
BMI-203: Biocomputing Algorithms
Lecture 5: Optimization I

Ajay N. Jain, PhD
Associate Professor, Cancer Research
Institute and Dept. of Laboratory
Medicine

University of California, San Francisco

ajain@cc.ucsf.edu
http://jainlab.ucsf.edu

Copyright © 2004, Ajay N. Jain, All Rights
Reserved

Outline
• Optimization introduction

– General statement of the optimization
problem

– Problems that embed aspects of
optimization

– Optimization smorgasbord
• Gradient descent
• Preceptrons and neural networks
• Gradient descent in neural networks
• Homework (due May 4th)

What is “optimization”?
• Optimization is the name given to the

field of study concerned with finding the
values for sets of independent variables
that minimize (or maximize) some
function

• A good reference is Numerical Recipes
in C (Chapter 10):
http://www.ma.utexas.edu/documentation/nr/bookcpdf.html

• It gives the hairy details of many
optimization methods plus code to
implement them in many cases.

Local vs. global minima

local minimum

E(w)

global minimum

What problems embed optimization?

• Many tasks in
biocomputing
– Finding the lowest energy

state of a molecule
– Finding the optimal

orientation and
conformation of a
molecule docked to a
receptor

– Determining the optimal
alignment of two
sequences subject to
some local similarity
function (DP solution)

• Essentially all machine-
learning and pattern
recognition problems
– All pattern classifiers can be

formally described as
complex functions

– Most have some parameters
that need to be estimated

– Neural networks, genetic
algorithms, Bayesian
classifiers, etc… implement
optimization strategies

– Lectures II-III on
Optimization will discuss
machine learning

Optimization algorithms

• Stochastic
– Random walk
– Monte Carlo
– Genetic

Algorithms

• Non-stochastic
– Need no gradient
– Need the first

derivative
– Need the second

derivative too!

Random Walk

• Given a function in some n-dimensional
space, find its (global) minimum

• Pick a dimension at random and take a
step

• Evaluate the function
• Reject if new value is not better than old
• Repeat until frustrated (some number of

steps yield no improvement)
• Problem: You can get “wedged”

Monte Carlo

• Proposed in 1953 by Metropolis (with
Teller)

• Instead of always accepting a step if it is
better, we reject such a step with a
certain probability (delta is below is
“cost” of poor step)

kTEe /∆−

Simulated Annealing

• Proposed in 1983 by Kirkpatrick, Gelatt,
and Vecchi

• Small tweak: we vary T to make a
“cooling schedule”

• In the early part of search, we choose
high T (high prob of making bad step),
then we reduce T

kTEe /∆−

Genetic Algorithms

• We construct a representation of our
function space where operators such as
crossover and mutation make sense

• The fitness of individuals is our function
• We formally define our population

operators
• We simulate the evolution of a

population so as to extremize the
function

Random vs. not

• I am not a big fan of stochastic optimization
algorithms

• However, they can be very useful as generic
solutions to optimization and can be used to
prove feasibility

• In the case of non-stochastic optimization, we
will focus on the case where we need the first
derivative, but not the second
– Remember, this is a HUGE field, and it will often

pay you hugely to be clever about optimization

Gradient-based optimization:
gradient descent

• Local optimization method
– Will find a local minimum
– However, may get stuck in a

local minimum
– Requires efficient method for

computing derivative (and
that one exists!)

• Basic algorithm
– Start with some set of

parameters wi

– Compute change of E w/r/t
each wi, where E is the
function to optimize

– Modify weights according to
the direction of the gradient

E(w)

i
ii w

Eww
∂
∂

−= η

Slope is negative

Slope is zero at
the local
minimum

Artificial Neural Networks:
Just function optimization

• “Neural Nets” are just a class of functions
• They happen to have some nice theoretical

properties
• They also happen to have some nice

practical properties: principal among them is
that their parameters can be estimated by
gradient-descent

• We will discuss these as an in-depth example
of optimization
– History: the “perceptron”
– ANN’s as cool functions
– The backpropagation algorithm: gradient descent

The perceptron: a linear
function

w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
Σ �Σ wi xi

n

i=0 1 if > 0

-1 otherwise{o =
Σ wi xi

n

i=0

�x�� � � � � xn� �
����

���

� if w� � w�x� � � � �� wnxn � �

�� otherwise�
…

-o

The perceptron encodes a line in a high-dimensional space. For
machine-learning, it can solve simple problems: those that are linearly
separable.

