PC204 Lecture 8

Conrad Huang
conrad@cgl.ucsf.edu
Genentech Hall, N453A
x6-0415

Topics

Homework review
Review of OOP
nheritance

Polymorphism

Homework Review

* 7.1 —Rectangle methods
e 7.2 —Rectangle add method

Review of OOP

* Object-oriented programming is about
grouping data and functions together into
units (objects) that can be manipulated using

an external interface and whose self-
consistency is maintained by the internal

implementation
* The ultimate goal is to minimize complexity

Interface vs Implementation

IIIIII

\\\\

.

|||||||||||

OOP with Dictionaries

e Suppose we have data type D1 and data
dictionary d1 and myd1

def f1(d1):
do something with d1
def f2(d1):
do something with d1
D1 dict={
“ name_ ":“D1”,
“f17: f1,
“f27: 12,
}
def D1():
d1 = dict()

d1[“_ dict_”]=D1_dict

Create a D1 data dictionary
myd1 = D1()

Apply the f1 function to myd1
myd1[“ dict_ "][“f1”](myd1)

myd1
attributel valuel

attribute2 value2

__dict__

__name__ D1
fl
f2

D1 dict

OOP with Classes

* Suppose we have class C1 and instances mycl and mycla

class C1(object):
“C1 doc”
def f1(self):
do something with self
def f2(self):
do something with self

create C1 instances
mycl = C1()
mycla = C1()

call f2 method on one instance
myc1.f2()

attributel

attribute2

doc__
f1
2

__doc__

built-in

functions

mycl
valuel attributel
value2 attribute2
Cl
“C1 doc”
object

“the most base type”

mycla

value3

value4d

Instanc
e

class

OOP with Classes (cont.)

 The object class is created
automatically by Python

e Executing the “class’ def f1(self):

statement creates the C1 # do something with self
class def f2(self):

do something with self

class C1(object):
“C1doc”

— Note C1 is actually a variable:
a reference to a class object;

this is analogous to the # create a Cl instance

“import” statement where
the result is a variable
referring to a module object

Note also that the class object
contains data, eg __doc__, as

well as method references, eg
f1 and f2

mycl = C1()
mycla = C1()

call f2 method
myc1.f2()

OOP with Classes (cont.)

* Creating an instance
creates a new attribute
namespace

* Each instance has its own
attribute namespace, but
they all share the same
class namespace(s)

* Both instance and class
attributes may be
accessed using the
instance.attribute syntax

attributel

attribute2

__doc__

built-in

functions

mycl

valuel attributel

value2 attribute2

Cl

“C1doc”

object

“the most base type”

mycla

value3

value4

Instanc
e

class

Accessing Attributes

e Setting an instance attribute

mycl.f1 = “hello”

attributel

attribute2

l

__doc__
f2

l

__doc__

fl

built-in

functions

mycl
valuel

value2

Cl
“C1doc”

>
—>

object

“the most base type”

—

attributel
attribute2

f1

doc__

f2

__doc__

built-in

functions

mycl
valuel

value2

“hello”

Cl

“C1 doc”

object

“the most base type”

Accessing Attributes (cont.)

* Looking up instance attributes

mycl
>>> print mycL.f1 ez v
hello f1 “hello”
>>> print myc1.f2
<bound method C1.f2 of < _main__.C1 C1
object at 0x1401d6b50>> —doc__ | "Chdoc”
>>> print mycl. doc_ f
C1 doc ©
>>> mycl.f1()
Traceback (most recent call last): ?bject

__doc__ the most base type”

File "<stdin>", line 1, in <module>
. . built-in
TypeError: 'str' object is not callable functions

Accessing Attributes (cont.)

e Setting and looking up
class attributes

— Class attributes may be
looked up via the
instances, but they
cannot be modified
using the
instance.attribute syntax

— To access and
manipulate class
attributes, use the class
variable

>>> Cl.count =12

>>> print Cl.count

12

>>> C1.f1

<unbound method C1.f1>

>>> C1.f1(mycl)

>>> print C1.__doc__

C1 doc

>>> Cl. doc__ ="new documentation'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: attribute' doc_ 'of
'type' objects is not writable
>>> help(C1)

Attribute Pitfall

e Attribute lookup and
assignment are not
symmetrical

>>> class C1:
count=12

>>> mycl = C1()

>>> print mycl.count
12

>>> mycl.count = 20
>>> print mycl.count
20

>>> print Cl.count
12

OOP Inheritance

“Inheritance is the ability to define a new class that is a
modified version of an existing class.” — Allen Downey,
Think Python

“A relationship among classes, wherein one class
shares the structure or behavior defined in one (single
inheritance) or more (multiple inheritance) other
classes. Inheritance defines a “kind of” hierarchy
among classes in which a subclass inherits from one or
more superclasses; a subclass typically augments or
redefines the existing structure and behavior of
superclasses.” — Grady Booch, Object-Oriented Design

OOP Inheritance (cont.)

