Hidden Markov Models

Scott Pegg, Ph.D.

BMI203 May 18, 2004

Where we're going today

- Probability notation \& theory
- Markov \& his chains
- What's a Hidden Markov Model?
- What does it have to do with biology?
- What can I do with one? How?
- I'm confused, where do I learn more?

Probability Theory

The Basics

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=\text { probability of event } \mathrm{A} \\
& \mathrm{P}(\mathrm{X}=\mathrm{x})=\text { probability of variable } X \text { having value } \mathrm{x} \\
& 0 \leqslant \mathrm{P}(\mathrm{X}) \leqslant 1
\end{aligned}
$$

Joint Probability

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~B})=\text { probability of event } \mathrm{A} \text { and } \mathrm{B} \text { occurring }
$$

Conditional Probability

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\text { probability of event A occurring, given } \\
\text { that B has already occurred }
\end{gathered}
$$

Probability Theory

Marginal Probability

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A}, \mathrm{~B})=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B}) \\
& \mathrm{P}(\mathrm{~A})=\sum_{\mathrm{B}} \mathrm{P}(\mathrm{~A}, \mathrm{~B})=\sum_{\mathrm{B}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})
\end{aligned}
$$

Bayes’ Theorem

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})}
$$

Markov who?

Andrei Andreyevich Markov 1856-1922
St. Petersburg, Russia

(e) 2004 Scott C.-H. Pegg

Markov Process

A process in which the state at time t depends upon the state at times $t-1, t-2, \ldots, t-k$

$$
\mathrm{k}^{\text {th }} \text { order Markov process }
$$

Most often, we're interested in a first order model aka 'Markov chain'

A set of states $\mathbf{S}=\left\{\mathbf{S}^{0}, S^{1}, \ldots, S^{N}\right\}$ such that

$$
P\left(S^{t+1} \mid S^{t}\right)=P\left(S^{t+1} \mid S^{0} S^{1} \ldots S^{t}\right)
$$

A first-order Markov process

PACIFIC	ATLANTIC
AVENUE	AVENUE

(S) $\mathrm{P}(H)=0.8 \quad \mathrm{P}(T)=0.2$
(S) $\mathrm{P}(H)=0.4 \quad \mathrm{P}(T)=0.6$
(M) $\mathrm{P}(H)=0.3 \quad \mathrm{P}(T)=0.7$
(M) $\mathrm{P}(H)=0.5 \quad \mathrm{P}(T)=0.5$

S	$\mathrm{P}(H)=0.8$	$\mathrm{P}(T)=0.2$
S	$\mathrm{P}(H)=0.4$	$\mathrm{P}(T)=0.6$
M	$\mathrm{P}(H)=0.3$	$\mathrm{P}(T)=0.7$
M	$\mathrm{P}(H)=0.5$	$\mathrm{P}(T)=0.5$

Markov Model

At the end of the game, I have a string of symbol observations

...THHTTHHTHTHHTHTHHTHT...

But I no longer remember what state (Monopoly property) each symbol was emitted from...

A "Hidden" Markov Model
(C) 2004 Scott C.-H. Pegg

HMMs in Biology

In biology, we often see strings of symbols
GCACCGTTAGGACAGGA
YLRNGYITSGYPLMFLHLL
And often in related groups
GCACCGTTAGGACAGGA GGACCATTACGGCGGCA CCAGCGTATCCGCAACA

We build HMMs which could generate them...

The easiest architecture is to have each column be a state.
(C) 2004 Scott C.-H. Pegg

	\mathbf{G}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
	\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{G}
	\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{G}
	\mathbf{G}	\mathbf{T}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{G}
	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{G}
	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
$\mathbf{C}(\mathbf{A})$	0	5	1	5	4	0
$\mathbf{C (T)}$	0	0	0	1	2	0
$\mathbf{C}(\mathbf{C})$	2	1	2	0	0	0
$\mathbf{C}(\mathbf{G})$	3	0	3	0	0	6