The decision surface of a perceptron permits
it to solve linearly separable problems

x1

x2
+

+

-
-

+

-

x1

x2

(a) (b)

-

+ -

+

Minsky and Papert killed “neural nets” in 1969 for about 15 years by
showing that perceptrons couldn’t solve simple problems like (b).

The perceptron training rule is
just gradient descent

nnxwxwwo +++= L110

2)(
2
1)(∑

∈

−=
Dd

dd otwE v_

D is the set of training examples. E
defines a standard error function. Our
job is to minimize the error over the
training examples.

()

()

() ()

()

()()∑

∑

∑

∑

∑

−−=
∂
∂









∂
∂

−−=

−
∂
∂

−=









−

∂
∂

=









−

∂
∂

=
∂
∂

d
didd

i

d
d

i
dd

d
dd

i
dd

d
dd

i

d
dd

ii

xot
w
E

o
w

ot

ot
w

ot

ot
w

ot
ww

E

,

2
1

2
2
1

2
2
1

2

Perceptron training rule

i
i w

Ew
∂
∂

−=∆ η

()()∑ −−=
∂
∂

d
didd

i

xot
w
E

,

Does the training rule make
sense?

• When we have the “right”
answer for an example (td =
od)
– Contribution to gradient is 0
– No effect on any weights

• When a particular input is 0
– Contribution for the particular

weight is 0

• If output is too low
– And xi,d is positive, then

contribution to error gradient
is negative

– The effect on the weight
change will be positive

()()∑ −−=
∂
∂

d
didd

i

xot
w
E

,

Training algorithm
• Given a set of training

examples (x1…n,t) where we
have a vector of input values
and a target

• Initialize each wi to a small
random value

• Until we terminate, do
– Initialize each ∆wi to zero
– For each training example,

do
• Compute the output o with

the current weights
• For each weight

– For each weight, modify it:

• The perceptron training algorithm
is guaranteed to succeed if
– Training examples are linearly

separable
– Learning rate is sufficiently small

• Notes
– Multiple linear units are always

re-representable as a single
linear unit

– Very few problems are linearly
separable

– Can perform incremental
gradient descent (modify weights
after each example): sometimes
converges faster, allows for
skipping examples that are
“close enough”

() iii xotww −+∆←∆ η

iii www ∆+←

The sigmoid unit: non-linearity generates
functional complexity, true ANNs

w1

w2

wn

w0

x1

x2

xn

x0 = 1

�
�
�
�.
.
.

Σ
net = Σ wi xii=0

n
1

1 + e
-neto = σ(net) =

F1 F2

head hid who’d hood
... ...

Bias term: important

The sigmoid unit: error gradient

()

()

() ()

()

()∑

∑

∑

∑

∑









∂
∂

∂
∂

−−=









∂
∂

−−=

−
∂
∂

−=









−

∂
∂

=









−

∂
∂

=
∂
∂

d i

d

d

d
dd

d i

d
dd

d
dd

i
dd

d
dd

i

d
dd

ii

w
net

net
oot

w
oot

ot
w

ot

ot
w

ot
ww

E

22
1

2
2
1

2
2
1

()

()

() () di
Dd

dddd
i

di
i

d

dd
d

d

x

xooot
w
E

x
w
net

oo
net
o

xxx
dx
d

e
x

,

,

1

1

)(1)()(

1
1)(

∑
∈

−

−−−=
∂
∂

=
∂
∂

−=
∂
∂

−=

+
=

σσσ

σ

The sigmoid unit: error gradient

()

