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Where we’re going todayWhere we’re going today

• Probability notation & theory
• Markov & his chains
• What’s a Hidden Markov Model?
• What does it have to do with biology?
• What can I do with one? How?
• I’m confused, where do I learn more?
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Probability TheoryProbability Theory

P(A) = probability of event A 
P(X=x) = probability of variable X having value x 

P(A | B) = probability of event A occurring, given
that B has already occurred 

0 < P(X) < 1

Conditional Probability

P(A, B) = probability of event A and B occurring 

Joint Probability

The Basics
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Probability TheoryProbability Theory

P(A,B) = P(A|B) P(B) 

Marginal Probability

P(A) =       P(A,B)  =       P(A|B) P(B)Σ
B

Σ
B

P(A|B)  =

Bayes’ Theorem

P(B|A) P(A)

P(B)
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Markov who?Markov who?

Andrei Andreyevich Markov
1856 - 1922

St. Petersburg, Russia

Grigory Yefimovich Rasputin 
1871 - 1916

St. Petersburg, Russia
c 2004 Scott C.-H. Pegg

A set of states S = {S0,S1, …, SN}
such that

P(St+1| St) = P(St+1|S0S1…St)

Markov ProcessMarkov Process
A process in which the state at time t depends 
upon the state at times t-1, t-2,…, t-k

aka ‘Markov chain’ 

kth order Markov process
Most often, we’re interested in a first order model
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A firstA first--order Markov processorder Markov process

c 2004 Scott C.-H. Pegg

Start on a property
Flip that property’s ‘S’ coin, record the result
Flip that property’s ‘M’ coin,

If the result is “heads”, move to other property
If the result is “tails”, stay in current property

repeat
until
bored
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P(H) = 0.8     P(T) = 0.2

P(H) = 0.5     P(T) = 0.5

P(H) = 0.3     P(T) = 0.7

P(H) = 0.4     P(T) = 0.6
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H - 0.8
T - 0.2

H - 0.4
T - 0.6

0.3

0.5

0.7 0.5

Markov Model

P(H) = 0.8     P(T) = 0.2

P(H) = 0.5     P(T) = 0.5

P(H) = 0.3     P(T) = 0.7

P(H) = 0.4     P(T) = 0.6
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At the end of the game, I have a string of symbol observations

But I no longer remember what state (Monopoly property) each 
symbol was emitted from…

A “Hidden” Markov Model

...THHTTHHTHTHHTHTHHTHT...

H - 0.8
T - 0.2

H - 0.4
T - 0.6

0.3

0.5

0.7 0.5
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HMMs HMMs in Biologyin Biology
In biology, we often see strings of symbols

GCACCGTTAGGACAGGA

YLRNGYITSGYPLMFLHLL

And often in related groups

GCACCGTTAGGACAGGA
GGACCATTACGGCGGCA
CCAGCGTATCCGCAACA

We build HMMs which could generate them...
c 2004 Scott C.-H. Pegg



7

GAAGTC
GTAGTC
GAAATG
GTTCCG
GAACTG
GAAGTG

The easiest architecture is to have each column be a state.

1.01.0 1.0 1.0 1.0 1.0 1.0
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600303C(G)
000212C(C)
021000C(T)
045150C(A)

GAAGTC
GTAGTC
GAAATG
GTTCCG
GAACTG
GAAGTG
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1.000.000.000.500.000.66P(G)
0.000.000.000.330.160.33P(C)
0.000.330.160.000.000.00P(T)
0.000.660.830.160.830.00P(A)

GAAGTC
GTAGTC
GAAATG
GTTCCG
GAACTG
GAAGTG
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GAAGTC
GTAGTC
GAAATG
GTTCCG
GAACTG
GAAGTG

1.01.0 1.0 1.0 1.0 1.0 1.0A 0.00
T 0.00
C 0.33
G 0.66

A 0.00
T 0.00
C 0.33
G 0.66

A 0.00
T 0.00
C 0.33
G 0.66

A 0.00
T 0.00
C 0.33
G 0.66

A 0.00
T 0.00
C 0.33
G 0.66

A 0.00
T 0.00
C 0.33
G 0.66
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GAA-TC
GTA-TC
GAA-TG
GTTCCG
GAACTG
GAAGTG

What if there are gaps?