	\mathbf{G}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
	\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{G}
	\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{G}
	\mathbf{G}	\mathbf{T}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{G}
	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{G}
	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
$\mathrm{P}(\mathbf{A})$	0.00	0.83	0.16	0.83	0.66	0.00
$\mathbf{P}(\mathbf{T})$	0.00	0.00	0.00	0.16	0.33	0.00
$\mathbf{P}(\mathbf{C})$	0.33	0.16	0.33	0.00	0.00	0.00
$\mathbf{P}(\mathbf{G})$	0.66	0.00	0.50	0.00	0.00	1.00

\mathbf{G}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{G}
\mathbf{G}	\mathbf{T}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{G}
\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}

\mathbf{G}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{G}
\mathbf{G}	\mathbf{T}	-	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{C}	\mathbf{T}	-	\mathbf{A}	\mathbf{T}	\mathbf{G}
\mathbf{C}	\mathbf{T}	-	\mathbf{A}	\mathbf{A}	\mathbf{G}

What if there are gaps?
Does a gap represent an insertion or a deletion?

A typical bioinformatics HMM

(C) 2004 Scott C.-H. Pegg

Three Fundamental Questions

Given a sequence of symbols and a HMM,

1. What's the most probable sequence of transitions and emissions? 'decoding'
2. How likely is this sequence given the HMM? 'likelihood'
3. How should the transition and emission probabilities be updated?
'learning'

The 'decoding' question

What's the most probable sequence of transitions and emissions to produce the observed sequence of symbols?
The Viterbi algorithm
For any state at time t, there is only one most likely path to that state.

When calculating the transitions from this state to states at time $\mathrm{t}+1$, one can discard the less likely paths.
(C) 2004 Scott C.-H. Pegg

The Viterbi Algorithm

Let X be the sequence of symbols $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{L}}$
Let $v_{k}(\mathrm{i})=$ probability of the most probable path for sequence $x_{1} x_{2} \ldots x_{i}$ that ends in state k

state (k)	0 symbol index (i)					L
	1.0	$\nu_{0}(1)$				
	0.0					
	0.0					
	0.0					
	0.0					
S	0.0					$v_{\text {S }}(\mathrm{L})$

(C) 2004 Scott C.-H. Pegg

$$
v_{j}(\mathrm{i}+1)=\mathrm{e}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{i}+1}\right) \quad \max _{\mathrm{k} \text { in } \mathrm{S}}\left\{v_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{kj}}\right\}
$$

where

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)=\text { probability of emitting symbol } \mathrm{x}_{\mathrm{i}} \\
& \text { from state } \mathrm{j}
\end{aligned}
$$

THHTT
 012345

$$
\begin{array}{ll}
v_{\mathrm{j}}(\mathrm{i}+1)=\mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}+1}\right) & \max _{\mathrm{k} \text { in } \mathrm{s}}\left\{v_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{kj}}\right\} \\
v_{2}(1)=0.6 & (1.0 * 0.5)=0.3
\end{array}
$$

symbol index (i)
state (k)

	0	1	2	3	4	5
0	1.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.10	$\begin{array}{\|l\|l\|l\|} \hline 0.12 & -0.0672 & 0.0094080 .001317 \\ \hline 0.06 & 0.0144 & 0.012096 \\ \hline \end{array}$			
2	0.0	0.3				

(C) 2004 Scott C.-H. Pegg

The Viterbi Algorithm

At the end, one has the final probability of the sequence given the most probable path,

$$
\mathrm{P}\left(\mathbf{X} \mid \pi^{*}\right)=\max _{\mathrm{k} \text { in } \mathrm{S}}\left\{v_{\mathrm{k}}(\mathrm{~L}) \mathrm{a}_{\text {kend }}\right\}
$$

The most probable state path π^{*} is recovered by simply tracing back along saved state pointers.