()

() ()

()

()∑

∑

∑

∑

∑









∂
∂

∂
∂

−−=









∂
∂

−−=

−
∂
∂

−=









−

∂
∂

=









−

∂
∂

=
∂
∂

d i

d

d

d
dd

d i

d
dd

d
dd

i
dd

d
dd

i

d
dd

ii

w
net

net
oot

w
oot

ot
w

ot

ot
w

ot
ww

E

22
1

2
2
1

2
2
1

()

()

() () di
Dd

dddd
i

di
i

d

dd
d

d

x

xooot
w
E

x
w
net

oo
net
o

xxx
dx
d

e
x

,

,

1

1

)(1)()(

1
1)(

∑
∈

−

−−−=
∂
∂

=
∂
∂

−=
∂
∂

−=

+
=

σσσ

σ

Multi-layer networks:
Including a “hidden” layer of network nodes

• These networks encode very
powerful functions
– Every boolean mapping can be

represented by a network with a
single hidden layer (may require an
exponential number of hidden units
relative to inputs)

– Every bounded continuous function
can be approximated with arbitrarily
small error by a network with one
hidden layer

– Any function can be approximated to
arbitrary accuracy by a network with
two hidden layers

• How do we compute gradients all
the way through?

Inputs Outputs

Hidden units

We define an intermediate value for all units
The change in error w/r/t “my input”: δ

• For an output unit, we are going to directly
compute how the change in its input affects
the error

• For a hidden unit, in order to figure out its
effect on network error, we need to figure out
how it affects the behavior of the units to
whom it connects

For an output unit k

()

()

() ()

()

()()()∑

∑

∑

∑

∑

−−=






















∂
∂

−−=











−

∂
∂

−=











−

∂
∂

=









−

∂
∂

=
∂
∂

=

d
kdkdkdkd

d kd

kd
kdkd

d
kdkd

kd
kdkd

d
kdkd

kd

d
kdkd

kk
k

ooot

net
o

ot

ot
net

ot

ot
net

ot
netnet

E

,,,,

,

,
,,

,,
,

,,

2
,,

,
2
1

2
,,2

1

1

δ

For a hidden unit h

()()

()()

()()hhkh
outputsk

k

hh
inputsi

iki
houtputsk

k

hh
h

k

outputsk
k

h

h

h

k

outputsk
k

h

h

h

k

outputsk k

h

h

hh
h

oow

ooow
o

oo
o
net

net
o

o
net

net
o

o
net

net
E

net
o

o
E

net
E

−







=

−

















∂
∂

=

−







∂
∂

=

∂
∂









∂
∂

=

∂
∂









∂
∂

∂
∂

=

∂
∂

∂
∂

=
∂
∂

=

∑

∑∑

∑

∑

∑

∈

∈∈

∈

∈

∈

1

1

1

,

,

δ

δ

δ

δ

δ
• For a hidden unit, we need

to figure out how our output
affects our output units’
influence on error

• At right is for a single
training example (to omit
the d subscripts)

So now we can compute deltas
for each unit

Inputs Outputs
• We first compute deltas for the

output units
• We then move one layer back

and compute deltas for these
units

• We continue through all of the
layers

• Notes:
– Networks with cycles of

connections require special
training regimes

– The recursive back-calculation is
where “back-propagation” comes
from

So, now we can compute
gradient for any weight

• For a particular training
example, we compute
the contribution to the
gradient for weight wi,j
– First, compute the delta

for unit j
– Then, simply multiply it

by the output unit i

• We will follow the
opposite direction of the
gradient

ij

i

j
j

i

j

jji

o
w
net

w
net

net
E

w
E

δ

δ

=
∂

∂
=

∂

∂

∂
∂

=
∂
∂

,

Backpropagation Algorithm: On-line learning
version (weight updates each example)

• Initialize weights to small random
numbers.

