PC204 Lecture 6

Conrad Huang
conrad@cgl.ucsf.edu
Genentech Hall, N453A
x60415

Topics

Homework review
Exceptions

Module syntax

Using modules

Class syntax and using classes

Homework Review

* 5.1 —count_extensions
e 5.2 -get pdb ligands

Exception Handling

 Exceptions are “thrown” when Python
encounters something it cannot handle

* Exceptions can indicate one of several
conditions
— Error in code

— Error in execution, eg bad data
* Fatal
* Recoverable

— Expected (usually rare) execution state

Coding Errors

 Some exceptions are generated by faulty code
that never work correctly

>>> data = "this is not an integer"
>>>"%d" % data
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: int argument required
>>>"%d %d" % (1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: not all arguments converted during string formatting

 Solution: Fix the code

Execution Errors

* Some exceptions are generated by code that
work some of the time

— For example, this code might throw an exception
if an expected data file is missing

>>> f = open('bee.tsv')
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IOError: [Errno 2] No such file or directory: 'bee.tsv'

e Solution: ?

Recoverable Execution Errors

* Some exceptions need not be fatal
— For example, if our expected TSV file is missing,
we can regenerate it from the original text
* To recover from an exception, we have to

“catch” the thrown exception by placing the
suspect code inside a “try” statement

try .. except .. else

 The general form of a try statement is:

try:
suspect statements
except exception _typel [, exception_datal]:
recovery statements 1
except exception _typeZ2 [, exception_dataZ2]:
recovery statements 2
else:
normal completion statements
finally:
always executed whether exception thrown or not

* There must be at least one except clause
* The else and finally clauses are optional

try Statements

* A trystatement is executed as follows:
— “suspect statements’ in the try clause are first executed

— If they do not generate an exception, “normal completion
statements” in the else clause are executed

— Otherwise, the thrown exception is matched against the
“exception_type’’s listed in the except clauses and the
corresponding “recovery statements’ are executed

— If an exception is thrown but no matching except clause
was found, the exception is handled “normally” (as if the
suspect statements were not in a try statement) and
neither normal completion statements nor any recovery
statements are executed

try Statements

* Note that the statements inside the try may be
function calls

— The called function may also have try statements

— When an exception is raised, the last function called
has the first opportunity to catch it

— If a function does not catch an exception, the “stack is
unwound” and its caller gets a chance to catch the
exception

— This continues until the main program has a chance to
catch the exception

— Finally, the Python interpreter catches and reports
any uncaught exceptions

try Statements

e Statements in the finally clause are always
executed

— If no exception is thrown and there is an else clause,
the statements are executed after the else clause

— If no exception is thrown and there is no else clause,
the statements are executed after the try statements

— |f an exception is thrown and is caught by an except
clause, the statements are executed after the except
clause

— If an exception is thrown and is not caught, the
exception is temporarily caught, the finally
statements executed, and the exception rethrown

try Statement (cont.)

 Example of recovering from missing data file:
try:
f = open(“bee.tsv”)
except IOError:
f = open(“bee.txt”)
Regenerate data directly from bee.txt
f.close()
else:
Read cached data from bee.tsv
f.close()

* Note that if bee.txt is also missing, an IOError
exception will still be thrown

— There is no try in the recovery statements

Other Uses of try Statements

* try statements can be used deliberately in
anticipation of rare or unusual conditions:

Suppose d is a dictionary and we do different things depending
on whether my_key appears as a key in d
Approach A: LBYL - Look Before You Leap
if my_key in d:
Do something with d[my_key]
else:
Do something else

Approach B: EAFP - Easier to Ask for Forgiveness than Permission
try:

Do something with d[my_key]
except KeyError:

Do something else

LBYL vs EAFP

* EAFP is endorsed by many Python experts
because it tends to be more efficient and the
code is generally easier to read

— There are fewer tests being performed

— The unusual conditions are distinctly and explicitly
separated from the normal execution flow

Pitfalls of try Statements

* Itis possible to use a bare “except:” clause
(without specifying exception types) in a try
statement

— It is tempting to use this because it enables our

programs to continue executing in the presence of
errors

— Unless we plan to handle all types of exceptions,
this is a bad idea because it tends to intercept
errors from any “higher level” try statements that
may properly recover from some types of errors

Writing Modules

e Although Think Python only spends one page
on “Writing Modules”, there is actually quite
a bit more to say

e Syntax for using multiple modules in a single
program is very straightforward

* Reasons for using modules and how code
should be organized is more complex
— Avoid code duplication in multiple programs
— Help organize related functions and data

Module Syntax

* Python treats any file with the .py suffix as a
module, with the caveat that the part of the
file name preceding .py consists of only legal
Python identifier characters

* For example, wc.py

def linecount(filename):
count=0
for line in open(filename):
count+=1
return count

print linecount(“wc.py”)

Module Syntax (cont.)

