PC204 Lecture 9

Conrad Huang
conrad@cgl.ucsf.edu
Genentech Hall, N453A
x6-0415

Topics

Homework review
Interactive Programs vs Scripts
Tkinter

Pmw

Homework Review

* 8.1 — poker probabilities
e 8.2 —short project description

Interactive Program vs Script

“Script” is a program where the programmer
determines the order of execution from
beginning to end

— Programs may need user input and still be scripts, eg

they may ask the user to type some input at a
particular point of execution

“Interactive program’ is a program where the
user determines the order of execution from user
input using either:

— a command-based text interface

— a graphical user interface (GUI, pronounced goo-ey)

Interactive Program Characteristic

* The mark of an
Interactive program is
an event dispatch loop

* For a text-based
Interactive program, it
looks something like
this

for line in sys.stdin:

args = line.strip().split()

if not args:
skip blank lines
continue

if args[0] == “cmd1”:
cmd1(args[1:])

elif args[0] == “cmd2”:
cmd2(args[1:])

else:
print “unknown command

.7, args[0]

Event Loop and Event Dispatch

* The for loop reading user

input is called an event
loop because it waits for
user events

The event loop
dispatches the user input
to functions based on the
input

The event loop and
dispatcher may be
abstracted into a simple
textual user interface

module (tui.py)

_registry = {}

def mainloop(prompt=">"):
import sys
sys.stdout.write(prompt)
while True:
line = sys.stdin.readline()
if not line:
break
args = line.strip().split()
if not args:
#ignore empty lines
continue
ambiguous = False
f=None
for kin _registry.keys():
if k.startswith(args[0]):
if f is not None:
ambiguous = True
break
f=_registry[k]
if ambiguous:
print ("Error: %s is an ambiguous command" % args[0])
elif f is None:
print ("Error: %s is an unkown command" % args[0])
else:
if not f(args[1:]):
break
sys.stdout.write(prompt)

def register(function):
_registry[function.__name__] = function

Using the TUI Module

def test(args):
print "test", args
return True

def tilt(args):
print "tilt", args
return True

def verify(args):
print "verify", args
return True

def quit(args):
print "quit"
return False

import tui
tui.register(test)
tui.register(tilt)
tui.register(verify)
tui.register(quit)
tui.mainloop()

print "Returned from command loop"

e usetui.py is an example
of how to use the TUI

module

— Define functions that
handle events

— Register functions with
TUI module

— Enter the TUI module
event loop

e tui module may be
reused for many scripts

Libraries and Frameworks

* Library functions are called by user code to
perform some tasks and return after the tasks are

completed

* tui.mainloop() is somewhat different from most
library functions in that it calls back to user-

registered functions before returning

* Alibrary that defines most functionality but
allows callers to plug in their own code that gets
called at predefined times is often called a
framework

GUI Frameworks

 Most programs using a GUI framework follows
the same form as our TUIl program
— Define callback functions

— Define user interface elements, aka widgets, and
register callback functions

— Enter GUI event loop

* Implementation-wise, you need to design
your user interface before you know what
callback functions you need to make the
program work

Tkinter

Tkinter is a GUI framework

Common widgets in Tkinter include:
— Frame — placeholder for placement of widgets
— Label — widget for displaying some text
— Button — push button that user may press
— Entry — input widget where user may type
— Canvas — graphical drawing area

A callback may be registered for a widget
— eg Button callback is invoked when the button is pushed

A function may also be bound to a widget to respond to
events

— eg Function gets called when user presses return in an entry
widget

Basic Tkinter Widgets

Using the Button widget

— tkinter button.py

— tkinter button2.py

— tkinter button3.py

Using the Label and Entry widgets
— tkinter label.py

— tkinter label entry.py
Controlling layout using Frame widgets
— tkinter label entry2.py

Binding actions to events

— tkinter label entry3.py

Canvas and Text

Displaying graphics on a canvas
— tkinter canvas.py

A design pattern for a GUI class

— tkinter canvas2.py

Useful for homework assighment

— tkinter canvas3.py

Displaying and editing text
— tkinter text.py

More Tkinter Widgets

* Tkinter offers many more widgets
— Some are simple, eg checkbutton and scale
— Some are complex, eg scrollbars and menu
buttons
* For more complete documentation on Tkinter

widgets, see An Introduction to Tkinter by

Fredrik Lundh

— http://www.pythonware.com/library/tkinter/
introduction/

More Complex Widgets

* Tkinter is a low-level interface that offers a lot
of programming flexibility
* Libraries built on top of Tkinter offer more
functionality with less programming
— For example, managing scrollbars for canvas or
text widgets is possible with Tkinter, but painful

* Python MegaWidgets (PMW) is layered on top
of Tkinter and implements high(er)-level
widgets such as ScrolledCanvas and NoteBook

Pmw

* Pmw (http://pmw.sourceforge.net/) is a Python
package containing a number of “megawidgets”
that are composed of basic Tkinter widgets

* To use PMW, you need to download and install

the Python code
— Version 1.3 of PMW may be fetched locally

* http://www.cgl.ucsf.edu/Outreach/pc204/lecture notes/week9/Pmw-1.3.3b.zip

— The simplest way to use this is to extract the “Pmw”
folder and put it with your source code

An Aside on Packages

* A Python package is a folder of related Python
modules

— A Python package folder must contain a file named
__init__.py, which
* tells Python the folder is not a random collection of .py files
* is executed when the package is imported

— All other .py files in the folder are considered modules
of the package and may be imported with

* import package_name.module_name

* Pmw uses some serious Python magic for its

package management, so | usually just follow the
recipes in the excellent documentation

Pmw (cont.)

* pmw scrolledcanvas.py

— Uses canvas with attached scrollbars
— Uses menu buttons for scrollbar modes
— Uses button box for array of aligned buttons

Wrapping Up

 There are better ways for constructing GUIs
— WYSIWYG interface design tools

— More comprehensive widget sets

 Tkinter and Pmw together provide a usable set of
tools for building graphical user interfaces

* Alot of applications are migrating to a client-
server model that uses a web browser as a front
end
— GUI (client end) is written in HTML5 and Javascript

— Server end is written in a variety of languages,
including Python, PHP, Perl, ...

Debugging

* Don’tguess

— Collect data on where the error is occurring
* read the traceback
e add invariant, pre- and post-condition checks
* use print statements

— Change one thing at a time

* Don’ t get discouraged
— No, the computer is not out to get you
— Explain the code to someone (perhaps yourself)

— Take a break
e don’ t work until you can’ t keep your eyes open

Homework and Project

* Assignment 9.1
— tkinter canvas3.py should be helpful

* Assignment 9.2

— A fuller description of your final project

