
BMI-203: Biocomputing Algorithms
Lecture 6: Optimization II Machine Learning

Ajay N. Jain, PhD
Associate Professor, Cancer Research 
Institute and Dept. of Laboratory 
Medicine

University of California, San Francisco

ajain@cc.ucsf.edu
http://jainlab.ucsf.edu

Copyright © 2004, Ajay N. Jain, All Rights 
Reserved



Outline
• Machine learning

– Machine learning is essentially optimization
– There is a twist though

• Machine learning methods and examples
– Symbolic versus numeric approaches
– K nearest neighbors: Example with gene expression
– Neural Networks: Examples with molecules
– Genetic Algorithms: Very brief description

– Good reference: Machine Learning, Tom M. Mitchell, 1997 
(McGraw-Hill)



Machine learning as optimization

• A machine learning task
– Given a set of training 

examples and a set of 
desired output values for 
each example

– Induce a function that 
correctly maps the 
training examples to the 
desired output values

• The function induction 
generally involves some 
form of optimization: 
estimation of the 
parameters of the 
function

• What’s the catch?
– We don’t really care how well we 

can do on the training set
– That’s because if we have a 

consistent set of examples and 
outputs (no identical examples 
mapped to different outputs), we 
can always find a perfect 
mapping function

– We really only care about the 
performance of the induced 
function on new examples

– We must consider the 
expressive power and inductive 
bias of the learning system



Machine Learning: Optimization, but we’ve got to 
choose the function and optimization method

• Inductive bias
– What types of solutions 

are your function and 
optimization scheme 
going to learn?

– By making different 
choices of function or 
optimization method, 
we can make a 
significant impact on 
whether the bias of the 
learning system is well 
suited to producing 
good generalization

• Expressive power
– If we choose a functional 

form that can express a 
large space of complex 
functions, we may be able 
to fit the training data 
without any generalization

– Typically, a function that 
has many parameters to 
estimate will be more 
expressive than one with 
fewer parameters



Representation of input data can have a big 
impact on your function and on inductive bias

AA sequence of Human TrypsinAA sequence of Human Trypsin

MNPLLILTFV AAALAAPFDD DDKIVGGYNC EENSVPYQVS LNSGYHFCGG SLINEQWVVS
AGHCYKSRIQ VRLGEHNIEV LEGNEQFINA AKIIRHPQYD RKTLNNDIML IKLSSRAVIN
ARVSTISLPT APPATGTKCL ISGWGNTASS GADYPDELQC LDAPVLSQAK CEASYPGKIT
SNMFCVGFLE GGKDSCQGDS GGPVVCNGQL QGVVSWGDGC AQKNKPGVYT KVYNYVKWIK
NTIAANS

DNA sequence of Human TrypsinDNA sequence of Human Trypsin

3D structure of Human Trypsin3D structure of Human Trypsin

ACCACCATGA ATCCACTCCT GATCCTTACC TTTGTGGCAG CTGCTCTTGC TGCCCCCTTT    
GATGATGATG ACAAGATCGT TGGGGGCTAC AACTGTGAGG AGAATTCTGT CCCCTACCAG    
GTGTCCCTGA ATTCTGGCTA CCACTTCTGT GGTGGCTCCC TCATCAACGA ACAGTGGGTG    
GTATCAGCAG GCCACTGCTA CAAGTCCCGC ATCCAGGTGA GACTGGGAGA GCACAACATC    
GAAGTCCTGG AGGGGAATGA GCAGTTCATC AATGCAGCCA AGATCATCCG CCACCCCCAA    
TACGACAGGA AGACTCTGAA CAATGACATC ATGTTAATCA AGCTCTCCTC ACGTGCAGTA    
ATCAACGCCC GCGTGTCCAC CATCTCTCTG CCCACCGCCC CTCCAGCCAC TGGCACGAAG    
TGCCTCATCT CTGGCTGGGG CAACACTGCG AGCTCTGGCG CCGACTACCC AGACGAGCTG    
CAGTGCCTGG ATGCTCCTGT GCTGAGCCAG GCTAAGTGTG AAGCCTCCTA CCCTGGAAAG    
ATTACCAGCA ACATGTTCTG TGTGGGCTTC CTTGAGGGAG GCAAGGATTC ATGTCAGGGT    
GATTCTGGTG GCCCTGTGGT CTGCAATGGA CAGCTCCAAG GAGTTGTCTC CTGGGGTGAT    
GGCTGTGCCC AGAAGAACAA GCCTGGAGTC TACACCAAGG TCTACAACTA CGTGAAATGG    
ATTAAGAACA CCATAGCTGC CAATAGCTAA AGCCCCCAGT ATCTCTTCAG TCTCTATACC    
AATAAAGTGA CCCTGTTCTC                                      

• Does the representation encode 
the object completely?
– Enough for the function you care 

about?
– Can it accommodate 

transformations and noise?
• Does the representation encode 

the object compactly?
– Is there extraneous information?
– Is there a well-defined measure of 

distance between representations 
that is correlated with outcome?

