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Outline

e Biology
e Basic Models

e Two Problems
— Motif Finding
— TF Binding Site Recognition



Biology

« Transcriptional regulation
— Mechanism to express genes as mRNA
— MRNA later becomes proteins
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TF Binding Sites
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Tiny

Highly Variable
~Constant Size
Often repeated
Low-complexity-ish



Motif vs. Binding site

* Binding site
— An Individual short sequence which the TF
binds onto

e Motif

— Represents all the possible sequences that
a TF can bind onto

— E.g. PWM, other models




Cconsensus Sequence

Simplest model, intuitive to understand
Represents the “average” sequence
e.g. CACCCA

Score of another sequence compared to
consensus = number of matches

Increase sophistication:
— IUPAC codes: R=Aor G, Y=CorT



Position Weight Matrix (PWM)

* For each position, state probability of each
nucleotide

e Columnssumto 1

e Score of test sequence = sum of values
corresponding to the correct letter for each
position
— CACCCA = .9+.8+.95+.8+.85+.8
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Representations compared
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12 Lambda cI and cro binding sites

Fig. 1. Some aligred seq and their seq logo. Atthe top of the figure are listed the

12 DNA secuences from the P and Py, control reglons in bacteriophage lambda. Thess are bound by
both the ¢l and cro proteins [16]. Each even ' 1 is the P of the pr

odd numbered seq The =seq logo, d ibed in detail in the text, is at the bottom of the

figure. The cosine wave is positioned to indicate that a minor groove faces the center of each
symmetrical protein. Data which support this assignment are given in reference [17].



Problem 1: Motif Finding

|

.

Given a collection of genes with common
expression,

Find the TF-binding motif in common



Essentially a Multiple Local
Alignment

* Find “best” multiple local alignment

 \Why can’t we use standard multiple
alignment algorithms?



Why?

e Experiments to determine TFBS are
time consuming and expensive

 However, plenty of data
— Microarrays, ChiP
— Experiments determining that “gene X is
responsive to transcription factor Y”
 Computational approaches to take
advantage of this data are cheaper, will
help understanding of transcriptional
regulation



Scope of problem

 Rapl binding site in yeast
— 6 bp core sequence CACCCA

— By chance, expect to see once very
45=4096 bases, or more if we allow
mismatches

— Could be as many as one CACCCA type
sequence in every gene, on average



State of the Art

* Most algorithms can handle finding
correct motifs in yeast

— ~1000 bases upstream
—~10 genes
e The goal: human

—~10,000 bases upstream
— ? genes



Exhaustive Search

« For all k-length sequences (4
— Consider this as potential consensus motif
— Compare against all k-mers in dataset

— Motif is good if many close matches in
dataset

o Advantage: finds “best” motif
« Disadvantage: slow — O(4¥)



Motif Finding algorithms

* Greedy search:
— CONSENSUS

e Expectation Maximization:
— MEME

e Gibbs Sampling:
— AlignACE, BioProspector



Gibbs sampling

Uses PWM as underlying model

Stochastic algorithm
— Multiple starting points

Relatively fast
Similar to EM, but easier to implement



Summary

Algorithm (sketch):

1. Initialization:
a. Select random locations in sequences x1, ..., xN
b. Compute an initial PWM from these locations

2. Sampling Iterations:
a. Remove one sequence X
Recalculate PWM

Pick a new location of site in X' using highest
scoring sequence according to PWM




Data

e Binding site responsive to a TF Is found
In all 5 sequences

—




Step 1: Initialize

e Create random PWM




Step 2: lterate

e Remove one seqguence




Step 2: lterate

 Generate PWM from remaining
sequences

o __ Create PWM




Step 2: lterate

« Slide window across removed seguence
to find best site that fits PWM

]
__ PWM




Step 2: lterate

« Keep best site and merge this with
remaining sites

]
—i




Step 3

* Repeat step 2 until convergence

e |Nntultion:

— You are more likely to see the real binding
site than random sites

— Once there’s one site in the motif, there’ll
be a strong preference for other real sites
to enter the motif (versus other random
seguences)



Greedy Motif Finder

* In order to explore problem more
carefully, we designed our own motif

finder

 Code separated into search algorithm
and scoring functions

— New methods and functions can be
plugged In easily



Scoring Function

e Don’t explicitly use a PWM or other
model

e |nstead:

— Count number of pairwise nucleotide
matches in a motif

— Prefer sequences that are unique (i.e. not
commonly found in genome as a whole)
* Or, prefer overrepresented but unique
seguences



Search Algorithm

e Greedy Search (similar to
CONSENSUS)

— Start with a pair of high scoring binding
sites

— Find other sites that look similar to current
motif

— Take the best site that maximizes score of
augmented motif and add to motif

— Repeat until motif size cutoff



Search Algorithm

e Obviously, resulting motif highly
dependent on Initial pair of sites chosen

e S0, try out lots of different sequences
pairs

* Highest scoring motif is the best motif



Straightforward method is Slow

 If there are n different potential binding
sites (~10,000)

« Just to find Initial sequences pairs, we
need to do n? comparisons (~100
million)



Optimization

» Precalculate pairwise comparisons

— S0 we can quickly ask, “What other binding
sites look similar to binding site x?”

— After precalculation, subsequent lookups
are constant time

e Pairwise comparison uses indexing, so
it takes O(n) instead of O(n?) time

— Small decrease In sensitivity



Indexing Approach

ACGT (251) ACGT (624)
Sequence A
ACGT (347) ACGT (478) AAAA (892)
Sequence B
Seq A Index Seq B Index ACGT Matches
AAAA AAAA =892 Seq A, 251 and Seq B, 347

ACGT =251, 624
ACTA

TTTT

ACGT =347,478
ACTA

TTTT

Seg A, 251 and Seq B, 478
Seq A, 624 and Seq B, 347
Seq A, 624 and Seq B, 478



current status

* Works Iin yeast

e Gunning for human

— scoring function
e background models (unigueness in genome)

— Other data
e comparative genomics



Problem 2: Binding Site
Recognition
* Definition
— Given true binding sites
— Identify other binding sites in test set

e \Why?

— Computational method to identify new
binding sites In genes not previously
considered



Standard approach

e Create a PWM from binding sites
« Run PWM across putative sites

* High scoring sequences are potential
binding sites



Limitations of PWM

* Independence between positions

— Choice of nucleotide in position x has no effect on
that of position y

— Can’t represent this: “If position 2 in the binding
site Is an A, then position 5 should be a G”

 Implicit background model
— What if a repetitive sequence scores highly?

e Does it matter? Is a PWM good enough?



Dependence between positions
|n blndlnu site

K12 Choford U Nucleic Acids Research, 2002, Vol. 30, No. 5 12551264

Nucleotides of transcription factor binding sites exert
interdependent effects on the binding affinities of
transcription factors

Martha L. Bulyk'Z, Philip L. F. Johnson? and George M. Church!2*

Harvard University Graduate Biophysics Program, Harvard Medical School, Boston, MA 02115, LISA,
"Harvard Medical School Department of Genetics, Alpert Building 514, 200 Longwood Avenue, Boston,
MA 02115, USA and *Harvard Collage, Cambridge, MA 02138, USA

Fecenved September 27, 2001 ; Revised and Accepied January 8, 2002

Show dependence between positions
— Use microarray binding experiment

— Enumerate central 3 bp of binding site of Zif268
zinc fingers

— Analyze binding affinities



New motif model

e Use a neural network instead of a PWM
— Three layer, fully connected

e |nputs
— Binding site sequence
— Other information?

e Output

— Value between 0-1 showing categorization
of binding site
» Closer to 1: yes, is a binding site
» Closer to 0: no, probably not



Binding site as Input
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For k-length sequence, 4k input nodes



Training Data

* Positive training data
— pre-curated binding sites

* Negative training data

— Random sequences drawn from the
genome

— Actual genomic data negates need for a
background model



Challenge

 How do we train network with small
number of positives but a large number
of negatives?

e Solution: Sample negatives, don't use
all of them

— Some negative seguences may provide
more value for the training of the network
(l.e. result In large errors)

— High value sequences should be exposed
to the ANN more often



Results

e Resultant neural net robust to choice of
parameters

 For small datasets, equivalent
performance compared to PWM

 For larger datasets, neural network
does better



Results
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Results
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Summary

Transcription regulation
Consensus sequences, PWMs
Motif Finding

— Gibbs Sampling

— My greedy search algorithm
Motif Recognition



