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Substitution Matrices and Substitution Matrices and 
PhylogeneticPhylogenetic TreesTrees

Where we’re going todayWhere we’re going today

• Substitution matrices
• Significance of alignment scores
• Phylogenetic trees
• Homework
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Substitution MatricesSubstitution Matrices

Given an alphabet A of symbols, a substitution matrix is an
|A| x |A| matrix where element aij represents a “score” for the
substitution of symbol ai with symbol aj. 

Formally:

But what does a “score” represent?

In an evolutionary model, it’s a function of the likelihood
for one symbol to be replaced by the other.

S(a, b) = f ( P(a,b) )

Typically, f is a function that takes the log of the probability.
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Substitution ScoresSubstitution Scores

We could try to estimate P(a,b) by first principles 
(size, electrostatics, etc.).

So how do we get the scores?

• We may not understand these principles well enough

• This may not include other “hidden” selective pressures

What are the potential problems with this?
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Substitution ScoresSubstitution Scores
We can also look at “good” (i.e. trusted) alignments
and use them to estimate P(a,b).

1. Getting a valid (i.e. random) sample of alignments.

There are two fundamental difficulties with this 
approach:

Sequences (especially proteins) tend to come in
families, which may have particular substitution
restrictions.
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Substitution ScoresSubstitution Scores
2.  Substitution is a function of time.

Not all alignments can be considered equally. The
probability of substitution in a pair or sequences
that are evolutionarily far apart is higher than in a
pair that are close.

TYGGLPA
TFAGIPV

TYGGLPA
TYAGLPA

distantly related closely related

Is P(G,A) the same in both cases?
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DayhoffDayhoff, et. al. (PAM) Method, et. al. (PAM) Method
To account for the variability between families, they
used sequences from 71 different protein families.

Within each family, each pair of sequences was at 
least 85% sequence identical.
For each family, they built a phylogenetic tree (using
a parsimony method). 

ABC
ABB
ACC

ABC

ABB ACC
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DayhoffDayhoff, et. al. (PAM) Method, et. al. (PAM) Method
From the trees, they built a matrix X, where

ABC

ABB ACC

xab = frequency at which symbol a was paired with
symbol b between a sequence and its immediate
ancestor

A B C
A 2 0     0

0     1     2
0     2     1

B
C
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DayhoffDayhoff, et. al. (PAM) Method, et. al. (PAM) Method
Next, they calculated 

P(b|a) = the probability that a is substituted for b

=  
xab

Σ xacc

=  yab

So now there’s a matrix Y with probabilities as its 
elements.
But they still haven’t accounted for the differences in 
evolutionary time.
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DayhoffDayhoff, et. al. (PAM) Method, et. al. (PAM) Method
They define a substitution matrix to be 1 PAM (point
accepted mutation) if the expected number of substitutions
in a given sequence is 1%.

The expected number of substitutions is

Σ qa qb yaba,b

Where qx is the frequency of occurrence of x in the sequence

To make this sum equal 0.01, they scaled the values in
matrix Y.
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DayhoffDayhoff, et. al. (PAM) Method, et. al. (PAM) Method
They made a new matrix Z, where

zab = σ yab

zaa = σ yaa + (1 – σ)

zab is now considered P(b|a, t = 1), and matrix Z is
denoted as S(1), or a 1PAM matrix.

To extrapolate to longer times, we simply raise S(1) to
a power. 

So PAM250 = S(1)250
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DayhoffDayhoff, et. al. (PAM) Method, et. al. (PAM) Method
To get the final scoring matrix, we convert from the
probabilities in the S(1)n matrix to scores,

S(a,b)  =  Log P(b|a, t = n)
qb

These values are then scaled and rounded to the nearest
integer.

PAM250 is scaled by 3 
Log 2
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HenikoffHenikoff (BLOSUM) Method(BLOSUM) Method
Henikoff & Henikoff used sets of multiple alignments
from their BLOCKS database.

