGE_DELAY_TIME, 23-24
sge_execd, 20

killing, 38-39

SGE_GET_ACTIVE_INTERVAL, 23-24
sge_qmaster, 20

killing, 38-39
sge_request file, 95

global default request file, 108
.sge_request file, private request file, 108
sge_schedd, 20, 120

killing, 38-39
sge_shadowd, 22
sge5 script, 21
-sh qconf option, 32
shadow master hosts

access to common directory, 22
access to master spool directory, 22
configuring, 21-24
hostname file, 22

shadow_masters file, 22
shadow sge_qmaster, starting, 23
share-based policy, 113

configuring, 135-147
decay factor, 136

share_functional_shares, 132
share_override_tickets, 131
share tree, 138

removing leaves, 140
share-tree policy

compensation factor, 137-138
default user, 142-143
half-life factor, 136-137
node attributes, 139-141
parameters, 141-142
project-based scheduling, 144-147

shares, functional, 147
-shgrp qconf option, 37
-shgrp_resolved qconf option, 37
-shgrp_tree qconf option, 37
-shgrpl qconf option, 37
shutting down

execution host daemons, 30
Grid Engine, 39
parallel environments, 163

site dependencies, setting up, 94
site-specific load information, 86
-sm qconf option, 96, 98
sorting

jobs, 112, 114-116
queues, 112, 114
queues by sequence number, 114

218 N1 Grid Engine 6 Administration Guide • May 2005

sorting (Continued)
queues by share, 123

-sp qconf option, 161
space sharing, 81-83
-spl qconf option, 161
-sprj qconf option, 106
-sprjl qconf option, 106
-sq qconf option, 62
-sql qconf option, 62
-ss qconf option, 34
start job method, 51
starting

daemons, 39
shadow sge_qmaster, 23

startpvm.sh script, 162
startup procedure (parallel environments), 158
stderr, redirection, 190
stop procedure (parallel environments), 158,

163-164
stoppvm.sh script, 163
stty in startup files, 94, 197
-su qconf option, 100
submit hosts, 20

adding, 33, 34
configuring from the command line, 34
configuring with QMON, 32-33
deleting, 33, 34
listing, 34

subordinate queues, configuring, 57-58
-sul qconf option, 100
-suser qconf option, 103
-suserl qconf option, 103
suspend job method, 51
suspend thresholds

configuring, 53-54
disabling, 188

suspending queues, 61
swap space, and virtual_free, 81
swapping, 81
system load, scaling, 121-122
system time, 177

T
terminate job method, 51
ticket-based job priority, 114, 129
ticket-based policies, configuring, 130-135

ticket policy hierarchy, 134-135
tickets, 113-114, 130

editing, 131
tight integration of parallel environments and

Grid Engine, 164
tight parallel environment integration, 164
trace output, debug mode, 193
troubleshooting, 197-201
-tsm qconf option, 120

U
urgency-based job priority, 114, 129
urgency policy, 115-116

and resource reservation, 189
configuring, 129-130

usage
cost, 26
CPU, 26
I/O, 26
memory, 26
metrics, 26
scaling factors, 26, 27

user access, configuring, 95-103
user access lists

configuring, 98-101
for parallel environments, 157

user access parameters, configuring, 58-59
user IDs, 94
user-level checkpointing, 165
user time, 177
users, 95

adding, 102
categoriThees of, 95
configuring, 101-103
configuring user access lists, 98-101
declaring, 94
default, 142-143
deleting, 102
file access, 94
managers, 95
operators, 95
project access, 94
queue owners, 95
removing from share tree, 140
setting up, 94-95
setting up definition files, 95

219

users (Continued)
usersets, 101

usersets, 101
adding, 99
deleting, 99
modifying, 99

V
-v qsub option for parallel jobs, 160
-V qsub option for parallel jobs, 160
virtual_free load parameter, 81, 82

W
-w qalter option, 119-120
warning message (W), 190
writing, load sensors, 88-91