But there's a computational issue here...

underflow errors
The solution is to convert probabilites to logarithms.
Step 1: $\quad v_{\text {start }}(0)=0$ for all other states $k, v_{k}(0)=-\infty$
Step 2: $\quad v_{\mathrm{j}}(\mathrm{i}+1)=\log \mathrm{e}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{i}+1}\right)+\max _{\mathrm{k} \text { in } \mathrm{s}}\left\{v_{\mathrm{k}}(\mathrm{i})+\log \mathrm{a}_{\mathrm{kj}}\right\}$
Step 3: $\quad S\left(\mathbf{X} \mid \pi^{*}\right)=\max _{\mathrm{kin} \mathrm{S}}\left\{v_{\mathrm{k}}(\mathrm{L})+\log \mathrm{a}_{\mathrm{kend}}\right\}$

The 'decoding' answer

So what does answering the 'decoding' question give us?
It assigns each observed symbol to a state

Aligning the states aligns the symbols

TLFA-GPG ELFAGGPC

States give gap information

The 'likelihood' Question

Given a sequence of symbols and a HMM, how likely is this sequence given the HMM?

Find all of the combinations of states (ie. paths) and emissions that could generate our sequence of symbols and calculate the sum of their probabilities.

But there are an exponential number of paths!
(C) 2004 Scott C.-H. Pegg

The 'forward' Algorithm

Given the sequence of symbols $\mathbf{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{L}}\right\}$, let $f_{k}(i)=$ the probability of having emitted the prefix $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}\right\}$ and reaching state k .

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{j}}(\mathrm{i}+1)=\mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}+1}\right) \sum_{\mathrm{k} \text { in }|\mathrm{S}|} \mathrm{f}_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{kj}} \\
& \mathrm{f}_{2}(1)=0.6(1.0(0.5)+0+0)=0.3
\end{aligned}
$$

symbol index (i)
state (k)

	0	1	2	3	4	5
0	1.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.10	0.176	0.1274	0.0214	0.0064
2	0.0	0.30	0.072	0.0355	0.0336	0.0139

The 'forward' Algorithm

At the end of the calculation,

$$
\begin{aligned}
\mathrm{P}(\mathbf{X}) & =\sum_{\mathrm{k} \text { in }|\mathbf{S}|} \mathrm{f}_{\mathrm{k}}(\mathrm{~L}) \mathrm{a}_{\text {kend }} \\
= & =\begin{array}{c}
\text { probability of the sequence being } \\
\text { produced by the model }
\end{array}
\end{aligned}
$$

The 'backward' Algorithm

Given the sequence of symbols $\mathbf{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{L}}\right\}$, let $\mathrm{b}_{\mathrm{k}}(\mathrm{i})=$ the probability of having emitted the suffix $\left\{\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{\mathrm{L}}\right\}$ and reaching state k .

(C) 2004 Scott C.-H. Pegg

The 'backward' Algorithm

Fill in the table backwards, using the recurrence relation

$$
\mathrm{b}_{\mathrm{j}}(\mathrm{i})=\sum_{\mathrm{k} \text { in }|\mathrm{S}|} \mathrm{a}_{\mathrm{jk}} \mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{b}_{\mathrm{k}}(\mathrm{i}+1)
$$

At the end

$$
\mathrm{P}(\mathbf{X})=\sum_{\mathrm{k} \text { in }|\mathbf{S}|} \mathrm{a}_{\text {start k }} \mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{1}\right) \mathrm{b}_{\mathrm{k}}(1)
$$

$=$ probability of the sequence being produced by the model

Which way do I go?

For $\mathrm{P}(\mathbf{X})$, you can go forward or backward.
Sometimes, however, you want to know which state was the most likely to have produced any given symbol. To figure this out, we go both ways.