• If so, you’re probably in good 
shape



Four things to do for a machine-
learning task

• Choose a representation of your input data
• Choose a functional form that will map input 

examples to outputs
• Choose a method of optimization
• Train your system and evaluate performance

– Ideal method: blind testing of a trained classifier 
on new data

– Other method: cross-validation
• Train your system on all but a subset of your data
• Test on the held out subset
• Repeat to get an estimate of predictive performance



Symbolic versus numeric 
approaches

• Variety of “symbolic” approaches
– Decision trees: ID3 etc…
– [NOTE: Some decision-tree 

methods have numeric aspect.]
– Concept learning

• Have the benefit of yielding 
“explainable” answers

• Tend to work well in areas where 
you already know the answer

• Interesting for cognitive science 
types and philosophers

• Not generally the most useful for 
biocomputing tasks

• Numeric approaches
– Nearest neighbor 

classifiers
– Artificial neural networks
– Genetic algorithms
– Kernel-based methods 

(support vector 
machines)

• Nearly every real-world 
application of machine 
learning to a problem 
(e.g. speech 
recognition) is based on 
a numeric approach



K nearest neighbors
• Data are represented 

as high-dimensional 
vectors

• KNN requires
– Distance metric
– Choice of K
– Potentially a choice 

of element 
weighting in the 
vectors

• Given a new example
– Compute distances 

to each known 
example

– Choose class of 
most popular



K nearest neighbors

• New item



K nearest neighbors

• New item
– Compute 

distances



K nearest neighbors

• New item
– Compute 

distances
– Pick K best 

distances



K nearest neighbors

• New item
– Compute 

distances
– Pick K best 

distances
– Assign class to 

new example



Expression arrays:
Lymphoblastic versus myeloid leukemia

• Lander data
– 6817 unique genes
– Acute Lymphoblastic Leukemia 

and Acute Myeloid Leukemia 
(ALL and AML) samples

– RNA quantified by Affymax 
oligo-technology

– 38 training cases (27 ALL, 11 
AML)

– 34 testing cases (20/14)
• Can we classify ALL/AML?

– Use clustering to see if distance 
metric and variable selection 
seems to work

– Apply formal blind test based on 
model from the 38 training 
cases

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,1,2*† D. K. Slonim,1† P. Tamayo,1 C. Huard,1

M. Gaasenbeek,1 J. P. Mesirov,1 H. Coller,1 M. L. Loh,2

J. R. Downing,3 M. A. Caligiuri,4 C. D. Bloomfield,4

E. S. Lander1,5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

R E P O R T S

SCIENCE VOL 286 15 OCTOBER 1999



Four things to do for a 
machine-learning task

• Choose a representation of your input data
– We’re using vectors of expression data

• Choose a functional form that will map input 
examples to outputs
– We have a winner-take-all function that returns a class label 

given an input vector along with training vectors and classes
• Choose a method of optimization

– We will use binary variable selection based on a T-test
– We will try various distance metrics, sizes of K, and number 

of variables
• Train your system and evaluate performance

– In this case, we have a training set of 38 cases and a blind 
test set of 34

– We will evaluate performance on the 34 test cases



We can use clustering to examine the interaction 
of variable selection with distance metric
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• We know that most of 
the 6817 genes are not 
informative as to 
ALL/AML

• We choose the top N 
based on a T-test

• We decide that 
Euclidean distance is a 
reasonable thing to try

• Taking the top 50 genes 
by T-test from the 
training set, we get 
nearly perfect clustering 
of both the training and 
test sets



KNN works very well on this 
data set
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Under many choices of K, gene selection sizes of 20 to 2000, with 
different distance metrics, we see that the only consistently 
misclassified sample is AML11. The range of errors is 1-4 under all 
conditions.