X
xterm program, 40

220 N1 Grid Engine 6 Administration Guide • May 2005

	N1 Grid Engine 6 Administration Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Configuring Hosts and Clusters
	About Hosts and Daemons
	Changing the Master Host
	Configuring Shadow Master Hosts
	Shadow Master Host Requirements
	Shadow Master Hosts File
	Starting Shadow Master Hosts
	Configuring Shadow Master Hosts Environment Variables

	Configuring Hosts
	Configuring Execution Hosts With QMON
	Adding or Modifying an Execution Host
	Defining Scaling Factors
	Defining Resource Attributes
	Defining Access Permissions
	Defining Reporting Variables

	Deleting an Execution Host
	Shutting Down an Execution Host Daemon

	Configuring Execution Hosts From the Command Line
	Configuring Administration Hosts With QMON
	Adding an Administration Host
	Deleting an Administration Host

	Configuring Administration Hosts From the Command Line
	Configuring Submit Hosts With QMON
	Adding a Submit Host
	Deleting a Submit Host

	Configuring Submit Hosts From the Command Line
	Configuring Host Groups With QMON
	Adding or Modifying a Host Group
	Deleting a Host Group

	Configuring Host Groups From the Command Line
	Monitoring Execution Hosts With qhost
	Invalid Host Names
	Killing Daemons From the Command Line
	Restarting Daemons From the Command Line

	Basic Cluster Configuration
	Displaying a Cluster Configuration With QMON
	Displaying the Global Cluster Configuration With QMON
	Adding and Modifying Global and Host Configurations With QMON
	Deleting a Cluster Configuration With QMON
	Displaying the Basic Cluster Configurations From the Command Line
	Modifying the Basic Cluster Configurations From the Command Line

	Configuring Queues and Queue Calendars
	Configuring Queues
	Configuring Queues With QMON
	Configuring General Parameters
	Configuring Execution Method Parameters
	Configuring the Checkpointing Parameters
	Configuring Parallel Environments
	Configuring Load and Suspend Thresholds
	Configuring Limits
	Configuring Complex Resource Attributes
	Configuring Subordinate Queues
	Configuring User Access Parameters
	Configuring Project Access Parameters
	Configuring Owners Parameters
	Configuring Queues From the Command Line

	Configuring Queue Calendars
	Configuring Queue Calendars With QMON
	Configuring Queue Calendars From the Command Line

	Configuring Complex Resource Attributes
	Complex Resource Attributes
	Configuring Complex Resource Attributes With QMON
	Assigning Resource Attributes to Queues, Hosts, and the Global Cluster
	Queue Resource Attributes
	Host Resource Attributes
	Global Resource Attributes
	Adding Resource Attributes to the Complex

	Consumable Resources
	Setting Up Consumable Resources
	Examples of Setting Up Consumable Resources
	Example 1: Floating Software License Management
	Example 2: Space Sharing for Virtual Memory
	Example 3: Managing Available Disk Space

	Configuring Complex Resource Attributes From the Command Line

	Load Parameters
	Default Load Parameters
	Adding Site-Specific Load Parameters
	Writing Your Own Load Sensors
	Load Sensor Rules Format
	Example of a Load Sensor Script

	Managing User Access
	Setting Up a User
	Configuring User Access
	Configuring Manager Accounts
	Configuring Manager Accounts With QMON
	Configuring Manager Accounts From the Command Line

	Configuring Operator Accounts
	Configuring Operator Accounts With QMON
	Configuring Operator Accounts From the Command Line

	Configuring User Access Lists
	Configuring User Access Lists With QMON
	Configuring User Access Lists From the Command Line
	Defining Usersets As Projects and Departments

	Configuring Users
	Configuring User Objects With QMON
	Configuring User Objects From the Command Line

	Defining Projects
	Defining Projects With QMON
	Defining Projects From the Command Line

	Using Path Aliasing
	Format of Path-Aliasing Files
	How Path-Aliasing Files Are Interpreted

	Configuring Default Requests
	Format of Default Request Files

	Managing Policies and the Scheduler
	Administering the Scheduler
	About Scheduling
	Scheduling Strategies
	Dynamic Resource Management
	Tickets

