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OverviewOverview
• What clustering means
• Relationships between objects
• Partitioning algorithms
• Hierarchical algorithms
• Choosing an algorithm
• Evaluating a clustering
• Clustering in Bioinformatics
• Homework instructions
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What is clustering?What is clustering?

A meaningful clustering 
groups objects such that 
there’s a relationship 
between objects in a group.

Clustering is the grouping of objects together
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What’s a Relationship?What’s a Relationship?
Binary relations

Relationships between two objects

Binary relations can have all sorts of properties. 
Here are three simple ones:

1.  ai R ai for all ai in A Reflexitivity
2.  ai R aj  aj R ai                                        Symmetry
3.  ai R aj  and aj R ak ai R ak              Transitivity

Given objects a0, a1, …,an in set A, and relation R,
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Equivalence RelationsEquivalence Relations
A binary relation that satisfies all three of these 
properties is an equivalence relation.

What does this have to do with clustering?

An equivalence relation on a set of objects defines 
a partitioning of that set (ie. a clustering). 

Any partitioning (clustering) of a set of objects 
defines an equivalence relation on that set.
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Equivalence RelationsEquivalence Relations
You don’t actually need an equivalence relation 
in order to perform a clustering.

So why am I showing you this?
• An introduction to Relational Algebra. This is 

what Relational Database Theory is based upon.
• Clustering is really about relationships between 

objects.
• It can provide a method of evaluating your 

clustering (we’ll come back to this).
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EqualityEquality
This one is simple. Just substitute the R for = .

Is this an equivalence relation?

1.  ai = ai for all ai in A Reflexive
2.  ai = aj  aj = ai                                         Symmetric
3.  ai = aj  and aj = ak ai = ak               Transitive

Yes 
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Sequence SimilaritySequence Similarity
Let my objects in A be a set of protein sequences. 
Let R be “is similar to” (using a threshold score 
from pairwise sequence alignment).

Is this an equivalence relation?

2. ai R aj  aj R ai                                        Symmetric

No

1. ai R ai for all ai in A Reflexive

3.  ai R aj  and aj R ak ai R ak NOT Transitive!
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Distance RelationsDistance Relations
These relations (functions, really) consider the 
distance between two objects in a geometric sense.

Distance relations must satisfy the following 
properties

1.  D(a,a) = 0
2.  D(a,b) > 0
3.  D(a,b) = D(b,a)
4.  D(a,b) < D(a,c) + D(c,b)

triangle inequality

a b

c

Is sequence identity a distance relation?
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Distance RelationsDistance Relations

Here are a couple of examples:

Euclidean distance

Manhattan (or city-block) distance

D(a,b) = (xa0 - xb0)2 + (xa1 - xb1)2 + … + (xan - xbn)2

|xa0 - xb0| + |xa1 - xb1| + … + |xan - xbn| D(a,b) = 

(xa0= the 0th property of object xa )
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Similarity RelationsSimilarity Relations
There are lots of ways to define the similarity 
between objects.

A typical similarity function requires that

1.  0 < S(a,b) < 1
2.  S(a,a) = 1
3.  S(a,b) = S(b,a)

Note that we can define dissimilarity as

D(a,b) = 1 - S(a,b)
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Similarity RelationsSimilarity Relations
Here are a couple of examples:

% identity of strings

Tanimoto similarity of bitstrings

S(a,b) = 
# of symbols in common

# of symbols in longer string

# of 1’s in common

# of 1’s in both strings
S(a,b) = 
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Missing ValuesMissing Values

Note that all of the functions we’ve looked at 
require a complete set of values for every object.

But we may not have values for every variable 
of every object.

So what do we do about missing values?
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Missing ValuesMissing Values

Here are a few options:

• Remove the objects with missing values from  
the overall clustering

• Replace the missing values of the variable with 
the average value of the variable over all the 
objects.

• Use prior knowledge of the variable’s 
distribution and replace the missing value with 
the most likely value.
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Normalizing ValuesNormalizing Values
Let’s go back to the Euclidean distance between 
two objects

In some cases we’re basing the distance on more 
than one variable. If these variables are not on the 
same scale (eg. Daltons vs. % identity), the 
variables will contribute unequally to the distance.

D(a,b) = (xa0 - xb0)2 + (xa1 - xb1)2 + … + (xan - xbn)2
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NormalizingNormalizing ValuesValues
We can alleviate this by normalizing the values 
of the variables.
For example, we can divide by the mean absolute 
deviation

Change each xi to zi, where

S = 1/n {|x0-m| + |x1-m| + … + |xn-m|}

m = 1/n {x0 + x1 + … + xn}

zi = xi - m
S
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Clustering AlgorithmsClustering Algorithms

Clustering algorithms come in two basic flavors

Partitioning Hierarchical
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Partitioning AlgorithmsPartitioning Algorithms
Partitioning algorithms divide a set of objects 
into a given number of smaller sets.