Non-linear learning systems:
The sigmoid unit is not the only game in town
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Flexible Molecular Docking
• Problem definition

– Given a protein crystal 
structure

– Given a small molecule or 
many

– Extremize the value of a 
scoring function by varying 
molecular pose

• Requirements
– Predict correct rank-order of 

binding affinity within 1 protein
– Reject false positives
– Generate correct molecular 

poses at extrema of function
– Be very fast (86,400s in 1 day)



Four things to do for a machine-
learning task

• Choose a representation of your input data
– We need to pick an input representation that includes 

information relevant to protein ligand binding energies
• Choose a functional form that will map input 

examples to outputs
– We’re going to predict a binding energy in –log(Kd) units

• Choose a method of optimization
– We will use gradient-descent to optimize the parameters of 

the function
– We will try various schemes to improve performance

• Train your system and evaluate performance
– In this case, we have a training set of 34 co-crystal 

structures
– We will evaluate performance using cross-validation



Clearly the problem must be at 
least 3D

• The 2D structure of a ligand 
gives little useful information
– Molecular comparisons can 

be made, but only within-
scaffold

– Molecular interactions are 
not usefully represented

– Sparse 3D representations 
are of limited utility as well
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We want to approximate a 3D 
surface

• We will approximate 
molecules as collections 
of spheres with fixed radii
– H = 1.2  C = 1.6  N = 1.5
– O = 1.4  S = 1.95  P = 1.9
– F = 1.35  Cl = 1.8  Br = 1.95
– I = 2.15

• Hard plastic balls is not 
necessarily a reasonable 
representation



Molecules have polar contact 
preferences

-0.5 -0.5

•We will mark atoms as 
follows

– Polar positive:
• H-bond donors
• Formally positively 

charged atoms
– Polar negative

• H-bond acceptors
• Formally negatively 

charged atoms
– Polar atoms have 

directional preferences
• Defined on a local 

coordinate system
• Up to three preference 

vectors



That’s it. We can now compute things 
about molecular interactions.

• Biotin/Streptavidin
– Kd = 10-13.4

– Complete set of 
hydrogen-bonding or salt-
bridging interactions

– Extensive hydrophobic 
packing

• We will construct a 
function, which, given 
these representations, 
yields good enough 
estimates of binding 
affinities that it is useful 
for docking.



We can induce a soft function that predicts binding 
affinities using our “hard plastic” representation

• Co-crystal data used to tune the 
function
– 34 structures, ranging from 10-3 

to  10-14 in Kd
– 16 different proteins (heavy on 

enzymes)
• Linear combination of non-linear 

functions of protein-ligand atomic 
surface distances
– Steric term: Gaussian + 

sigmoidal
– Polar term: Gaussian + sigmoidal
– Polar term is influenced by 

directionality and formal charge
– Entropic term: # rot bonds, 

log(MW)
– Solvation term: “missed h-bonds”

This looks nothing like a molecular mechanics non-bonded force-field.



Attempt #1: Static 
conformations

• Take each crystal structure exactly as it was 
solved

• Train the function to optimally fit all 34 
examples, optimizing the alignment of each 
example on each iteration

Mean error RMSD
Fit to data: 1.1 log(Kd) 1.4 Å
If we now optimize the conformations

1.5 2.1
• This is a problem since we don’t know the 

correct conformation when we dock a new 
molecule!



Attempt #2: Dynamic 
conformations

• Take each crystal structure exactly as it was 
solved

• Train the function to optimally fit all 34 
examples, optimizing the alignment of each 
example on each iteration and optimizing 
the conformation

Mean error RMSD
Fit to data: 0.97 log(Kd) 1.2 Å
• We are in better shape
• We’ve embedded an aspect of the application 

of the function into its training: the maximum 
score under our optimization strategy must be 
the correct



Frequently, molecules embed 
strain into their xtal conformations



Attempt #3: Dynamic conformations, 
beginning from minimized conformations

• Take each crystal structure exactly as it was solved
• Minimize (in a vacuum) the ligand

– Many co-crystals strain ligands by bending things that don’t 
bend

– We’ll always be starting from low-energy molecule
• Train the function to optimally fit all 34 examples, 

optimizing the alignment of each example on each 
iteration and optimizing the conformation

Mean error RMSD
Fit to data: 0.72 log(Kd) 0.85Å
• We are in very good shape now
• We’ve embedded another aspect of the application of 

the function into its training



Empirically derived scoring function learns 
appropriate magnitudes and geometries

• Steric and polar terms 
dominate

• Steric term
– Peaks at about 0.1 log units 

per ideal contact
– Ends up dominating the 

energy function because 
there are so many such 
contacts

• Polar term
– H-bond: peaks at 1.25 log 

units (H-O distance of 2.0Å)
– Formal charge scales the 

polar term: 2.25 units for a 
tert-amine proton to a 
carboxylate oxygen
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Scoring function wrinkle 
summary