	Queue Sorting
	Job Sorting
	About the Urgency Policy

	Resource Reservation and Backfilling
	What Happens in a Scheduler Interval
	Scheduler Monitoring

	Configuring the Scheduler
	Default Scheduling
	Scheduling Alternatives
	Changing the Scheduling Algorithm
	Scaling System Load
	Selecting Queue by Sequence Number
	Selecting Queue by Share
	Restricting the Number of Jobs per User or Group

	Changing the Scheduler Configuration With QMON

	Administering Policies
	Configuring Policy-Based Resource Management With QMON
	Specifying Policy Priority
	Configuring the Urgency Policy
	Configuring Ticket-Based Policies
	Editing Tickets
	Sharing Override Tickets
	Sharing Functional Ticket Shares
	Tuning Scheduling Run Time
	Setting the Ticket Policy Hierarchy

	Configuring the Share-Based Policy
	The Half-Life Factor
	Compensation Factor
	Hierarchical Share Tree
	Configuring the Share-Tree Policy With QMON
	Node Attributes
	Share Tree Policy Parameters
	About the Special User default

	Configuring the Share-Based Policy From the Command Line
	How to Create Project-Based Share-Tree Scheduling

	Configuring the Functional Policy
	Functional Shares
	Configuring the Functional Share Policy With QMON
	Function Category List
	Functional Shares Table
	Changing Functional Configurations
	Ratio Between Sorts of Functional Tickets

	Configuring the Functional Share Policy From the Command Line
	How to Create User-Based, Project-Based, and Department-Based Functional Scheduling

	Configuring the Override Policy
	Configuring the Override Policy With QMON
	Override Category List
	Override Table
	Changing Override Configurations

	Configuring the Override Policy From the Command Line

	Managing Special Environments
	Configuring Parallel Environments
	Configuring Parallel Environments With QMON
	Displaying Configured Parallel Environment Interfaces With QMON

	Configuring Parallel Environments From the Command Line
	Parallel Environment Startup Procedure
	Termination of the Parallel Environment
	Tight Integration of Parallel Environments and Grid Engine Software

	Configuring Checkpointing Environments
	About Checkpointing Environments
	Configuring Checkpointing Environments With QMON
	Viewing Configured Checkpointing Environments
	Adding a Checkpointing Environment
	Modifying Checkpointing Environments
	Deleting Checkpointing Environments

	Configuring Checkpointing Environments From the Command Line

	Other Administrative Tasks
	Gathering Accounting and Reporting Statistics
	Report Statistics (ARCo)
	About the dbwriter Program
	Enabling the Reporting File
	Calculating Derived Values With dbwriter
	Deleting Outdated Records With dbwriter

	Accounting and Usage Statistics (qacct)

	Backing Up the Grid Engine System Configuration
	Using Files and Scripts for Administration Tasks
	Using Files to Add or Modify Objects
	Using Files to Modify Queues, Hosts, and Environments
	Targeting Queue Instances with the qselect Command

	Using Files to Modify a Global Configuration or the Scheduler

	Fine Tuning, Error Messages, and Troubleshooting
	Fine-Tuning Your Grid Environment
	Scheduler Monitoring
	Finished Jobs
	Job Validation
	Load Thresholds and Suspend Thresholds
	Load Adjustments
	Immediate Scheduling
	Urgency Policy and Resource Reservation

	How the Grid Engine Software Retrieves Error Reports
	Consequences of Different Error or Exit Codes
	Running Grid Engine System Programs in Debug Mode
	Setting the dbwriter Debug Level

	Diagnosing Problems
	Pending Jobs Not Being Dispatched
	Job or Queue Reported in Error State E

	Troubleshooting Common Problems

	Configuring DBWriter
	Setup
	Database System
	Database Server
	Base Directory for Reporting Files

	Configuration
	Interval
	Pid
	PidCmd
	Continuous Mode
	Debug Level
	Reporting File
	Calculation of Derived Values
	Derived Values Format
	Examples

	Deleting Outdated Records
	Examples

	Index