Does a gap represent an insertion or a deletion?
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GAA-TC
GTA-TC
GAA-TG
GTTCCG
GAACTG
GAAGTG

A 0.00
T 0.00
C 0.66
G 0.33

A 0.25
T 0.25
C 0.25
G 0.25

-- 1.00 delete state

match state

insert state

Instead of one state per
column, we now have
three!
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A typical A typical bioinformaticsbioinformatics HMMHMM

S Em

i

d
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Three Fundamental QuestionsThree Fundamental Questions
Given a sequence of symbols and a HMM,

2. How likely is this sequence given the HMM?

1. What’s the most probable sequence of transitions
and emissions?

3. How should the transition and emission probabilities
be updated?

‘likelihood’

‘decoding’

‘learning’

c 2004 Scott C.-H. Pegg
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New York

St. Louis

San Francisco

The ‘decoding’ questionThe ‘decoding’ question
What’s the most probable sequence of transitions and 
emissions to produce the observed sequence of symbols?

The Viterbi algorithm

For any state at time t, there is only one most likely path to that state.

When calculating the transitions from this state to states at time t+1, 
one can discard the less likely paths.

c 2004 Scott C.-H. Pegg

S E

c 2004 Scott C.-H. Pegg
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The The Viterbi Viterbi AlgorithmAlgorithm
Let X be the sequence of symbols  x1x2…xL

Let vk(i) = probability of the most probable path for 
sequence x1x2…xi that ends in state k

symbol index (i)

state (k)

0 L
0

S

1.0

0.0

0.0

0.0

0.0

0.0

v0(1)

vS(L)
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vj(i+1) = ej(xi+1)   maxk in S{vk(i) akj}

where 
ej(xi) = probability of emitting symbol xi

from state j
akj = probability of a transition from state k 

to state j

symbol index (i)

state (k)

0 L
0

S

1.0

0.0

0.0

0.0

0.0

0.0

Viterbi path

c 2004 Scott C.-H. Pegg
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symbol index (i)

state (k)

0 1

0

1

2

H - 0.8
T - 0.2

H - 0.4
T - 0.6

0.3

0.5
0.7 0.5

start

state 1 state 2

0.50.5

THHTT

2 3 4 5

0  1  2   3  4  5

1.0

0.0

0.0

vj(i+1) = ej(xi+1)   maxk in S{vk(i) akj}

0.0

v1(1)   =   0.2             (1.0 * 0.5)       =    0.1

0.10

v2(1)   =   0.6             (1.0 * 0.5)       =    0.3

0.30

0.0 0.0 0.0 0.0

0.12

0.06

0.0672

0.0144

0.009408

0.012096

0.001317

0.003629
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The The Viterbi Viterbi AlgorithmAlgorithm
At the end, one has the final probability of the sequence
given the most probable path,

P(X|π*) = maxk in S {vk(L) akend}

The most probable state path π* is recovered by simply 
tracing back along saved state pointers.

c 2004 Scott C.-H. Pegg
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But there’s a computational issue here…

underflow errors
The solution is to convert probabilites to logarithms.

vj(i+1) = Log ej(xi+1) + maxk in S{vk(i) + Log akj}

vstart(0) = 0 for all other states k, vk(0) = - 8

S(X|π*) = maxk in S {vk(L) + Log akend}

Step 1:

Step 2:

Step 3:

symbol index (i)

state (k)

0 1

0

1

2

2 3 4 5

1.0

0.0

0.0

0.0

0.10

0.30

0.0 0.0 0.0 0.0

0.12

0.06

0.0672

0.0144

0.009408

0.012096

0.001317

0.003629
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The ‘decoding’ answerThe ‘decoding’ answer
So what does answering the ‘decoding’ question give us?