* To use the wc module, we need to import it

>>> import wc

Vi

>>> print wc

<module 'wc' from 'wc.py'>
>>> import wc

>>> wc.linecount("wc.py")
7

>>> wec.linecount("bee.tsv")
75

Module Syntax (cont.)

* Where does Python look for module source files?

— Python is shipped with many modules (“batteries
included”) and they are all part of the Python
installation

— Modules that go with your main program should be in
the same folder as the main program itself

— If you have modules that is shared among multiple
programs, you can either
* install it in the Python installation location, or

* set up your own module folder and modify sys.path or
PYTHONPATH

Importing a Module

* Executing “import wc~ the first time:
— Creates a new module object

— Executes the code in wc.py within the context of
the new module

— In the importing module, creates a variable
named “wc’, which references the module
object, for accessing the contents of the module

 Executing “import wc~ again only does the
very last step, ie the code in wc.py is not
executed more than once

Module Context

* Python has the concept of contexts or
namespaces for modules

— Each module keeps track of its own set of variable
names, so the same variable name in different
modules refer to different variables

— For example, each module has a variable named
name__~ which contains the name of the module

7

* For the main program it has value “ _ _main__
. 11 7
* For our wc module, it has value "wc

— The “def linecount(...)” statement in wc.py creates a
function named “linecount” in the “wc” module

Module Context (cont.)

* To access a function or variable in another
module, we need to specify both the module
and function/variable name, eg wc.linecount

— The wc part is the name of a variable, not the
module!

— We can do things like: “import wc as zzz~ or “zzz =
wc’ and refer to zzz.linecount, but the module
name is still we (as witnessed by zzz. name_)

Module Context (cont.)

 There are other forms of the import statement

— import module as myname

* This does the same thing as “import module” except the
variable created in the importing module is named
myname instead of “module

— from module import name

* This creates a variable “name” in the importing module that
refers to the same object as module.name at the time when
the import statement is executed

* This is mainly used to avoid having the imported module
name appear many times in the code (either to reduce
typing or to improve code readability)

* You should only use this form with constants and functions,
ie items that do not change value over time

Module Context (cont.)

— from module import *

* For every variable or function in the imported module

(whose name does not begin with), a corresponding
variable of the same name is created in the importing

module

* This was done frequently in the early days of Python to
minimize typing

* |tis generally accepted that this is a bad thing to be
avoided when possible because it destroys the name-
clash protection of multiple namespaces and makes it
difficult to track down where variables come from

Module Context (cont.)

* When a function executes, it looks for variable
using the LSGB rule

— L(ocal) variables defined in the function
— S(cope) variables defined in enclosing functions

— G(lobal) variables defined in the module
— B(uilt-in) variab

* The globa
module w
module w

varia
nere t

nere t

es defined by Python

nles refer to variables in the

ne function is defined, not the
ne function is called

Module Context (cont.)

 Example of functions and global variables

Contents of gmod.py # Using gmod.print_var
var =10 >>>var = 20
>>> import gmod
def print_var(): 10
print var >>> gmod.print_var()
10
print_var() >>> from gmod import print_var

>>> print_var()
10

Using Modules

* Why use modules?

* Module is an organizational tool

— Put related functions together into the same file
— Avoid having multiple copies of the same code

* Functional decomposition
— Put all code related to one task into a single file
— markov2 prep.py, markov2 use.py
— Main drawback is code duplication, eg shift

— What if other programs also read the data files?
Do we replicate read_grams in all of them?

Using Modules (cont.)

* How do we avoid duplicating code?

— Put common code into files shared by multiple
programs

* Modular programming
— Put all code related to a subtask into a single file

— markov3 io.py, markov3 prep.py,
markov3 use.py

— How do you choose the extent of a subtask?

Using Modules (cont.)

* On the plus side:
— There is only one copy of the “shift” function

— we no longer need to change either markov3 prep.py
or markov3_use.py if we decide to use a different
storage format; we just change markov3 io.py

e But... we still have to change all the files if we
decide to use a different data structure for the

prefix-suffix mapping, eg use a histogram instead
of an expanded list of words

 Can we apply the shared module concept further
to minimize work when changing code?

Using Modules (cont.)

* In markov3_use.py:

— next_word = random.choice(m2[prefix])

* How do we interpret this statement?

