
PC204 

Lecture 5 
Programming Methodologies 

Copyright 2000 by Conrad Huang and the Regents of the University of California. 
All rights reserved. 



Programming Paradigms 

•  Software Engineering 
•  Exploratory Programming 



Software Engineering 

•  Requirements 
•  Specification 
•  Design 
•  Coding 
•  Verification 
•  Debugging 

•  Documentation 
•  Dissemination 
•  Maintenance 
•  Enhancement 



Why Doesn’t It Work (for us)? 

•  Fuzzy requirements 
•  The most important phase is often is least 

well defined, especially in a research 
environment 



Exploratory Programming 

•  Faster feedback loop 
•  Standard components 
•  Reusable components 
•  Rapid Application Development (RAD) 



Methodologies 

•  Functional decomposition 
•  Structured programming 
•  Modular programming 
•  Object-oriented programming 
•  Generic programming 
•  Extreme programming 
•  Agile programming 



What’s the Difference? 

•  Methodologies may be applied for any 
programming language 

•  Some languages are easier (or harder) to use 
with some methodologies 

•  The outward appearance of a program is 
frequently determined by the language, but 
the methodology may be discerned from 
code organization 



Evaluation Criteria 

•  Correctness 
•  Maintainability 
•  Flexibility 
•  Reusability 



Functional Decomposition 

•  Divide problem into 
phases 

•  Flowchart diagrams 
•  “Input, compute, 

output” 
•  Algorithm for each 

phase 
•  Fortran 

•  Correctness - okay 
•  Maintainability - okay 
•  Flexibility - limited 
•  Reusability - limited 



Functional Decomposition 

yes 

yes 

no 

no 

loop 



Structured Programming 

•  Local organization 
•  No “go to”s 
•  Use functions 
•  Characterized as “just 

indentations” by 
unbelievers 

•  Fortran, C, Pascal 

•  Correctness - okay 
•  Maintainability - better 

–  more readable code 
•  Flexibility - okay 

–  simpler to reorganize 
•  Reusability - better 

–  reuse functions 



Structured Programming 

yes 

yes 

no 

no 

loop 

Function 

Function 



Modular Programming 

•  Group related data and 
functions together 

•  Module functions 
operate on module data 

•  Interface vs. 
Implementation 

•  Data abstraction and 
data encapsulation 

•  C, Algol, Ada 

•  Correctness - good 
–  module-based testing 

•  Maintainability - good 
–  localized changes 

•  Flexibility - better 
•  Reusability - better 

–  reuse entire modules 



Modular Programming 

Module Module 

Module 



Object-oriented Programming 

•  Formalize convention 
of always passing 
module data structures 
to module functions 

•  Class: definition of 
data and the functions 
that operate on them 

•  Object: data created 
from class definition 

•  Smalltalk, C++, Java 

•  Correctness - good 
•  Maintainability - better 

–  guaranteed internal 
consistency 

•  Flexibility - better 
•  Reusability - better 

–  reuse concepts 



Object-oriented Programming 

Class 

Class 

Instance 

Instance 

Instance 

Instance 



Generic Programming 

•  Back to algorithms 
•  Objects that share the same interface can be 

generically manipulated 
•  Toolkits of objects and algorithms 



What Is A Good Design? 

•  Too few classes, and code is limited in 
flexibility and reusability 
–  lacks cohesion 

•  Too many classes, and code is more difficult 
to verify and maintain 
–  too much coupling 

•  Design is still an art form 



Design Evaluation Deployment Coding 
Debugging 

Ouch 

Design vs. Coding 

•  Coding from a design is much simpler than 
“hacking” because most of the hard work has 
been done 

•  Sometimes you have to hack to find the right 
design 



Object-oriented Programming 

•  Languages that support object-oriented 
programming have built-in concept of class 

•  In addition to design, object-oriented 
programming also features inheritance 

•  Base class defines behavior; derived class 
defines new or redefines base behavior 

•  Simplifies code reuse 



Reference Material 

•  Object Oriented Design with Applications, 
Grady Booch 

•  Object-oriented Software Construction, 
Bertrand Meyer 

•  Software Tools, Brian Kernighan, et al. 