To account for the variance between familes, they used
“blocks” from many different families. Within each 
block, sequences were clustered by % identity.

block

A sequence was allowed in a cluster if it was at least L% identical
to at least one member of the cluster.
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HenikoffHenikoff (BLOSUM) Method(BLOSUM) Method
In each BLOCK, they count the number of times
symbol ai from one cluster was matched with symbol aj
from another cluster.

GYAGFPA
GFAGFPG
GYAAFPA

AYAGFPA
AYAAYPA

fGA =  fAG =  3 

fGG =  2 

fAA =  1 

Each count is weighted by 1
n1 n2

where nx = number of sequences in cluster x
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HenikoffHenikoff (BLOSUM) Method(BLOSUM) Method
The observed probability of an ai, aj pairing is

qij = 
fij

fijΣ Σ
i = 1 j = 1

20 i

The background probability of an ai, aj pairing is

bij =
pi pj for i = j

2 pi pj for i = j{
where

pi =
qiiqijΣ

j, i = j 2
+
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HenikoffHenikoff (BLOSUM) Method(BLOSUM) Method

The matrix score is calculated as

S(ai, aj)  =  sij =  2 Log2
qij

bij

and rounded to the nearest integer.
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Alignment ScoresAlignment Scores
How do I know if an alignment score is significant?

We can look at this probabilistically by assuming that
symbols occur randomly at all positions according to
their background frequencies.

When two random sequences of lengths m and n are 
compared, the probability of scoring at least S is

1 – e -Kmne-λS extreme value
distribution

where λ is the unique solution to pi pj eλsijΣ
ij

=  1
and K is a constant
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Alignment ScoresAlignment Scores
Note that the expected frequency of a substitution is

If we rearrange this, we get

qij pi pj eλsij=

sij =
ln

qij
pi pj

λ
which is the basic log-odds formula used to build 
substitution matrices.
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PhylogeneticPhylogenetic TreesTrees
Phylogenetic trees are a way of looking at the evolution
and divergence of sequences.

Gupta, R.S. (2000) FEMS Microbiology Reviews, v.24, p. 367-402.
2004 by Scott C.-H. Peggc

PhylogeneticPhylogenetic TreesTrees
We already know of one method to make trees.

x1
x2

x3 x4

d1
d2

d3 d4

d5
d6

Agglomerative hierarchical clustering algorithms.
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ParsimonyParsimony

1. Unusual or excessive frugality; extreme economy or 
stinginess

2. Adoption of the simplest assumption in the 
formulation of a theory or in the interpretation of 
data

American Heritage Dictionary, 3rd edition

Choose the tree that requires the minimum number of
substitutions
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ParsimonyParsimony

Each site in the sequence is treated independently

1 1
2

00

Say we have sequences AAA, AAB, ABA, and BBA

0
AAA

AAA AAA

AAB ABA

AAA

BBA

1
0

0

1
0

1

AAA
AAA

ABA
AAB

AAA

BBA
ABA

4 substitutions 3 substitutions

Cost of a tree is the sum of the substitutions
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Parsimony MethodParsimony Method
We can break the parsimony method into two parts

1. Computing the cost of a given tree
2. Searching the set of all possible trees to find the

one with the minimum cost 

When considering the cost of a tree, we can use the
cost of a substitution, S(a,b), instead of just counting
the number of substitutions.

weighted parsimony
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Cost of a Parsimony TreeCost of a Parsimony Tree
We start with n sequences, each of length L.

We calculate the minimum cost of a tree by summing the 
minimum cost at each site of the sequences,

Cost of tree  = Σ
u = 1

L
cost of tree at position u

We’re given a tree with a topology and an assignment
of sequences to the n leaves.

?

AAB ABA

but we don’t know the 
Intermediate sequences
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Cost of a Parsimony TreeCost of a Parsimony Tree
We can compute the minimum cost at site u via a 
recursive algorithm 

Let Sk(a) = the minimum cost of assigning symbol a
to node k at site u

Step 1: Set k = 2n – 1  (the root node)

Step 2: Compute the cost Sk(a) for all a

?