We want to know
$\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathbf{X}\right)=$ the probability of state i being k given

the sequence of symbols \mathbf{X}

Matching a symbol with a state

We start by breaking $\mathrm{P}\left(\mathbf{X}, \pi_{\mathrm{i}}=\mathrm{k}\right)$ into two parts,

$$
\begin{aligned}
& \mathrm{P}\left(\mathbf{X}, \pi_{\mathrm{i}}=\mathrm{k}\right)=\underbrace{\mathrm{P}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right)}_{\text {front }} \underbrace{\mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{L}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right)}_{\text {back }} \\
&=\quad \mathrm{f}_{\mathrm{k}}(\mathrm{i}) \quad . \\
& \mathrm{b}_{\mathrm{k}}(\mathrm{i})
\end{aligned}
$$

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathbf{X}\right)=\frac{\mathrm{P}\left(\mathbf{X}, \pi_{\mathrm{i}}=\mathrm{k}\right)}{\mathrm{P}(\mathbf{X})}=\frac{\mathrm{f}_{\mathrm{k}}(\mathrm{i}) \mathrm{b}_{\mathrm{k}}(\mathrm{i})}{\mathrm{P}(\mathbf{X})}
$$

Underflow Problems Again

Once again we've got a potential underflow problem.
This time, however, we can't just convert to Logs.

$$
f_{j}(i+1)=e_{j}\left(x_{i+1}\right) \sum_{j \text { in }|S|} f_{k}(i) a_{k j}
$$

Instead we scale the values,

$$
\tilde{f}_{\mathrm{j}}(\mathrm{i})=\frac{\mathrm{f}_{\mathrm{j}}(\mathrm{i})}{\prod_{\mathrm{n}=1}^{\mathrm{i}} \mathrm{~s}_{\mathrm{n}}}
$$

Scaling

The iteration equations become

$$
\begin{aligned}
& \tilde{f}_{j}(i+1)=\frac{1}{S_{i+1}} e_{k}\left(x_{i+1}\right) \sum_{j \text { in }|S|} \tilde{\mathrm{f}}_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{kj}} \\
& \tilde{\mathrm{~b}}_{\mathrm{j}}(\mathrm{i}+1)=\frac{1}{\mathrm{~S}_{\mathrm{i}}} \sum_{\mathrm{j} \text { in }|\mathrm{S}|} a_{\mathrm{kj}} \tilde{\mathrm{~b}}_{\mathrm{k}}(\mathrm{i}) \mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}+1}\right)
\end{aligned}
$$

How do we choose S_{i} ?
Such that $\sum_{\mathrm{j}} \mathrm{f}_{\mathrm{j}}(\mathrm{i})=1$
so $\quad s_{i+1}=\sum_{j} e_{j}\left(x_{i+1}\right) \sum_{k} f_{k}(i) a_{k j}$

The 'likelihood' answer

So what does answering the 'likelihood' question give us?
It tells us how well our observed sequence fits our model.

When the HMM is trained on a set of homologous sequences, the likelihood is a measure of whether our new sequence belongs to this family of sequences.

So how do we train an HMM on a set of sequences?

The 'learning' question

How should the transition and emission probabilities be updated given new sequences of symbols?

We are given n sequences $\left\{\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \ldots, \mathbf{X}^{(\mathrm{n})}\right\}$

$$
\text { of lengths } L^{(1)}, L^{(2)}, \ldots, L^{(n)}
$$

which were generated from $\mathrm{HMM} \mathrm{M}(\Psi, \mathbf{S}, \theta)$.

We want to assign values to θ that maximize the probabilities of our sequences given the model.

The 'learning' question

Since the sequences are assumed to have been generated independently,

$$
\mathrm{P}\left(\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\mathrm{n})} \mid \theta\right)=\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathbf{X}^{(\mathrm{i})} \mid \theta\right)
$$

We're multiplying small numbers again...

$$
\text { Score } \begin{aligned}
\left(\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\mathrm{n})} \mid \theta\right) & =\log \mathrm{P}\left(\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\mathrm{n})} \mid \theta\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} \log \mathrm{P}\left(\mathbf{X}^{(\mathrm{i})} \mid \theta\right)
\end{aligned}
$$

Our goal is to find θ^{*} such that

$$
\theta^{*}=\underset{\theta}{\operatorname{argmax}}\left\{\operatorname{Score}\left(\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\mathrm{n})} \mid \theta\right)\right\}
$$

Maximum Likelihood Estimators

Say we know the state sequences $\Pi^{(1)}, \ldots, \Pi^{(n)}$ for each sequence of symbols $\mathbf{X}^{(1)}, \ldots \mathbf{X}^{(n)}$.