It assigns each observed symbol to a state

T L F A     G P G
E L F A G G P C

Aligning the states aligns the symbols

States give gap information

c 2004 Scott C.-H. Pegg
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The ‘likelihood’ QuestionThe ‘likelihood’ Question
Given a sequence of symbols and a HMM, how likely 
is this sequence given the HMM?

Find all of the combinations of states (ie. paths) and 
emissions that could generate our sequence of 
symbols and calculate the sum of their probabilities.

But there are an exponential number of paths!
c 2004 Scott C.-H. Pegg

The ‘forward’ AlgorithmThe ‘forward’ Algorithm
Given the sequence of symbols X = {x1, x2, …, xL},
let fk(i) = the probability of having emitted the prefix

{x1, x2, …, xi} and reaching state k.

symbol index (i)

state (k)

0 L
0

S

1.0

0.0

0.0

0.0

0.0

0.0

f0(1)

fS(L)

c 2004 Scott C.-H. Pegg
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symbol index (i)

state (k)

0 1

0

1

2

H - 0.8
T - 0.2

H - 0.4
T - 0.6

0.3

0.5
0.7 0.5

start

state 1 state 2

0.50.5

THHTT

2 3 4 5

0  1  2   3  4  5

1.0

0.0

0.0

0.0 0.0 0.0 0.0 0.0

fj(i+1) = ej(xi+1) Σ fk(i) akjk in |S|

0.10

f1(1) = 0.2 (1.0(0.5) + 0 + 0) = 0.1

0.30

f2(1) = 0.6 (1.0(0.5) + 0 + 0) = 0.3

0.176

0.072

0.1274

0.0355

0.0214

0.0336

0.0064

0.0139
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The ‘forward’ AlgorithmThe ‘forward’ Algorithm

P(X) = Σ fk(L) akendk in |S|

= probability of the sequence being  
produced by the model

At the end of the calculation, 

c 2004 Scott C.-H. Pegg
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The ‘backward’ AlgorithmThe ‘backward’ Algorithm
Given the sequence of symbols X = {x1, x2, …, xL},
let bk(i) = the probability of having emitted the suffix

{xi+1, xi+2, …, xL} and reaching state k.

symbol index (i)

state (k)

0 L
0

S

b0(0)

bS(L-1)

a0S

a1S

a2S

aSS

.

.

c 2004 Scott C.-H. Pegg

The ‘backward’ AlgorithmThe ‘backward’ Algorithm
Fill in the table backwards, using the recurrence relation

bj(i) = Σ ajk  ek(xi+1)  bk(i+1)
k in |S|

At the end

P(X) = Σ astart k  ek(x1) bk(1)
k in |S|

= probability of the sequence being  
produced by the model

c 2004 Scott C.-H. Pegg
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Which way do I go?Which way do I go?
For P(X), you can go forward or backward. 

Sometimes, however, you want to know which state 
was the most likely to have produced any given 
symbol. To figure this out, we go both ways.

We want to know 

P(πi=k | X) = the probability of state i being k given
the sequence of symbols X

c 2004 Scott C.-H. Pegg

Matching a symbol with a stateMatching a symbol with a state
We start by breaking P(X, πi=k) into two parts,

P(X, πi=k) = P(x1, … xi, πi=k)  P(xi+1, …, xL | πi=k) 

front back

=      fk(i)   bk(i)

P(πi=k | X)  = 
P(X, πi=k)

P(X)
=

fk(i) bk(i)

P(X)

c 2004 Scott C.-H. Pegg
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Πn=1

Underflow Problems AgainUnderflow Problems Again
Once again we’ve got a potential underflow problem.