AAB ABA

but we don’t know the 
Intermediate sequences
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Cost of a Parsimony TreeCost of a Parsimony Tree
A node k is either a leaf node or a branching node 

If k is a leaf node,

k
k

i j
x0…xu…xL

Sk(a) = 0   if  a = xu

Sk(a) =       otherwise

If k is a branching node,
Sk(a) = min (Si(b) + S(a,b)) + min (Sj(b) + S(a,b))

8

k

b b
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Cost of a Parsimony TreeCost of a Parsimony Tree

k
k

i j
x0…xu…xL

While k starts at the root, we must calculate the minimum 
costs for all children i and j first

so we’re really working from the bottom up.

post-order traversal

Sk(a) = min (Si(b) + S(a,b)) + min (Sj(b) + S(a,b))
b b
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Cost of a Parsimony TreeCost of a Parsimony Tree
The minimum cost for site u is

min S2n-1(a)

Step 3:

a

The minimum cost of the entire tree is the sum of the 
minimum costs for each site (position in the sequence)

min S2n-1(a)
aΣ

u
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Parsimony MethodParsimony Method
Now that we know how to find the cost of a given tree,
we want to find the tree with the minimum cost. 

For n sequences, there are a lot of trees 

A

B

C

how many choices do I have to add
a new edge to a binary tree?

A
B

C

D
now how many?

3   5   …   (2n-5). . .
3   5   …   (2n-3) for rooted . . .

O(n!)
2004 by Scott C.-H. Peggc

Parsimony MethodParsimony Method
Finding the optimal tree is known to be NP-complete. 

One strategy is to use a branch-and-bound algorithm. 

Build trees systematically, but abandon the construction 
of a tree when adding one more node would exceed the 
cost of the cheapest tree already constructed.

Basic idea:

Clever starting trees and enumeration can help. 

Guarantees the optimal tree, but often runs too slowly 
for use large numbers of sequences.
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The Probabilistic ApproachThe Probabilistic Approach
What we ultimate want to compute is P(X | T,D)

where X = the set of sequences
T = the tree topology
D = the lengths (distances) of the edges

Or, in the Bayesian view, P(T,D | X)

We start by defining

P(x | y, d)  =  the probability that sequence y changes
to sequence x along an edge length d

Assuming independence of the nodes, P(X | T,D) is the
product of P(x | y, d) for each node.
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The Probabilistic ApproachThe Probabilistic Approach

We don’t know x3 exactly, so we have sum over all
possible x3’s,

x3

x1 x2

d1 d2

P(x1,x2,x3 | T,D) = P(x1 | x3, d1) P(x2 | x3, d2) P(x3) 

P(x1,x2 | T,D) =       P(x1 | x3, d1) P(x2 | x3, d2) P(x3) Σ
x3
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The Probabilistic ApproachThe Probabilistic Approach
Given that we can calculate P(x | y, d), we can calculate 
the likelihood of a given tree.

We now want to choose the tree with the highest value 
of this likelihood.
This requires searching over two spaces simultaneously

1. All possible topologies T
2. For each topology, all possible edge lengths D 

We can search topologies using brand-and-bound.
We can search edge lengths using a variety of 
optimization methods.
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The Probabilistic ApproachThe Probabilistic Approach
We can search both at once by using sampling methods.

Basic idea:

Sample randomly from the space of all possible trees
according to the posterior distribution

P(T,D | X)  =  
P(X | T,D) P(T,D)

P(X)

The frequency of properties in the sample will converge
to the posterior probability as the number of samples 
increases.
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Metropolis MethodMetropolis Method
Here’s an adaptation of the Metropolis method by Mau 
et. al. 

Given: A procedure f that will generate a tree (T, D) 
randomly when given tree (T, D) as input by sampling 
from a proposed distribution.