• Until we are satisfied, do
– For each training example

• Input the training example to the input
units and compute the network outputs
(forward propagation)

• For each output unit k

• For each hidden unit h

• Update each network weight from unit i to
unit j

Inputs Outputs

Hidden units

ijji ow ηδ=∆ ,

jijiji www ,,, ∆+←

()()kkkkk otoo −−← 1δ

() ∑
∈

−←
outputsk

kkhhhh woo δδ ,1

Remember: All units have a
connection to a “bias unit”
with constant output of 1.0

Networks of sigmoidal units trained via
backpropagation have nice properties

• We’re performing gradient descent over the
entire weight vector

• The training algorithm easily generalizes to
arbitrary directed graphs

• Usually doesn’t have a problem with local
minima

• Training can be slow, but using a trained
network is usually very fast

• Network architecture, constraints, and
functional form can be designed to suit the
properties of particular problems, leading to
classifiers of very high predictive performance

Example: An 8x3x8 encoder

Inputs Outputs

Hidden units

Input Output

� ��������

� ��������

� ��������

� ��������

� ��������

� ��������

� ��������

� ��������

��������

��������

��������

��������

��������

��������

��������

��������

The hidden layer learns a
binary representation

Input Hidden Output

Values

� ��� ��� ��� � ��������

� ��� ��� ��� � ��������

� ��� ��� �	� � ��������

� ��� ��� ��� � ��������

� ��
 ��� ��	 � ��������

� �		 ��� ��� � ��������

� ��� ��� ��� � ��������

� ��� ��� ��� � ��������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500

Sum of squared errors for each output unit

Inputs Outputs

Hidden units

��������

��������

��������

��������

��������

��������

��������

��������

The representation and weights
evolve smoothly over training

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

Hidden unit encoding for input 01000000

-5

-4

-3

-2

-1

0

1

2

3

4

0 500 1000 1500 2000 2500

Weights from inputs to one hidden unit

Inputs Outputs

Hidden units

Homework 5

• Write a program that implements a
neural network

– Input: network architecture
• Number of inputs
• Number of hidden units
• Number of output units
• Assume fully connected network

– Input: learning rate
– Input: training data

• One example per line as follows:
• Input: 01000000 Output: 01000000

– Output
• Initial weights, Final weights
• Final output values for each

training example (also output the
training example)

• Final total error (sum of squared
error for all output units over all
examples)

• Run your neural network on the
8x3x8 encoder problem used as
an example in this lecture

• You will need to choose a
learning rate and run your
network until it is able to
correctly generate the binary
encoding for each input example
(i.e. all 1’s should be > 0.5 and
all 0’s should be < 0.5)

• What to turn in:
– A single file (text or pdf)

• Program output
• Program listing

– Email answers to
ajain@cc.ucsf.edu

– Homework is due 5/4/04

	Outline
	What is “optimization”?
	Local vs. global minima
	What problems embed optimization?
	Optimization algorithms
	Random Walk
	Monte Carlo
	Simulated Annealing
	Genetic Algorithms
	Random vs. not
	Gradient-based optimization: gradient descent
	Artificial Neural Networks: Just function optimization
	The perceptron: a linear function
	The decision surface of a perceptron permits it to solve linearly separable problems
	The perceptron training rule is just gradient descent
	Perceptron training rule
	Does the training rule make sense?
	Training algorithm
	The sigmoid unit: non-linearity generates functional complexity, true ANNs
	The sigmoid unit: error gradient
	The sigmoid unit: error gradient
	Multi-layer networks:Including a “hidden” layer of network nodes
	We define an intermediate value for all unitsThe change in error w/r/t “my input”: d
	For an output unit k
	For a hidden unit h
	So now we can compute deltas for each unit
	So, now we can compute gradient for any weight
	Backpropagation Algorithm: On-line learning version (weight updates each example)
	Networks of sigmoidal units trained via backpropagation have nice properties
	Example: An 8x3x8 encoder
	The hidden layer learns a binary representation
	The representation and weights evolve smoothly over training
	Homework 5

