PC204 Lecture 7

Conrad Huang
conrad@cgl.ucsf.edu
Genentech Hall, N453A
x6-0415

Topics

Homework review
Object-oriented design

How to do object-oriented programming with
Python dictionaries
— Why classes and instances work the way they do

How to do object-oriented programming with
Python classes

Homework Review

* 6.1 — Rectangle functions
* 6.2 —area_difference
* Object-oriented perspective

— 6.1 defines and implements a rectangle API
* Methods: create, convert to string, shift and offset
e Attributes: width, height, corner (x, y)

— 6.2 uses the API

* Area difference requires two rectangles and is not a
method of a single rectangle (usually)

Object-Oriented Design and
Programming

Designing programs around “objects’” instead of
functions or data

Conceptually, an object is something we think of
as a single unit (eg appearance, state, behavior)

Collectively, all objects with the same behavior
form a “class”

Programmatically, an object is represented by a
set of data (" attributes”) and functions
(“methods”)

OOD and OOP Criteria

* Design focuses on what are the attributes and
methods (the ‘interface”) of objects while
programming focuses on how to make the interface

functional (the “implementation”)
e Abstraction: the external or public interface of an

object or class
— Cohesion: how much attributes and methods relate to

each other
— Coupling: how much interdependencies there are among a

set of classes
* Encapsulation: hiding the internal implementation of a

class

OOP Data Organization

* Organize data by:

— Keeping data for the same object together as a
single unit so that they may be accessed starting
from a single reference

— Naming individual data elements thereby
providing hints as to what they represent

* Both objects and dictionaries can provide both
properties
— So why do we need both?

Example Data and Functions

* We will use rectangles as our example
— Rectangles have width, height and origin

— Function/method area computes and returns area
from width and height

— Function/method shift moves the rectangle origin

OOP with Dictionaries (cont.)

* Dictionary syntax is more cumbersome, but is
effectively the same as instance attribute
syntax

class Rectangle(object): pass r = dict()

r = Rectangle() <:> r[“width”] = 10
r.width = 10 r[“height”] = 10
r.height = 10 r[“origin”] = (0, 0)

r.origin = (0, 0)

width 10
height 10
origin (0, 0)

From Dictionaries to Classes

* Since we use dictionaries all the time, why
create another syntax to do something
similar?

— There are common operations (like identifying the
type of an object and sharing functions among

multiple objects) that may be codified into class
and instance syntax

— Less code = more readable code and less typing
(at least that’s what we hope)

Why (not) Use Dictionaries?

 Advantage
— We can use a familiar syntax for referencing data

e Disadvantage

— Because there is only one data type, there is no

easy way to figure out what any dictionary
represents other than looking at its keys

e Solution

— Reserve a “tag’ key for type identification

ldentify Data Types with Tags

’

 Atagis a convention of using a “well known’
name for storing identification information

r= diCt() tag “Rectangle”
r[“tag”] = “Rectangle” width 10
r[(“width™] = 10 height 10
r[“height”] = 10 origin (0, 0)
r[“origin”] = (0,0)

r2 = dict() tag “Rectangle”
r2[“tag”] = “Rectangle” width 20
r2[“width”] = 20 height 5
r2[“height”] =5 origin (2,4)

r2[“origin”] = (2, 4)

— Given data dictionary d, its data type can be found
by examining d[“tag”]

What about Functions?

 We can call functions to operate on the data
dictionaries that we created

 However, OOP is about grouping data and
operators together so that given an “object’,
we know about both its data and behavior

— Q: Can we do this using dictionaries?

— A: Of course.

* The key is to recognize that values in Python
dictionaries can be references to functions

Function References in Dictionaries

* In each “data dictionary”, we can store not
only data, but also references to functions
that can operate on the data

— The simplest way is to reserve a tag name for each
function

— Each data dictionary may then have a set of tags
assigned to the functions that can operate on it

— Callers, when given a data dictionary, may then
use the tags to find the appropriate functions

Function Reference Example

* How can we associate functions for computing
area and shifting origin with “Rectangle”

dictionaries?