* Conceptual example:

superclass

base class Mammal

parent class . . :
single inheritance

subclass
derived class Dog

child class

class hierarchy
Labrador

Labradoodle multiple inheritance

Base Class vs Derived Class

sssssssss

SSSSSSSSSSS

\\\\\\\\ .

Inheritance Syntax

* The syntax for inheritance
was already introduced
during class declaration

— C1is the name of the
subclass

— object is the name of the
superclass

— for multiple inheritance,
superclasses are declared
as a comma-separated list
of class names

class C1(object):
“C1 doc”
def f1(self):
do something with self
def f2(self):
do something with self

create a C1 instance
mycl = C1()

call f2 method
myc1.f2()

Inheritance Syntax (cont.)

* Superclasses may be either class Stack(list):
Python- or user-defined “LIFO data structure"
classes def push(self, element):

— For example, suppose we self.append(element)
want to use the Python list # Might also have used:
class to implement a stack #push = list.append
(last-in, first-out) data
structurg st = Stack()

— Python list class has a orint "Push 12, then 1"

method, pop, for removing
and returning the last
element of the list

— We need to add a push print "Stack content", st
method to put a new element print "Popping last element", st.pop()
at the end of the list so that it print "Stack content now", st

gets popped off first

st.push(12)
st.push(1)

Inheritance Syntax (cont.)

e A subclass inherits all the methods of its superclass

e A subclass can override (replace or augment) methods
of the superclass
— Just define a method of the same name

— Although not enforced by Python, keeping the same
arguments (as well as pre- and post-conditions) for the
method is highly recommended

— When augmenting a method, call the superclass method
to get its functionality

* A subclass can serve as the superclass for other classes

Overriding a Method

* _init__isfrequently
overridden because
many subclasses need
to both (a) let their
superclass initialize
their data, and (b)

initialize their own data,

usually in that order

class Stack(list):
push = list.append

class Calculator(Stack):

def __init__ (self):
Stack. _init_ (self)
self.accumulator =0

def _str_ (self):
return str(self.accumulator)

def push(self, value):
Stack.push(self, value)
self.accumulator = value

¢ = Calculator()
c.push(10)
print c

Multiple Inheritance

Python supports multiple inheritance

In the class statement, replace the single superclass
name with a comma-separated list of superclass
names

When looking up an attribute, Python will look for it in
“method resolution order” (MRO) which is
approximately left-to-right, depth-first

There are (sometimes) subtleties that make multiple
inheritance tricky to use, eg superclasses that derive
from a common super-superclass

Most of the time, single inheritance is good enough

Class Diagrams

* Class diagrams are visual representations of
the relationships among classes

— They are similar in spirit to entity-relationship
diagrams, unified modeling language, etc in that
they help implementers in understanding and
documenting application/library architecture

— They are more useful when there are more classes
and attributes

— They are also very useful (along with
documentation) when the code is unfamiliar

Polymorphism

“Functions that can work with several types are called
polymorphic. — Downey, Think Python

“The primary usage of polymorphism in industry
(object-oriented programming theory) is the ability of
objects belonging to different types to respond to
method, field, or property calls of the same name,
each one according to an appropriate type-specific
behavior. The programmer (and the program) does not
have to know the exact type of the object in advance,
and so the exact behavior is determined at run time
(this is called late binding or dynamic binding).” -
Wikipedia

Polymorphic Function

—Oje—Ct1) ”—O/Je—dz,—

Polymorphic Function

(identify object types
via introspection)

Polymorphic Classes

—is‘ ”—/Je—ds

(e ——

Generic Function

(assumes objects have
the same API)

Polymorphism (cont.)

* The critical feature of polymorphism is a
shared interface

— Using the Downey definition, we present a

common interface where the same function may
be used regardless of the argument type

— Using the Wikipedia definition, we require that
polymorphic objects share a common interface
that may be used to manipulate the objects
regardless of type (class)

Polymorphism (cont.)

 Why is polymorphism useful?
— By reusing the same interface for multiple

purposes, polymorphism reduces the number of
“things” we have to remember

— It becomes possible to write a “generic” function
that perform a particular task, eg sorting, for
many different classes (instead of one function for
each class)

Polymorphism (cont.)