This time, however, we can’t just convert to Logs.

fj(i+1) = ej(xi+1) Σ fk(i) akjj in |S|

Instead we scale the values,

fj(i)fj(i)  = 
~

i sn

c 2004 Scott C.-H. Pegg

ScalingScaling
The iteration equations become

fj(i+1)  =      ek(xi+1)  Σ fk(i) akj
~ ~

Si+1

1

bj(i+1)  =      Σ akj bk(i) ek(xi+1) 
~ ~

Si

1
j in |S|

j in |S|

How do we choose si?

Such that    Σ fj(i) = 1
j

so     si+1 =  Σ ej(xi+1) Σ fk(i) akjj k

c 2004 Scott C.-H. Pegg
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The ‘likelihood’ answerThe ‘likelihood’ answer

So what does answering the ‘likelihood’ question give us?

It tells us how well our observed sequence fits our model.

When the HMM is trained on a set of homologous 
sequences, the likelihood is a measure of whether our 
new sequence belongs to this family of sequences.

So how do we train an HMM on a set of sequences?

c 2004 Scott C.-H. Pegg

The ‘learning’ questionThe ‘learning’ question

How should the transition and emission probabilities
be updated given new sequences of symbols?

We are given n sequences {X(1), X(2), …, X(n)} 
of lengths L(1), L(2), …, L(n)

which were generated from HMM  M(Ψ, S, θ).

We want to assign values to θ that maximize the 
probabilities of our sequences given the model.

c 2004 Scott C.-H. Pegg



21

The ‘learning’ questionThe ‘learning’ question
Since the sequences are assumed to have been
generated independently, 

P(X(1),…, X(n) | θ)  =  Π P(X(i) | θ) 
i=1

n

We’re multiplying small numbers again…

Score (X(1),…, X(n) | θ)  = Log P(X(1),…, X(n) | θ) 

i=1

n
=  Σ Log P(X(i) | θ) 

Our goal is to find θ* such that
θ* = argmax { Score (X(1),…, X(n) | θ) }

θ c 2004 Scott C.-H. Pegg

Maximum Likelihood EstimatorsMaximum Likelihood Estimators
Say we know the state sequences Π(1), …, Π(n)

for each sequence of symbols X(1), … X(n).

We can simply count

Akj = # of transitions from state k to state j

Ek(b) = # of times symbol b was emitted from 
state k

Our Maximum Likelihood Estimators are then

akj = 
Akj

Σ Akqq in S

ek(b) =  
Ek(b)

Σ Ek(σ)
σ in Ψ

c 2004 Scott C.-H. Pegg
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Maximum Likelihood EstimatorsMaximum Likelihood Estimators
But there’s a potential problem here…

akj = 
Akj

Σ Akqq in S

ek(b) =  
Ek(b)

Σ Ek(σ)
σ in Ψ

possible zero denominators (especially when the 
number of sequences is small).

Laplace Correction

Akj = Akj + rkj

Ek(b) = Ek(b) + rk(b)

Where rkj and rk(b) = 1

(or contain a priori 
knowledge)

c 2004 Scott C.-H. Pegg

The BaumThe Baum--Welch AlgorithmWelch Algorithm

What if we don’t know the state sequences?

In this case, finding the optimal parameter 
values (θ∗) is NP-complete

But we can use an iterative algorithm to get close…

Step 1: Assign initial values to θ

c 2004 Scott C.-H. Pegg
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The BaumThe Baum--Welch AlgorithmWelch Algorithm
Step 2a: Compute the expected number of transitions 

from state k to state j

P(πi=k, πi+1=j | X, θ)  =
fk(i)  akj ej(xi+1)  bj(i+1)

P(X)

so the expected value is

Akj = Σ
h = 1

n 1
P(X(h)) Σ

i = 1

L(h)

f k  (i)  akj ej(xi+1)  bj   (i+1)(h) (h) (h)[ ]
n = number of sequences in X
L = length of sequence X(h)

c 2004 Scott C.-H. Pegg

The BaumThe Baum--Welch AlgorithmWelch Algorithm
Step 2b: Compute the expected number of emissions 

of symbol b from state k

Ek(b)  = Σ
h = 1

n 1
P(X(h)) Σ

i | Xi
(h) = b

f k  (i) bk   (i)
(h) (h)[ ]