• Version 1: Estimate parameters 
from native crystal structures
– We are just treating the crystal 

structures as being static
– We ignore the fact that when 

we dock, we seek to extremize 
the scoring function

– We do apparently well (mean 
error: 1.15 log units)

• Version 1: We optimize the 
poses based on the scoring 
function
– Our mean error increases to 

1.51!
– We should embed the 

optimization constraint into the 
parameter estimation

• Version 2: Now we optimize 
poses online during 
parameter estimation 
– Mean error (with pose 

optimization) drops to 0.97
– We observe that some 

ligands that are 
overpredicted have strained 
configurations

• Final function F: We 
minimize structures prior to 
parameter estimation
– Mean error: 0.72 log units
– Cross-validated mean error: 

1.0 log units
– Now we are done.



Scoring function predicts affinities well
Also has nice sharp maximum at correct pose

Plot of computed versus experimental pKd. Scores of biotin perturbed from its 
optimal pose within streptavidin



Steric and polar terms dominate

• Breakdown of the 
scoring function over all 
complexes
– Steric: 44%
– Polar: 26%
– Solvation: 5%
– Entropy: 25%

• Streptavidin/biotin 
breakdown
– Computed affinity: 12.5
– Actual: 13.4
– Steric: 7.6
– Polar: 9.0
– Entropy: -1.1 + -2.5
– Solvation: -0.5



How is the learned scoring function different 
from physics-based derivations?
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So now we have a scoring function.
We can dock, given a search engine.

• We talked about search in the 
complexity lecture
– Divide and conquer to address 

the conformational issue
– Use molecular similarity trick to 

generate putative alignments
• Docking accuracy

– GOLD validation set
– 81 complexes

• 15 or fewer rotatable bonds
• No covalent attachments

– Considered docking accuracy
• Best docked pose by rms
• RMS of top scoring pose



Docking is largely accurate
Scoring function recognizes the correct poses

• 81 complex data set
– 94% of cases, rmsd < 

2.5Å for most 
accurate pose

– If a good pose was 
generated, it was the 
top scoring 86% of 
the time

• Performance is 
comparable with 
GOLD

• But how will this work 
in screening large 
databases of 
molecules?

3tpi 1tmn

1hri 1atl

Zn++



Screening utility depends on a very low false 
positive rate against a large background

• Docking targets: Thymidine kinase and Estrogen 
receptor
– For each, take 10 known ligands and 990 random ligands
– Dock all of them with the same parameters
– Assess the number of false positives to achieve true positive 

rates of 80, 90, and 100%
– Comparative data: 

• Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual 
screening of chemical databases. 1. Evaluation of different 
docking/scoring combinations. J Med Chem 2000, 43, 4759-
4767.

• Compared GOLD, Dock 4.0, FlexX
• Considered combinations of dockers and scoring functions 

applied post-docking as well



Diverse ligands
TK hydrophilic, ER hydrophobic
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Results: Empirical scoring function yields 
high specificity for these two cases

• Thymidine kinase
– Surflex FP rate for 80% TP is almost 10-fold than GOLD, which 

does best among the other methods
– FP rate for all TP rates is lowest

• Estrogen receptor
– With a threshold on protein penetration allowing for a 90% TP rate, 

Surflex yields more than 10-fold reduction in FP rate over any 
single method

– Moving to 100% TP, Surflex outperforms the other methods as well
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Direct comparison of 8 methods by Rognan’s 
group at CNRS confirms our results

• 100 protein/ligand complexes
• 8 docking programs
• Tested on same platform 

under similar time pressure

• Thymidine kinase example
• 10 true ligands, 990 

random
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Flexible Molecular Docking
• Papers to read

– Jain, A.N. (1996). Scoring noncovalent 
protein-ligand interactions: A continuous 
differentiable function tuned to compute 
binding affinities. J Comput Aided Mol Des 
10, 427-40.

– Welch, W., Ruppert, J. & Jain, A.N. (1996). 
Hammerhead: Fast, fully automated docking 
of flexible ligands to protein binding sites. 
Chem Biol 3, 449-62.

– Ruppert, J., Welch, W. & Jain, A.N. (1997). 
Automatic identification and representation 
of protein binding sites for molecular 
docking. Protein Sci 6, 524-33.

