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Outline
• Optimization introduction

– General statement of the optimization 
problem

– Problems that embed aspects of 
optimization

– Optimization smorgasbord
• Gradient descent
• Preceptrons and neural networks
• Gradient descent in neural networks
• Homework (due May 4th)



What is “optimization”?
• Optimization is the name given to the 

field of study concerned with finding the 
values for sets of independent variables 
that minimize (or maximize) some 
function

• A good reference is Numerical Recipes 
in C (Chapter 10):    
http://www.ma.utexas.edu/documentation/nr/bookcpdf.html

• It gives the hairy details of many 
optimization methods plus code to 
implement them in many cases.



Local vs. global minima

local minimum
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What problems embed optimization?

• Many tasks in 
biocomputing
– Finding the lowest energy 

state of a molecule
– Finding the optimal 

orientation and 
conformation of a 
molecule docked to a 
receptor

– Determining the optimal 
alignment of two 
sequences subject to 
some local similarity 
function (DP solution)

• Essentially all machine-
learning and pattern 
recognition problems
– All pattern classifiers can be 

formally described as 
complex functions

– Most have some parameters 
that need to be estimated

– Neural networks, genetic 
algorithms, Bayesian 
classifiers, etc… implement 
optimization strategies

– Lectures II-III on 
Optimization will discuss 
machine learning



Optimization algorithms

• Stochastic
– Random walk
– Monte Carlo
– Genetic 

Algorithms

• Non-stochastic
– Need no gradient
– Need the first 

derivative
– Need the second 

derivative too!



Random Walk

• Given a function in some n-dimensional 
space, find its (global) minimum

• Pick a dimension at random and take a 
step

• Evaluate the function
• Reject if new value is not better than old
• Repeat until frustrated (some number of 

steps yield no improvement)
• Problem: You can get “wedged”



Monte Carlo

• Proposed in 1953 by Metropolis (with 
Teller)

• Instead of always accepting a step if it is 
better, we reject such a step with a 
certain probability (delta is below is 
“cost” of poor step)

kTEe /∆−



Simulated Annealing

• Proposed in 1983 by Kirkpatrick, Gelatt, 
and Vecchi

• Small tweak: we vary T to make a 
“cooling schedule”

• In the early part of search, we choose 
high T (high prob of making bad step), 
then we reduce T

kTEe /∆−



Genetic Algorithms

• We construct a representation of our 
function space where operators such as 
crossover and mutation make sense

• The fitness of individuals is our function
• We formally define our population 

operators
• We simulate the evolution of a 

population so as to extremize the 
function



Random vs. not

• I am not a big fan of stochastic optimization 
algorithms

• However, they can be very useful as generic 
solutions to optimization and can be used to 
prove feasibility

• In the case of non-stochastic optimization, we 
will focus on the case where we need the first 
derivative, but not the second
– Remember, this is a HUGE field, and it will often 

pay you hugely to be clever about optimization



Gradient-based optimization: 
gradient descent

• Local optimization method
– Will find a local minimum
– However, may get stuck in a 

local minimum
– Requires efficient method for 

computing derivative (and 
that one exists!)

• Basic algorithm
– Start with some set of 

parameters wi

– Compute change of E w/r/t 
each wi, where E is the 
function to optimize

– Modify weights according to 
the direction of the gradient

E(w)
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Artificial Neural Networks: 
Just function optimization

• “Neural Nets” are just a class of functions
• They happen to have some nice theoretical 

properties
• They also happen to have some nice 

practical properties: principal among them is 
that their parameters can be estimated by 
gradient-descent

• We will discuss these as an in-depth example 
of optimization
– History: the “perceptron”
– ANN’s as cool functions
– The backpropagation algorithm: gradient descent



The perceptron: a linear 
function
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The perceptron encodes a line in a high-dimensional space. For 
machine-learning, it can solve simple problems: those that are linearly 
separable.



The decision surface of a perceptron permits 
it to solve linearly separable problems
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Minsky and Papert killed “neural nets” in 1969 for about 15 years by 
showing that perceptrons couldn’t solve simple problems like (b).



The perceptron training rule is 
just gradient descent
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D is the set of training examples. E 
defines a standard error function. Our 
job is to minimize the error over the 
training examples.
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Perceptron training rule
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Does the training rule make 
sense?

