
PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

1 of 28 11/13/2014 1:38 PM

Homework review
Object-oriented design
Object-oriented programming with Python

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

2 of 28 11/13/2014 1:38 PM

 - Rectangle functions
 - area_difference

Object-oriented perspective
6.1 defines and implements rectangle API

Methods: create, convert to string, shift and offset
Attributes: width, height, corner (x, y)

6.2 uses the API
Area difference requires two rectangles and is not a method of a single rectangle (usually)

6.1
6.2

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

3 of 28 11/13/2014 1:38 PM

Designing programs around objects instead of functions or data
Conceptually, an object is something we think of as a single unit (i.e. state and behavior)
Collective, all objects that share the same behavior (but not necessarily the same data) form a class
Programmatically, an object is represented by attributes (data/state) and methods
(function/behavior)

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

4 of 28 11/13/2014 1:38 PM

Object-oriented design (OOD) focuses on what are the attributes and methods (the interface) of
objects/classes while object-oriented programming (OOP) focuses on how to make the interface
functional (the implementation).
Abstraction: semantics defined by the interfaces of one or more classes. The quality of abstraction is
discussed in terms of:

Cohesion: how much attributes and methods in a single class is related to each other (higher is
better).
Coupling: how much interdependencies there are among a set of classes (lower is better).

Encapsulation: concealment of implementation methods for a class. The degree of encapsulation is
measured by how much internal data structures are accessible externally. (Appropriate degree of
encapsulation depends on the application.)

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

5 of 28 11/13/2014 1:38 PM

For similar reasons why modules are a good idea:
Divide-and-conquer approach allows developers to focus on smaller problems.
Small, independent chunks of code (whether module or class) are easier to write and debug.
Independent chunks of code may be tested separately (unit testing) to verify proper operation
before attempting integration testing for the entire system.

And for reasons beyond them:
Classes may inherit from other classes to form class hierarchies with a low degree of code
duplication.
Classes may be polymorphic so that they may be used interchangeably in generic algorithms.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

6 of 28 11/13/2014 1:38 PM

Design is still an art. People with different ideas come up with different abstractions.
Programmatic objects often correspond to real-world objects.
Frequently, enumerating a variety of subtasks helps identify classes. Nouns are class candidates. Nouns
that occur in multiple contexts are better candidates because creating such a class would reduce code
duplication by being shared by multiple subtasks.
When the design may be achieved using several different sets of classes, compare cohesion and coupling
among the solutions.
In general, large classes that do many things should be reviewed to see whether they can be logically split
into smaller classes. Several small classes that refer to each other very frequently should be reviewed to
see whether they can be combined into a single class with a smaller interface.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

7 of 28 11/13/2014 1:38 PM

Implementing a Rectangle class in Python:

Using the class:

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

8 of 28 11/13/2014 1:38 PM

In Python, everything is an object.
In Python 2, an object has a type and possibly a class
In Python 3, an object's type is its class.

A class object defines, among other things, a collection of methods (verbosely instance methods)
that define how instances of the class behave.
An instance is an object that is associated with a class object. There may be many instances associated
with the same class object.

All instances of the same class share the same methods defined by their class object.
Each instance has its own attribute values that are distinct from attribute values of other instances.
When a method is defined in a class, it can refer to instance attributes.
A method cannot be called unless it is bound to an instance. This is because references to instance
attributes are undefined unless there is a definitive instance in which to search for attribute values.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

9 of 28 11/13/2014 1:38 PM

A class object is defined by a class statement:
A class statement is introduced by the class keyword:

In Python 2, the above statement creates an old-style class while the preferred new-style class is
defined with:

def statement in a class statement define methods of the class.
Method definitions look exactly like function definitions, except the first argument of a method is
conventionally named self.