– Jain, A.N. (2000). Morphological similarity: A 
3D molecular similarity method correlated 
with protein-ligand recognition. J Comput 
Aided Mol Des 14, 199-213.

– Jain, A. N. (2003) Surflex: Fully Automatic 
Flexible Molecular Docking using a 
Molecular Similarity-Based Search Engine. 
J Med Chem 46: 499-511.

• Conclusions
– Possible to induce an 

effective scoring function 
empirically

– Search engine is 
effective

– Docking accuracy (rmsd) 
is competitive with the 
best available methods

– Specificity in terms of 
screening false positive 
rates is substantially 
better than competing 
methods



Suppose you don’t have a protein crystal 
structure

• Problem: induce the protein 
binding pocket given molecules 
+ potencies

• Characterize ligands based on 
what the protein “sees”

– Pure steric shape
– Polar interactions and direction

• Construct a geometrically 
meaningful binding site model

– Basis functions with tunable 
shape

– Physical assumptions retained
• Dock new molecules into the 

model
– Generates interpretable cross-

chemotype relationships
– Prioritizes chemical synthesis A collection of well-placed spheres accurately 

represents the molecular surface of a putative 
binding pocket

A. N. Jain, N. L. Harris, and J. Y. Park. Quantitative Binding Site Model Generation: Compass Applied to Multiple Chemotypes 
Targeting the 5HTlA Receptor. Journal of Medicinal Chemistry 38: 1295-1307, 1995.



Four things to do for a machine-
learning task

• Choose a representation of your input data
– We need to pick an input representation that includes 

information relevant to protein ligand binding energies: we’ll 
use distance to surface again

– Since we don’t have a protein, we’ll use the distance from 
points on a sphere outside the molecules of interest

• Choose a functional form that will map input 
examples to outputs
– We’re going to predict a binding energy in –log(Kd) units

• Choose a method of optimization
– We will use gradient-descent to optimize the parameters of 

the function
– We will embed pose optimization in the learning task

• Train your system and evaluate performance
– In this case, we have a training set of 20 5-HT1a ligands
– We have an independent test set of 35 novel ligands



But we have a problem: hidden variables 
of alignment and conformation

• If we knew the correct poses of the input 
ligands, this would be very much like training 
the Surflex scoring function

• We don’t
• So, we need a method for guessing the 

mutual alignment and conformation initially
• We can then vary our guess



So how do we get an initial 
alignment guess?

• We need to construct a function of joint 
molecular pose

• It should have a maximum where 
molecules are mutually aligned in a 
predictively useful manner

• We can measure utility with model 
systems



Many cases require a solution to 
the mutual alignment problem

• Many classes of targets 
are not currently tractable 
by crystallography

• GPCR and ligand-gated 
ion channel ligands
– Molecules A–B: 5-HT1a 

ligands
– Molecules C–E: Muscarinic 

antagonists
– Molecules F–H: Histamine 

receptor antagonists
– Molecules I–K: GABAA

receptor agonists
• We can begin to induce 

binding site models by 
making use of molecular 
similarity methods
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We will use precisely the same 
representation of molecules as for docking

-0.5 -0.5

• Our molecular similarity 
function is a function of 
distances and vector 
coincidences

• We will define a set of 
points as surrogates for 
protein atoms

• From these points, we 
will compute distances 
and vector coincidences



We don’t know where to put the points:
We put them everywhere (spacing λ)

-0.5 -0.5



We can’t have an infinite number of points:
We will light up points at a specific distance γ

-0.5 -0.5

Pseudo-Protein Pocket



We define a Gaussian function of distance to 
weight the pseudo-protein points

-0.5 -0.5

ογ /)( 2−−= dew
• We cut off points 

with weight < 0.1
• This gives us points 

spaced at about γ
from the molecule 
in question

• We can control the 
sloppiness of the 
weight using ο

λ = 2.0, γ = 4.0, ο = 0.2



Measure the molecules from the perspective that 
a protein has, but use a soft function



We can induce models of what a binding site 
must look like by using molecular similarity

• Four cases
– Therapeutically important
– No structures of human 

proteins known
– Wealth of chemical 

scaffolds known for each 
receptor

• Can we use these 
molecule sets to construct 
a structural hypothesis for 
the way they bind their 
receptors?

• Will it be useful to identify 
other ligands of the same 
receptor from a large 
library?
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NH+
OH

NH+

O

5-HT1a overlay that maximizes a joint 
similarity function looks convincing



NH+

OH

N
H+

O
N
H+

O

Muscarinic overlay that maximizes a 
joint similarity function looks convincing



How can we validate these 
hypotheses in a quantitative way?