• When we have the “right” 
answer for an example (td = 
od)
– Contribution to gradient is 0
– No effect on any weights

• When a particular input is 0
– Contribution for the particular 

weight is 0

• If output is too low
– And xi,d is positive, then 

contribution to error gradient 
is negative

– The effect on the weight 
change will be positive
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Training algorithm
• Given a set of training 

examples (x1…n,t) where we 
have a vector of input values 
and a target

• Initialize each wi to a small 
random value

• Until we terminate, do
– Initialize each ∆wi to zero
– For each training example, 

do
• Compute the output o with 

the current weights
• For each weight

– For each weight, modify it:

• The perceptron training algorithm 
is guaranteed to succeed if
– Training examples are linearly 

separable
– Learning rate is sufficiently small

• Notes
– Multiple linear units are always 

re-representable as a single 
linear unit

– Very few problems are linearly 
separable

– Can perform incremental 
gradient descent (modify weights 
after each example): sometimes 
converges faster, allows for 
skipping examples that are 
“close enough”
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The sigmoid unit: non-linearity generates 
functional complexity, true ANNs
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The sigmoid unit: error gradient
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The sigmoid unit: error gradient
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Multi-layer networks:
Including a “hidden” layer of network nodes

• These networks encode very 
powerful functions
– Every boolean mapping can be 

represented by a network with a 
single hidden layer (may require an 
exponential number of hidden units 
relative to inputs)

– Every bounded continuous function 
can be approximated with arbitrarily 
small error by a network with one 
hidden layer

– Any function can be approximated to 
arbitrary accuracy by a network with 
two hidden layers

• How do we compute gradients all 
the way through?

Inputs Outputs

Hidden units



We define an intermediate value for all units
The change in error w/r/t “my input”: δ

• For an output unit, we are going to directly 
compute how the change in its input affects 
the error

• For a hidden unit, in order to figure out its 
effect on network error, we need to figure out 
how it affects the behavior of the units to 
whom it connects



For an output unit k
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For a hidden unit h
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• For a hidden unit, we need 

to figure out how our output 
affects our output units’ 
influence on error

• At right is for a single 
training example (to omit 
the d subscripts)



So now we can compute deltas 
for each unit

Inputs Outputs
• We first compute deltas for the 

output units
• We then move one layer back 

and compute deltas for these 
units

• We continue through all of the 
layers

• Notes:
– Networks with cycles of 

connections require special 
training regimes

– The recursive back-calculation is 
where “back-propagation” comes 
from



So, now we can compute 
gradient for any weight

• For a particular training 
example, we compute 
the contribution to the 
gradient for weight wi,j
– First, compute the delta 

for unit j
– Then, simply multiply it 

by the output unit i

• We will follow the 
opposite direction of the 
gradient
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Backpropagation Algorithm: On-line learning 
version (weight updates each example)

• Initialize weights to small random 
numbers.

• Until we are satisfied, do
– For each training example

• Input the training example to the input 
units and compute the network outputs 
(forward propagation)

• For each output unit k

• For each hidden unit h

• Update each network weight from unit i to 
unit j

Inputs Outputs

Hidden units
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Remember: All units have a 
connection to a “bias unit” 
with constant output of 1.0



Networks of sigmoidal units trained via 
backpropagation have nice properties

• We’re performing gradient descent over the 
entire weight vector

• The training algorithm easily generalizes to 
arbitrary directed graphs

• Usually doesn’t have a problem with local 
minima

• Training can be slow, but using a trained 
network is usually very fast

• Network architecture, constraints, and 
functional form can be designed to suit the 
properties of particular problems, leading to 
classifiers of very high predictive performance



Example: An 8x3x8 encoder

Inputs Outputs

Hidden units
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The hidden layer learns a 
binary representation
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The representation and weights 
evolve smoothly over training
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Homework 5

• Write a program that implements a 
neural network

– Input: network architecture
• Number of inputs
• Number of hidden units
• Number of output units
• Assume fully connected network

– Input: learning rate
– Input: training data

• One example per line as follows:
• Input: 01000000 Output: 01000000

– Output
• Initial weights, Final weights
• Final output values for each 

training example (also output the 
training example)

• Final total error (sum of squared 
error for all output units over all 
examples)

• Run your neural network on the 
8x3x8 encoder problem used as 
an example in this lecture

• You will need to choose a 
learning rate and run your 
network until it is able to 
correctly generate the binary 
encoding for each input example 
(i.e. all 1’s should be > 0.5 and 
all 0’s should be < 0.5)

• What to turn in:
– A single file (text or pdf)

• Program output
• Program listing

– Email answers to 
ajain@cc.ucsf.edu

– Homework is due 5/4/04
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