* To define a polymorphic function that accepts
multiple types of data requires the function
either:

— be able to distinguish among the different types
that it should handle, or

— be able to use other polymorphic functions,
methods or syntax to manipulate any of the given

types

Type-based Dispatch

def what_is_this(data):

o Python prOVideS seve ral if isinstance(data, basestring):
. er - # Both str and unicode derive
WayS Of |dent|fY|ng data # from basestring
. return "instance of string"
types' elif hasattr(data, "__class__"):
— isinstance function return ("instance of %s" %
data. _class_. name_)
— hasattr function raise TypeError(”unknown type: %s" %
str(data))

— __class__ attribute
class NC(object): pass
class OC: pass

print what_is_this("Hello")
print what_is_this(12)
print what_is_this([1, 2])
print what_is_this({12:14})
print what_is_this(NC())
print what_is_this(OC())

Polymorphic Syntax

* Python uses the same def histogram(s):
syntax for a number of 9= diel)
data types, so we can dlc] = d.get(c, 0) + 1

returnd

implement polymorphic
functions for these data print histogram("aabc")

. . print histogram([1, 2, 2, 5])
types if we use the rlght print histogram(("abc", "abc", "xyz"))

syntax

Polymorphic Classes

 Classes that share a common interface

— A function implemented using only the common
interface will work with objects from any of the
classes

e Although Python does not require it, a simple
way to achieve this is to have the classes
derive from a common superclass
— To maintain polymorphism, methods overridden

in the subclasses must keep the same arguments
as the method in the superclass

Polymorphic Classes (cont.)

class InfiniteSeries(object):
def next(self):
raise NotImplementedError(”next")
class Fibonacci(InfiniteSeries):
def __init_ (self):
self.n1,self.n2=1,1
def next(self):
n =self.nl
self.n1, self.n2 = self.n2, self.n1 + self.n2
return n
class Geometric(InfiniteSeries):
def __init__ (self, divisor=2.0):
self.n =1.0/ divisor
self.nt = self.n / divisor
self.divisor = divisor
def next(self):
n =self.n
self.n += self.nt
self.nt /= self.divisor
return n
def print_series(s, n=10):
foriin range(n):
print "%.4g" % s.next(),
print

* The superclass defining the
interface often has no
implementation and is
called an abstract base
class

e Subclasses of the abstract
base class override
interface methods to
provide class-specific
behavior

* A generic function can
manipulate all subclasses of
the abstract base class

print_series(Fibonacci())
print_series(Geometric(3.0))
print_series(InfiniteSeries())

Polymorphic Classes (cont.)

In our example, all three subclasses overrode the next
method of the base class, so they each have different
behavior

If a subclass does not override a base class method, then it
inherits the base class behavior

— If the base class behavior is acceptable, the writer of the subclass does
not need to do anything

— There is only one copy of the code so, when a bug is found it the
inherited method, only the base class needs to be fixed

instance.method() is preferable over class.method(instance)

— Although the code still works, the explicit naming of a class in the
statement suggests that the method is defined in the class when it
might actually be inherited from a base class

Cards, Decks and Hands

* Class diagram of example in Chapter 18 and

Exercise 18.6

Hand

T

Deck — Card

PokerHand

Game

Deck

Card

Poker

Hand

N4

PokerHand

Is More Complex Better?

* Advantages e Disadvantages

— Each class corresponds — More classes means
to a real concept more things to

— It should be possible to remember
write a polymorphic — Need multiple
function to play cards inheritance (although in
using only Game and this case it should not be
Hand interfaces an issue because the

— It should be easier to class hierarchy is simple)

implement other card
games

Debugging

* Python is capable of introspection, the ability to
examine an object at run-time without knowing
its class and attributes a priori

* Given an object, you can

— get the names and values of its attributes (including
inherited ones)

— get its class
— clheck if it is an instance of a class or a subclass of a
Class
* Using these tools, you can collect a lot of
debugging information using polymorphic
functions

Debugging with Introspection

def tell_me_about(data):
print str(data)
print " 1d:", id(data)
if isinstance(data, basestring):
Both str and unicode
derive from basestring
print " Type: instance of string"
elif hasattr(data, " __class_ "):
print (" Type: instance of %s" %
data._ class__. name_)
else:
print " Type: unknown type"
if hasattr(data, "___getitem__"):
like =]
if hasattr(data, "extend"):
like.append("list-like")
if hasattr(data, "keys"):
like.append("dict-like")
if like:
print " %s" % ", ".join(like)

tell_me_about({12:14})
class NC(object): pass
nc = NC()

nc_copy = Nnc
tell_me_about(nc)
tell_me_about(nc_copy)
tell_me_about(NC())

{12: 14}

Id: 5370941216

Type: instance of dict

dict-like

<__main__.NC object at 0x1401d6410>
Id: 5370635280

Type: instance of NC

<__main__.NC object at 0x1401d6410>
Id: 5370635280

Type: instance of NC

<__main__.NC object at 0x1401d6490>
Id: 5370635408

Type: instance of NC

More Introspection

def list_attributes(obj):
for attr_name in dir(obj):
print " %s:" % attr_name,
value = getattr(obj, attr_name)
if callable(value):
print "function/method"
else:
print value
list_attributes(list)

Homework

* Assignment 8.1

* Assignment 8.2
— A one-paragraph description is sufficient