We can simply count

$$
\begin{aligned}
& A_{k j}=\# \text { of transitions from state } k \text { to state } j \\
& E_{k}(b)= \# \text { of times symbol } b \text { was emitted from } \\
& \text { state } k
\end{aligned}
$$

Our Maximum Likelihood Estimators are then

$$
a_{k j}=\frac{A_{k j}}{\sum_{\mathrm{q} \text { in } \mathrm{S}} \mathrm{~A}_{\mathrm{kq}}} \quad \mathrm{e}_{\mathrm{k}}(\mathrm{~b})=\frac{\mathrm{E}_{\mathrm{k}}(\mathrm{~b})}{\sum_{\sigma \text { in } \Psi} \mathrm{E}_{\mathrm{k}}(\sigma)}
$$

Maximum Likelihood Estimators

But there's a potential problem here...

$$
\mathrm{a}_{\mathrm{kj}}=\frac{\mathrm{A}_{\mathrm{kj}}}{\sum_{\mathrm{q} \text { in } \mathrm{S}} \mathrm{~A}_{\mathrm{kq}}} \quad \mathrm{e}_{\mathrm{k}}(\mathrm{~b})=\frac{\mathrm{E}_{\mathrm{k}}(\mathrm{~b})}{\sum_{\sigma \text { in } \Psi} \mathrm{E}_{\mathrm{k}}(\sigma)}
$$

possible zero denominators (especially when the number of sequences is small).

Laplace Correction

$$
\begin{aligned}
& A_{k j}^{\prime}=A_{k j}+r_{k j} \\
& E_{k}^{\prime}(b)=E_{k}(b)+r_{k}(b)
\end{aligned}
$$

Where r_{kj} and $\mathrm{r}_{\mathrm{k}}(\mathrm{b})=1$
(or contain a priori knowledge)
(C) 2004 Scott C.-H. Pegg

The Baum-Welch Algorithm

What if we don't know the state sequences?
In this case, finding the optimal parameter values $\left(\theta^{*}\right)$ is NP-complete

But we can use an iterative algorithm to get close... Step 1: Assign initial values to θ

The Baum-Welch Algorithm

Step 2a: Compute the expected number of transitions from state k to state j

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \pi_{\mathrm{i}+1}=\mathrm{j} \mid \mathbf{X}, \theta\right)=\frac{\mathrm{f}_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{kj}} \mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{b}_{\mathrm{j}}(\mathrm{i}+1)}{\mathrm{P}(\mathrm{X})}
$$

so the expected value is

$$
\begin{aligned}
& A_{k j}= \sum_{h=1}^{n}\left[\frac{1}{P\left(X^{(h)}\right)} \sum_{i=1}^{L^{(h)}} f_{k}^{(h)}(i) a_{k j} e_{j}\left(x_{i+1}^{(h)}\right) b_{j}^{(h)}(i+1)\right] \\
& \mathrm{n}=\text { number of sequences in } \mathbf{X} \\
& L=\text { length of sequence } X^{(h)}
\end{aligned}
$$

The Baum-Welch Algorithm

Step 2b: Compute the expected number of emissions of symbol b from state k

$$
\mathrm{E}_{\mathrm{k}}(\mathrm{~b})=\sum_{\mathrm{h}=1}^{\mathrm{n}}\left[\frac{1}{\mathrm{P}\left(\mathrm{X}^{(\mathrm{h})}\right)} \sum_{\mathrm{i} \mid \mathrm{X}_{\mathrm{i}}^{(\mathrm{h})}=\mathrm{b}} \mathrm{f}_{\mathrm{k}}^{(\mathrm{h})}(\mathrm{i}) \mathrm{b}_{\mathrm{k}}^{(\mathrm{h})}(\mathrm{i})\right]
$$

Step 3: Recalculate a_{kj} and e_{k} (b) using the values of A_{kj} and $\mathrm{E}_{\mathrm{k}}(\mathrm{b})$ using the maximum likelihood estimators.