def _area(r):
return r[“width”* r[“height”]
def _shift(r, dx, dy):
r[“origin”] = (r[“origin”][0] + dX,
r[“origin”][1] + dy)
def Rectangle(w, h, o):

r=dict()

r[“tag”] = “Rectangle”
r[“width”] = w
r[“height”] = h

r[“origin”] = o
r[“area”] = _area
r[“shift”] = _shift
returnr

Create a Rectangle data dictionary
r = Rectangle(10, 10, (0, 0))

Compute rectangle area
print r[“area”](r)

tag “Rectangle”
width 10

height 10

origin (0,0)

area

shift

More Function References

 The problem with using one tag per function is
that:

— Each data dictionary has its own set of function
references, which wastes memory

— The functions are not logically grouped together
(other than in the dictionary creation function)

e Solution

— Put related functions into their own “class
dictionary” and have each “data” dictionary
reference the class dictionary

Another Function Reference
Example

def _area(r):
return r[“width”* r[“height”]
def _shift(r, dx, dy):
r[“origin”] = (r[“origin”][0] + dx,
r[“origin”][1] + dy)
Rectangle_classDict = {
“area’: area,
“shift”: _shift,
}
def Rectangle(w, h, o):
r = dict()
r[“tag”] = “Rectangle”
r[“functions”] = Rectangle_classDict
r[“width”] =w
r[“height”] = h
r[“origin”] = o
returnr

Create a Rectangle data dictionary
r = Rectangle(10, 10, (0, 0))

Compute rectangle area
print r[“functions”][“area”](r)

tag “Rectangle”
width 10
height 10
origin (0,0)
functions

area

shift

More Function References

* The data/class-dictionary system has disadvantages

— There is an extra dictionary: “Rectangle_classDict” in the
previous example

— Tocalla functlon fora dictionary, we need to do two lookups:
“functions” and “area’

e But it also has advantages:

— The class dictionary tells everyone that the functions are related
and operate on the same type of data dictionaries

— All data dlctlonarles now have exactly two reserved keys: “tag”
and “functions”

— In fact, since all functlon caIIs go through the “functions’ tag,
we do not really need “tag” for much of anything

— We can optimize things so that there is only one reserved key
for each dictionary

More Function

def _area(r):
return r[“width”* r[“height”]
def _shift(r, dx, dy):
r[“origin”] = (r[“origin”][0] + dx,
r[“origin”][1] + dy)
Rectangle_classDict = {
“ _name__": “Rectangle”,
“area’: area,
“shift”: _shift,
}
def Rectangle(w, h, o):
r = dict()

r[“ dict_ "] = Rectangle_classDict

r[“width”] =w
r[“height”] = h
r[“origin”] = o
returnr

References (cont.)

Create a Rectangle data dictionary
r = Rectangle(10, 10, (0, 0))

Compute rectangle area
print r[“__dict__ "][“area”](r)

width 10
height 10
origin (0,0)
_dict__

__name__ “Rectangle”
area

shift

OOP with Classes

* Python has syntax and built-in rules that aids
in object-oriented programming

def _area(r):
return r[“width”* r[“height”]
def _shift(r, dx, dy):
r[“origin”] = (r[“origin”][0] + dX,
r[“origin”][1] + dy)
Rectangle_classDict = {

«“ ", u

__name__": “Rectangle”,
“area’: _area, “shift”’: _shift,
}
def Rectangle(w, h, o):
r = dict()
r[“__dict__ "] = Rectangle_classDict
r[“width”] = w
r[“height”] = h

(13 . . »
r[origin]=o0
returnr

class Rectangle(object):
def __init__ (self, w, h, 0):
self.width=w
self.height = h
self.origin =0
def area(self):
return self.width * self.height
def shift(self, dx, dy):
self.origin = (self.origin[0] + dX,
self.origin[1] + dy)

r = Rectangle(10, 10, (0,0))
print r.area()

Class and Instance Syntax

* The class dictionary is created from the
variables and functions defined within the
class statement

* The class name doubles as the name of the
function for creating instances of the class
(dictionaries in our old terminology)

* Newly created instances are automatically
tagged with the class dictionary

Class and Instance Syntax (cont.)