Let  P1 = P(T,D | X)  and  P2 = P(T,D | X) 

~ ~

~ ~

Step 1: Build a random tree (T, D) and calculate P1

Step 2: Build a new tree f(T, D) = (T, D) and calculate P2
~ ~
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Metropolis MethodMetropolis Method

Accept the new tree if P2 > P1Step 3:

If  P2 < P1 , accept P2 with probability 
P2

P1

If  P2 is accepted, it represents a sampled tree.
Otherwise, P1 represents a sampled tree.

If an appropriate number of samples have been 
taken, stop.
Else, go to Step 2.

Step 4:
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The Probabilistic ApproachThe Probabilistic Approach
Any probabilistic approach requires that we can calculate 
P(X | T, D).  

This requires an ability to calculate P(x | y, d).

P(X | T, D)  = P(x | y, d)Π
nodes

We start by making some assumptions:

1. Evolution works only via substitutions.
2. Substitutions at each site in a sequence are independent.
3. Substitutions follow a first-order Markov process.
4. The Markov process is identical at each site.
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The Probabilistic ApproachThe Probabilistic Approach
Our assumptions allow us to compute   

P(x | y, d)  =   P(xu | yu, d)Π
u = 1

L

a

x1 x2

d1 d2

P(xu
1, xu

2, au | T, d1, d2) = P(xu
1 | au, d1) P(xu

2 | au, d2) P(au)
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The Probabilistic ApproachThe Probabilistic Approach

P(xu
1, xu

2 | T, d1, d2)  =        qa P(xu
1 | au, d1) P(xu

2 | au, d2)Σ
a

We don’t know the sequence of a exactly, so we sum 
over all possibilities   

and calculate the likelihood of the tree as

P(x1, x2 | T, d1, d2)  =         P(xu
1, xu

2 | T, d1, d2) Π
u = 1

L

This is usually done using a recursive algorithm very 
similar to the one used in parsimony cost evaluation.
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The Probabilistic ApproachThe Probabilistic Approach

P(xu
1, xu

2 | T, d1, d2)  =        qa P(xu
1 | au, d1) P(xu

2 | au, d2)Σ
a

Note that we still have distances in our probability 
calculations.   

This requires probabilities of substitutions that depend 
on time. In general, we want   

P(a | c, t+s)  =      P(a | b, t) P(b | c, s)Σ
b

It also makes things a bit easier if   

P(a | b, t)  =  P(b | a, t)
2004 by Scott C.-H. Peggc



21

The Probabilistic ApproachThe Probabilistic Approach
So in general, we’d like to have an |A| x |A|  matrix of 
probabilities that’s symmetric, and for which

S(t + s)  =  S(t) S(s)

Where do we get one of these?

PAM (and other) matricies
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The Probabilistic ApproachThe Probabilistic Approach
We started by making some assumptions:

1. Evolution works only via substitutions.
2. Substitutions at each site in a sequence are independent.
3. Substitutions follow a first-order Markov process.
4. The Markov process is identical at each site.

Given what we know about the process of evolution, 
these assumptions seem pretty lousy. 

How can we relax them?
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The Probabilistic ApproachThe Probabilistic Approach

We can add a gap symbol to the alphabet to allow 
deletions and insertions.

1. Evolution works only via substitutions.

2. Substitutions at each site in a sequence are independent.

3. Substitutions follow a first-order Markov process.

4. The Markov process is identical at each site.

?

?

We could use a different scoring matrix at each site.
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PhylogeneticPhylogenetic TreesTrees
So now we’ve seen 3 different methods of creating 
a phylogenetic tree.
1. Distance methods (agg. hierarchical clustering)

2. Parsimony

3. Probabilistic methods (maximum likelihood, sampling)

Fastest of the three, so it’s good for lots of 
sequences, but can build incorrect topologies.

Includes assumptions about the evolutionary 
process to make better trees, but can be very slow.

ML is slow, but sampling methods can provide the 
likelihood of particular sub-topologies and distances 
in trees.
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TakeawayTakeaway

• Substitution matrices
PAM, Henikoff

• Significance of alignment scores
• Phylogenetic trees

parsimony, probabilistic methods
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