The Baum-Welch Algorithm

Step 4: Calculate

$$
\operatorname{Score}\left(\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\mathrm{n})} \mid \theta\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \log \mathrm{P}\left(\mathbf{X}^{(\mathrm{i})} \mid \theta\right)
$$

If the improvement is less than some threshold t, then stop. Else, go back to step 2.

We're guaranteed to converge, since the function is monotonically increasing and the logs of probabilities are bounded by zero.
There's no guarantee, however, of finding the global maximum, so in general you repeat several times with different initial values of θ.
(C) 2004 Scott C.-H. Pegg

Choosing initial parameter values

\mathbf{G}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{G}
\mathbf{G}	\mathbf{T}	-	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{C}	\mathbf{T}	-	\mathbf{A}	\mathbf{T}	\mathbf{G}
\mathbf{C}	\mathbf{T}	-	\mathbf{A}	\mathbf{A}	\mathbf{G}

How do I account for unobserved symbols?

Choosing initial parameter values

We can add a pseudocount
$\begin{aligned} & \text { Laplace } \\ & \text { Correction }\end{aligned} \quad \mathrm{A}_{\mathrm{kj}}^{\prime}=\mathrm{A}_{\mathrm{kj}}+\mathrm{r}_{\mathrm{kj}}$

Or we can assume there's a background probability for each symbol.

Where can we get these probabilities?
Substitution matrix
This implies that all columns of the alignment come from the same distribution.

\mathbf{G}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{G}
\mathbf{G}	\mathbf{T}	-	\mathbf{A}	\mathbf{A}	\mathbf{G}
\mathbf{C}	\mathbf{T}	-	\mathbf{A}	\mathbf{T}	\mathbf{G}
\mathbf{C}	\mathbf{T}	-	\mathbf{A}	\mathbf{A}	\mathbf{G}

A better method is to consider each column as having been generated from a distribution of symbols

Dirichlet mixtures

[^0]
HMM architecture

How do we choose the state architecture in the first place? Use what's intuitive and what's worked

Algorithms to 'learn' the architecture exist

Slow

Unclear if they find an optimal structure

A typical bioinformatics HMM

HMM architecture variants

Baldi \& Brunak, Bioinformatics: The Machine Learning Approach, MIT Press, 1998

HMM architecture variants

HMMs in Bioinformatics

Sequence classification
Remote homology detection
Multiple sequence alignment
General pattern recognition

Benefits \& Limitations

What are the benefits to using HMMs?
Solid basis in probability theory
Relatively fast algorithms
Multiple uses
Can be made modular
What are the limitations when using HMMs?
Need examples to train the model
First order approximation may miss long-range interactions

Some HMM Packages

HMMR \& Pfam - Sean Eddy (Sanger Centre)
HMMR is an HMM package
Pfam is a curated database of HMMs trained on protein domains

SAM - David Haussler (U.C. Santa Cruz)
SAM = Sequence Alignment and Modelling System
HMMpro - Baldi \& Chauvin (NetID, Inc.)

Takeaway

- Basic Probability Theory
- Markov Chains
- Hidden Markov Models
- 3 basic questions of HMMs

Decoding - Viterbi
Likelihood - forward \& backward
Learning - Baum-Welch

- Uses, costs \& benefits of using HMMs

Some HMM References

Rabiner, L.R. "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. IEEE, Vol. 77, pp. 257-286, 1989

Krogh, A., M. Brown, I.S. Mian, K. Sjolander, and D. Haussler. "Hidden Markov Models in Computational Biology: Applications to Protein Modeling," J. Mol. Biol., Vol. 235, pp.1501-1531, 1994

Durbin, R., S. Eddy, A. Krogh, G. Mitchison. Biological Sequence Analysis. Cambridge U. Press, 1998

Baldi \& Brunak, Bioinformatics: The Machine Learning Approach, MIT Press, 1998

[^0]: Brown, Hughey, Krogh, Mian, Sjolander, \& Haussler (1993) "Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families", ISMB93
 http://citeseer.ist.psu.edu/brown93using.html