Assignment statements in class statement define class attributes not instance attributes.
Class attributes are associated with the class object, not instances.
Unlike instance attributes (which are unique for each instance), all instances of the class share the
same class attribute.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

10 of 28 11/13/2014 1:38 PM

Defining a method is exactly analogous to defining a function, except the def statement is indented inside
a class statement.
All methods take at least one argument. The first argument refers to the instance in which to look for any
referenced instance attributes. By convention, the first argument is named self.
In our example:

we define the method area. When area is invoked, the first argument, self, is assigned to a Rectangle
instance, and values for the width and height attributes from that instance are used to calculate the
return value.
Python will make sure that the first argument is an instance of the correct class. For example, if we have
two classes, Rectangle and Triangle, that both define area methods, Python will ensure that
Rectangle.area will not be called with an instance of Triangle as self.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

11 of 28 11/13/2014 1:38 PM

Although used infrequently, class attributes come in handy for keeping track of information about the
class object (not instances) and for defining shared constants
In our example:

we define a class attribute NUMBER_OF_SIDES. There is only one NUMBER_OF_SIDES shared
by the class object and all instances of Rectangle, i.e., changing the value of NUMBER_OF_SIDE:

will change it for all instances as well as the class object.
(NUMBER_OF_SIDES is all caps to conform with Python naming convention. Google for "Python
PEP 8".)

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

12 of 28 11/13/2014 1:38 PM

Each class has its own namespace. Different classes may use the same method and class attribute names
without worrying about ambiguity. You can think of classes as something like mini-modules.
Methods and class attributes share the same namespace within a class.

If there are multiple def statements defining methods with the same name, last one wins.
If there are multiple assignment statements defining class attributes with the same name, last one
wins.
If there definitions of methods and class attributes with the same name, last one wins.

The moral of the story: pick unique names within a class.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

13 of 28 11/13/2014 1:38 PM

A class statement defines a single class object. To create instances of a class, the class object is used as if it
were a function:

When a class object is called as a function:
it creates an instance of the class;1.
if there are arguments to the function call, the __init__ method is invoked with self set to the
newly created instance and the function call arguments passed as additional arguments to __init__.

2.

As its name suggests, __init__ is where instance initialization should occur, e.g., setting instance
attributes according to passed arguments. All methods and class attributes may be used as part of
instance initialization.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

14 of 28 11/13/2014 1:38 PM

An instance has access to:
its own instance attributes (data unique to the instance and not shared with neither its class object
nor other instances of the class),
class attributes (data associate with the class object), and
methods (functions defined in the class object).

Instance attributes, class attributes, and methods are all accessed using the same syntax of
instance.name, where name is the name of an attribute or method.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

15 of 28 11/13/2014 1:38 PM

In this example:

we define a class Rectangle, create an instance of the class, and then proceed to print some values for the
instance.
When we create r1, __init__ is implicitly called with self set to the new instance and w, h and o set to
10, 20 and (0,0), respectively.
The three print statements consecutively access instance attributes (set in call to __init__), a class
attribute (defined by class statement), and call a method. Even though the syntax for all three statements
are similar, they access different types of data associated with r1.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

16 of 28 11/13/2014 1:38 PM

Because an expression instance.name may potentially refer to several types of data associated with the
instance, we need some precedence rules to take care of possible ambiguities.
For retrieving data:

If name matches an instance attribute, the value of the instance attribute is used;1.
If name matches a class attribute or method in the class object, use that value (note that the name
cannot match both a class attribute and a method since defining one overrides the other);

2.

Raise AttributeError exception.3.
For defining data (usually an assigment statment):

If name matches an instance attribute, the attribute is updated with the new value;1.
If name does not match an instance attribute, create an instance attribute with the new value.2.