Step 3: Recalculate akj and ek(b) using the values of 
Akj and Ek(b) using the maximum likelihood 
estimators.

c 2004 Scott C.-H. Pegg
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The BaumThe Baum--Welch AlgorithmWelch Algorithm
Step 4: Calculate 

Score (X(1),…, X(n) | θ)
i=1

n
=  Σ Log P(X(i) | θ) 

If the improvement is less than some threshold t, then 
stop.  Else, go back to step 2.

We’re guaranteed to converge, since the function is
monotonically increasing and the logs of probabilities
are bounded by zero.
There’s no guarantee, however, of finding the global
maximum, so in general you repeat several times with
different initial values of θ.

c 2004 Scott C.-H. Pegg

GAA-TC
GTA-TC
GAA-TG
GTTCCG
GAACTG
GAAGTG

How do I account for unobserved symbols?

Choosing initial parameter valuesChoosing initial parameter values

c 2004 Scott C.-H. Pegg
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Or we can assume there’s a background probability 
for each symbol.

Choosing initial parameter valuesChoosing initial parameter values

Where can we get these probabilities?

We can add a pseudocount
Laplace 
Correction

Akj = Akj + rkj

Substitution matrix

This implies that all columns of the alignment 
come from the same distribution.
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GAA-TC
GTA-TC
GAA-TG
GTTCCG
GAACTG
GAAGTG

A better method is to consider each column as
having been generated from a distribution of symbols

Dirichlet mixtures

Brown, Hughey, Krogh, Mian, Sjolander,  & Haussler (1993) “Using Dirichlet Mixture
Priors to Derive Hidden Markov Models for Protein Families”, ISMB93
http://citeseer.ist.psu.edu/brown93using.html

c 2004 Scott C.-H. Pegg
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HMM architectureHMM architecture

How do we choose the state architecture in the first place?
Use what’s intuitive and what’s worked

Algorithms to ‘learn’ the architecture exist

Slow

Unclear if they find an optimal structure

c 2004 Scott C.-H. Pegg

A typical A typical bioinformaticsbioinformatics HMMHMM

S Em

i

d
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HMM architecture variantsHMM architecture variants

Baldi & Brunak, Bioinformatics: The Machine Learning Approach, MIT Press, 1998
c 2004 Scott C.-H. Pegg

HMM architecture variantsHMM architecture variants

Classification HMM

start end

HMM ‘A’

HMM ‘B’

HMM ‘C’

c 2004 Scott C.-H. Pegg
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HMMs HMMs in in BioinformaticsBioinformatics

Sequence classification

Remote homology detection

Multiple sequence alignment

General pattern recognition

c 2004 Scott C.-H. Pegg

Benefits & LimitationsBenefits & Limitations
What are the benefits to using HMMs?

Solid basis in probability theory

Relatively fast algorithms

Multiple uses
Can be made modular

What are the limitations when using HMMs?

Need examples to train the model

First order approximation may miss long-range
interactions

c 2004 Scott C.-H. Pegg
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Some HMM PackagesSome HMM Packages

HMMR  &  Pfam   - Sean Eddy  (Sanger Centre)

SAM   - David Haussler (U.C. Santa Cruz)

HMMpro   - Baldi & Chauvin  (NetID, Inc.)

HMMR is an HMM package
Pfam is a curated database of HMMs trained on protein domains

SAM = Sequence Alignment and Modelling System

c 2004 Scott C.-H. Pegg

TakeawayTakeaway

• Basic Probability Theory
• Markov Chains
• Hidden Markov Models
• 3 basic questions of HMMs

Decoding    - Viterbi
Likelihood  - forward & backward
Learning     - Baum-Welch

• Uses, costs & benefits of using HMMs

c 2004 Scott C.-H. Pegg
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