— Literally: choose a random value from the list of
values that appear for key prefix in dictionary m2

— Semantically: choose a random value from the list
of words for that follow the two-word prefix using
bigram-suffix mapping m2

Using Modules (cont.)

e We can use the statement:
next_word = random_suffix(m2, prefix)
— instead of:
next_word = random.choice(m2[prefix])

* Assuming we:
def random_suffix(m, prefix):
return random.choice(m[prefix])

* Why bother?

— The reader gets a clearer idea of what is happening (“Oh,
we’re retrieving a random word following prefix.”)

— We can change how random_suffix is implemented (eg
bias the word choice by the length of the word) without
changing any other code in the program

Using Modules (cont.)

* Object-oriented programming (step 1)

— Select a concept that can be represented as a
collection of data structures

— Group it together with the operations (functions)
associated with the concept

— Put the data structures and operations together
and call the combination a “class” for the concept

Using Modules (cont.)

 Our markov3 *.py example has three files

— markov3_prep.py reads a text file and generates
two mappings: unigram-to-suffix and bigram-to-
suffix

— markov3_use.py uses the precomputed mappings
to generate a partial sentence

— markov3_io.py reads and writes the mappings

 What is a concept (and therefore candidate
class) that spans the three files?

Using Modules (cont.)

* Concept: prefix-suffix mapping
— We could have chosen to use two concepts: unigram-
suffix mapping and bigram-suffix mapping
 We extract all data structures and operations on
prefix-suffix mapping and put them into
markov4 gram.py

* markov4 prep.py and markov use.py are the
same as their markov3 counterparts, but
rewritten to use functions from
markov4 _gram.py (instead of accessing
dictionaries directly)

Using Modules (cont.)

* Once the prep and use programs no longer directly
access the mapping data, we are free to change how
we represent the mapping data

* This is the separation of interface from
implementation (aka data abstraction or data
encapsulation)

— Interface (aka API or application programming interface) is
what callers of a module uses, eg functions and variables

— Implementation is all the code within the module that
makes using the interface work, eg code to update
interface variables, and function definitions

— As long as the module interface remains the same, the
implementation may be changed at will

Using Modules (cont.)

* Another way to look at it:

— An API or interface defines what can be done
semantically with a concept

— An implementation is the underlying code that makes
the semantic operations possible

— A calling function should only care about the
semantics and never about the underlying code

— The underlying code may be changed as long as it re-
implements the same or a superset of the API
e Adding new functionality is fine
 Removing or changing functionality is not

Using Modules (cont.)

* |In our example, markov4_gram.py uses a
redundant word list to represent possible suffixes
for a given prefix

* We can change the implementation to using a
word histogram and save a lot of memory

* |In the new set of programs, notice that only

mar

kov5 gram.py differs from

mar
mar

<ov4 _gram.py; markov5 prep.py and
kov5 use.py are essentially identical to their

mar

Kov4 counterparts

Class Syntax and Using Classes

* Note that in our example, we used only functions and
modules to do object-oriented programming (OOP)

* Python (and many other languages such as C++ and
Java) supports OOP by providing some extra constructs

that aid bookkeeping
— For example, each of our mapping is implemented using a
single dictionary; there is no code to guarantee that we do
not mistakenly use a unigram as the prefix for the bigram

mapping
— We can implement each mapping as a 2-tuple, with

element 0 being the prefix length and element 1 being the
dictionary, but this makes the code harder to read

Class Syntax

 Python provides a “class’ syntax that allows
us to group data together and access them by
name

class class_name(object):
“””Documentation string”””

Instancel = class_name()

instancel.first_attribute = first_value

print instancel.first_attribute

Instance2 = class_name()

instance2.second_attribute = second_value

print instance2.second_attribute

 The “(object)” part is not needed for Python 3

Class Syntax

 We can switch from dictionary to class syntax
very easily

— markov6 gram.py, markov6 prep.py,
markov6 use.py

Class Syntax

* Classes are much more than just bookkeeping

 Next two weeks, more on classes and OOP
— attributes and methods

— initialization (constructor) and termination
(destructor)

— inheritance and polymorphism

Steps in Programming

* Figure out what Write simplest code
problem you are solving that solves the problem >

* Analyze the problemto ¢ Write test code and

identify concepts debug
(divide and conquer) « Measure performance

* Figure out what data * Optimize >
and functions are

— Speed up hotspots

needed — Change algorithms

Homework

* Assignment 6.1 - rectangles
— Copy some code that use classes

— Write some code that implement additional
operations

* Assignment 6.2 — more rectangles

— Write some code that calls the rectangle code

 What would you change to make the code
more object-oriented?