Note the asymmetry of accessing and setting attributes.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

17 of 28 11/13/2014 1:38 PM

Each instance is its own namespace.
For retrieving an attribute value, the instance namespace is checked first for the attribute name. If the
name is not found in the instance namespace, the class object namespace is checked. (This is similar to
the idea of LSGB scoping where a name is searched in progressively less specific namespaces.)
For assigning an attribute value, only the instance namespace is used. The assignment either replaces an
existing value, or creates a new value. There are two ramifications:

New attributes may be created for each instance, independently of the class object or other instances.
So different instances may have different attributes. (That is not generally considered a good idea, but
Python allows it.)
Instance attributes can shadow class attributes (as the example below shows).

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

18 of 28 11/13/2014 1:38 PM

The following example illustrates the pitfalls of undisciplined use of instance attribute names:

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

19 of 28 11/13/2014 1:38 PM

Calling a method is slightly more complicated than calling a function. The following example shows two
different ways of calling a method:

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

20 of 28 11/13/2014 1:38 PM

A method may be found in two ways:
Associated with an instance, e.g., r.area. In this case, the found method is called a bound method
because there is already an instance, r, associated with how the method was found.
Associated with a class, e.g., Rectangle.area. In this case, the found method is called an unbound
method because there is no instance associated with how the method was found.

When an bound method is called, Python implicitly inserts the instance used to find the method as the
method's first argument, self. That is why even though area is defined to take one argument, the call
r.area() passes zero arguments.
When an unbound method is called, Python has no idea what instance should be used and therefore does
not insert the first argument. That is why we must explicitly pass r as the first argument in
Rectangle.area(r).
Bound methods are the preferred way to call methods because the class is not named explicitly. The
advantage of this will be discussed in the inheritance and polymorphism topics.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

21 of 28 11/13/2014 1:38 PM

A very common error with using methods is shown below:

Remember to account for the implicit first argument in a call to a bound method.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

22 of 28 11/13/2014 1:38 PM

In addition to executing methods when they are explicitly called, Python also calls "special methods" (if
they exist) under certain conditions. All special methods have names that begin with __ (double
underscore).

__ prefixes get special treatment from Python and you should not use it unless you know exactly
what you are doing.

For example, when an instance is created, Python calls a method __init__ if it is defined in the class.
Another special method is __str__ which is called to convert an instance into its string representation.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

23 of 28 11/13/2014 1:38 PM

__str__ overrides the default string representation that Python uses for instances:

A better choice may be to include the rectangle origin and size in the output.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

24 of 28 11/13/2014 1:38 PM

Python can call methods when standard operators (e.g., +, –, * and /) are used
If one of the operands of the operator is an instance of a class that defines a corresponding special
method, then the method is called with the operand(s) as arguments. The return value of the special
method is expected to "make sense".
For example:

The __add__ method is called automatically when the left operand of + is an instance of Vector

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

25 of 28 11/13/2014 1:38 PM

Other operators that can be overloaded include list or map lookup ([]), function call (()), comparison (<,
>, etc.) and even getting or setting attributes (.).
See the Data model page (,) for the full list of operators that you can overload and
the names of their corresponding special methods.
Operator overloading should only be used when the operator "makes sense", e.g. overriding + for vectors.
Gratuitous use of operator overloading can easily lead to completely inscrutable code.

Python 3Python 2

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

26 of 28 11/13/2014 1:38 PM

Invariants are data consistency requirements
In general, we can use assert statements in our methods to make sure that the invariants hold
Two special cases are pre-conditions, which are invariant tests made just after a method is called, and
post-conditions, which are tests made just before a method returns. Together, they (try to) guarantee that an object
is always in a consistent state.
Wide use of pre- and post-conditions helps developers detect inconsistencies early, and minimize red herrings that
derive from propagation of bad data.

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

27 of 28 11/13/2014 1:38 PM

 - convert 6.1 to use classes
 - implement and use special method __add__

7.1
7.2

PC204 Lecture 7 hƩp://preview.cgl.ucsf.edu/Outreach/pc204/lecture_notes/week7/Lecture7.html

28 of 28 11/13/2014 1:38 PM