* Assigning to instance attributes are the

equivalent to assigning values to keys in the data
dictionary

 References to instance attributes are the
equivalent to looking up keys in the data
dictionary, except

— if the key is not in data dictionary, the class dictionary
is automatically searched for a key of the same name

— This is inheritance

Class and Instance Syntax (cont.)

e Using attributes and methods in instances is
(almost) the same as using values out of a
data dictionary

r = Rectangle() r=dict()

r.width = 10 r[“width”] = 10
r.height = 10 — r[“height”] = 10
r.origin = (10, 10) r[“origin”] = (0,0)

print r.area() print r[“__dict__"][“area”](r)

Class and Instance Syntax (cont.)

Note that the dictionary-style function call
r[“__dict_ "][“area”](r)
was translated to
r.areal)
In neither case is there a reference to Rectangle
since everything may be found from the instance
In the dictionary-style call, we use r twice:

— Once to find the function to call

— Once to pass as the argument so that the function can
find the dictionary on which to operate

In the OO-style call, we only use r once:

— Python automatically passes the instance, r, as the
first argument to the called method, area

Methods

* This is because Python treats functions
defined inside of class statements as

methods, and the first argument to any
method must be an instance of the class

— By convention, the first argument is named “self”
* In fact, the code
r.area()

is equivalent to
Rectangle.area(r)

Methods (cont.)

 The reason r.area() is preferred over
Rectangle.area(r) is that the latter requires us

to know the class of r whereas the former
does not

— The former only requires knowledge of the
instance and the method

— The latter requires instance, method and class
(even when we can get class from instance)

— This is important later in polymorphism where
instances of different classes behave similarly

Special Methods

* |n addition to executing methods when they are
explicitly called, Python also calls “special
methods” (if they exist) under certain conditions

* For example, when an instance is created, Python
will call a method named “ __init_ " ifitis
defined in the class

* The initialization method is a perfect place for
setting initial values for attributes (whether they
are constant or supplied by the caller)

Special Methods (cont.)

* |nstance initialization usually consists of
setting some attributes

>>> class D1(object):
. def __init__(self, size):
self.count=0
self.size = size

>>>d1l =D1(12)

>>> d1

<__main__.D1 object at 0x00D39310>
>>> print d1.count, d1.size

012

>>>

* Any arguments in the instance creation call is
passed through to the __init__ method

Special Methods (cont.)

 Using an __init__ method is easier to read and
less prone to error (like forgetting to initialize an

attribute)
class Rectangle(object): class Rectangle(object):
def __init_ (self, w, h, 0): pass

self.width=w > (r= Rectangle()
self.height = h r.width =10
self.origin =0 r.height =10

r = Rectangle(10, 10, (0,0)) r.origin = (0,0)

r2 = Rectangle(20, 5, (2,4)) r2 = Rectangle() ...

* Note that __init__ is called after the instance has
been tagged with the class dictionary so all
methods are available for use

More Special Methods (cont.)

* Python calls the __str__ method when
printing an instance

>>> class Rectangle(object):
pass

>>> r = Rectangle()
>>> printr
<__main__.Rectangle object at 0x100599fd0>
>>> class Rectangle2(object):
def _str_ (self):
return "I'm a Rectangle2 instance"

>>> r2 = Rectangle2()
>>> print r2
I'm a Rectangle2 instance

Operator Overloading

Python can call functions when standard
operators (such as +, -, * and /) are used

For example, Python calls the __add
method when the left operand of an addition
is an instance and __add__ is defined for the

class

The __radd__ method is called when the right
operand of an addition is an instance

If both sides are instances, _add__ wins

Operator Overloading (cont.)

>>> class Vector(object):
def __init__ (self, x, y):
self.x = x
selfy=y
def _ str_ (self):

return "(%g,%g)" % (self.x, self.y)
def __add__(self, other):
return Vector(self.x + other.x, self.y + other.y)

>>> print Vector(1, 2) + Vector(2, 1)
(3,3)

* Operator overloading should only be used when
the operator makes sense, eg vector addition

e Using them in other contexts only makes the
code harder to understand

Debugging

Invariants are data consistency requirements

If we can identify invariants for our classes, we
can put in assert statements in our methods to
make sure that the invariants hold

There may also be conditions that must be true
at the start (pre-conditions) and end (post-
conditions) of methods that we can test to make
sure that, for example, arguments are reasonable
and data consistency is maintained

The earlier we can detect errors, the fewer red
herrings we need to deal with

Homework

e 7.1 —convert 6.1 to use classes

e 7.2 —implement and use special method
add