• Consider two sets of molecules
– Known ligands of any of the four receptors (100 total, from 

GPCRDB and the Merck Index)
– Random ligands (990 from previous experiment)

• Compute similarity of the molecule sets to the binding 
site hypotheses
– Optimize alignment to each molecule of the hypothesis
– Compute mean of similarity score to all molecules in hypo
– Report maximum score as the score of the test ligand

• We hope to see separation between known ligands 
and the random or non-cognate ligands



We observe separation between 
true ligands and non-ligands

• Cumulative distributions 
of random molecules 
are shifted far left of true 
ligands

• True positive rates of 
60% are possible with a 
FP rate of 2-3%

• Not as good as the best 
docking results, but 
competitive with many 
docking methods

• Theoretical enrichment 
rates of >150-fold

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

P
ro

p
o
rt

io
n
 o

f 
h
its

Molecule score

Serotonin Model: Known and Random Ligands

Random
Serotonin

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

P
ro

p
o

rt
io

n
 o

f 
h

its

Molecule score

Muscarinic Model: Known and Random Ligands

Random
Muscarinic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

P
ro

p
o
rt

io
n
 o

f 
h
its

Molecule score

Histamine Model: Known and Random Ligands

Random
Histamine

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

P
ro

p
o

rt
io

n
 o

f 
h

its

Molecule score

BZR Model: Known and Random Ligands

  Random
BZR



This is not simply an artifact of inductive bias 
from the molecules used for model construction

• Very different 
chemical structures 
are retrievable 
based on these very 
simple 
computational 
structures

• Not possible to 
reasonably argue 
that the results are 
trivially related to 
inductive bias
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Percentile scores of the ligands: 10/12 are within the 
top 2% of random scores (6/12 within 1%).



So now we have an alignment 
method

• We can now build quantitatively 
predictive models of molecular activity

• Very similar procedure and notion to 
Surflex scoring function



The gaussian + sigmoidal functions of 
molecular distance make “soft spheres”

• Gaussian + sigmoidal 
functions of distance-based 
molecular features
– Form soft-shelled balls, 

positive outside and 
negative inside

– Very similar to Surflex 
scoring function

• Alignment and conformation
– Molecules are docked into 

the binding site for maximal 
score

• Model induction
– Find the site that very active 

molecules fit that inactive 
molecules don’t

– Assume single dominant 
pose for all molecules
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Compass 5-HT1a model predicts 
accurately across chemotypes

• Small training set: 20 
molecules
– 9 pairs of enantiomers 

from two chemotypes, 1 
pair of diastereomers

– Cross-validation: 0.5 log 
units error, 0.90 PRCC

• Blind test on 35 new 
molecules
– 0.5 log units error, 0.84 

PRCC
– Novel ring fusion 

stereochemistry
– Novel ring structures 

(cyclobutyl variant and 
cyclic urea heterocycle)
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Model yields weighted geometric 
models of binding sites

• Technique has been 
applied to several 
targets
– 5-HT1a
– Steroid binding globulins
– Muscarinic antagonists
– Enzyme inhibition

• Results
– Accurate predictions of 

potency
– Relationship of different 

chemotypes 
– Prospective identification 

of active compounds of 
novel structural types



Molecular similarity and quantitative 
binding site model generation

• Papers to read
– Jain, A.N., Harris, N.L. & Park, J.Y. 

(1995). Quantitative binding site 
model generation: compass applied 
to multiple chemotypes targeting the 
5-HT1A receptor. J Med Chem 38, 
1295-308.

– Ghuloum, A.M., Sage, C.R. & Jain, 
A.N. (1999). Molecular hashkeys: A 
novel method for molecular 
characterization and its application 
for predicting important 
pharmaceutical properties of 
molecules. J Med Chem 42, 1739-
48.

– Jain, A.N. (2000). Morphological 
similarity: A 3D molecular similarity 
method correlated with protein-
ligand recognition. J Comput Aided 
Mol Des 14, 199-213.

– Jain, A.N. (2004). Ligand-Based 
Structural Hypotheses for Virtual 
Screening. J Med Chem.

• Conclusions
– Molecular similarity 

based on 3D surface 
shapes is quantitatively 
related to protein binding 
specificity of small 
molecules

– It is possible to induce 
plausible models of 
binding sites based on 
active small molecules of 
different chemotypes

– These models can yield 
specificity rates in 
screening that are 
competitive with 
molecular docking 
methods
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