You always get the number of clusters you 
asked for.

But what if I don’t know the number of clusters 
I want?

Run the program several times over a range 
of cluster numbers.

c 2004 Scott C.-H. Pegg



Partitioning AlgorithmsPartitioning Algorithms

The most common partitioning algorithms 
follow a 2-step process

Choose a set of “representative” objects.

The critical part of these algorithms lies in 
the first step.

Assign each remaining object to its nearest 
representative.

1.

2.
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The KThe K--means Algorithmmeans Algorithm
One of the most widely used partitioning algorithms.

A set of objects X = {x0, x1, …, xn}, 
and an integer K.

A partition S of the objects that minimizes 
the sum of squared distance to the center of 
the cluster: 

Where µj is the 
mean of cluster Sj.

Input:

Output:

Σ
j = 1

K

Σ
n in Sj

D(Xn - µn)2
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Arbitrarily choose from the set of objects 
K initial cluster centers, 

M1
(0), M2

(0), …, MK
(0)

Step 1:

c 2004 Scott C.-H. Pegg



Assign each of the objects in X to the 
cluster with the nearest cluster center.

D(Xi, Mj
(l)) = min{ D(Xi, Mh

(l), h = 1, …, k) }

Step 2:

Xi in Sj if
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Recalculate the cluster centers to get Mj
(l+1)

where Nj
(l) is the number of samples in cluster Sj

(l)

Step 3:

Mj
(l+1) = 1/Nj

(l)Σ
X in Sj

X
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If the clusters have not changed (or a given
number of iterations has been reached)

Mj
(l+1) = Mj

(l)

Terminate. Else, go to step 2.

Step 4:

What’s the 
big O?

O(n2)
Since you need
to calcluate the
distance between
all n objects
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KK--means Variantsmeans Variants

Σ
j = 1

K

Σ
n in Sj

D(Xn - µn)2

Recall that with K-means, we’re minimizing 
the sum

where µn is the mean value of the X’s in Sj

You can replace µn with other types of values to
make variants.

Examples: K-medoids, K-centroids
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Covering AlgorithmsCovering Algorithms
Covering algorithms are also based on choosing a 
representative set of objects, but don’t require a 
pre-determined number of clusters.
Instead, they use a distance threshold for objects 
within a cluster.
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Partitioning lots of objectsPartitioning lots of objects

With a run time of O(n2), partitioning methods 
can take a long time for a large number of objects.

One common trick is to cluster only a small sample 
of the total set of objects, and then go back and 
assign the remaining objects to the representatives 
used in the sample clustering.

Since this depends on the original sample, you 
should do this several times with different 
samples.
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HierarchicalHierarchical AlgorithmsAlgorithms
Hierarchical clustering algorithms come in two 
basic flavors

Divisive Agglomerative

Note that the output here is not a single clustering, 
but a set of clusterings at different resolutions.
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Hierarchical AlgorithmsHierarchical Algorithms
The key step in hierarchical algorithms is the 
decision of which sets to join (or split).

One of the drawbacks is that once you’ve made 
this decision, you can’t go back and split (or 
re-join) clusters.

There are lots of ways to make these decisions.
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Agglomerative AlgorithmsAgglomerative Algorithms
Agglomerative algorithms work as follows:

Step1: Put each object in its own cluster.

Step2: Choose (via a linkage criterion), two
clusters and merge them.

Step3: If there is only one cluster left, stop.
Else, go to step 2.
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Single LinkageSingle Linkage
One of the oldest and simplest methods.

Choose the clusters with the shortest distance
between the closest object in one cluster and the
closest object in the other cluster.

aka “Nearest-Neighbor”
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Complete LinkageComplete Linkage

Choose the clusters with the shortest distance
between the furthest object in one cluster and the
furthest object in the other cluster.

aka “Furthest-Neighbor”

c 2004 Scott C.-H. Pegg



Average LinkageAverage Linkage

Choose the clusters with the shortest average
distance between all objects in one cluster and all
objects in the other cluster.
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Centroid Centroid LinkageLinkage
Choose the clusters with the shortest distance
between the centroid of one cluster and the
centroid of the other cluster.

c 2004 Scott C.-H. Pegg



Some ComparisonsSome Comparisons
Single linkage

Complete linkage

Centroid linkage

Makes long, 
drawn-out clusters

Makes compact 
clusters

Somewhere in between
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ComplexityComplexity

Almost all implementations of hierarchical 
clustering are agglomerative because of the 
theoretical run times.

In an agglomerative algorithm, the first step 
considers all of the possible fusions of two 
(single element) clusters,

n(n-1)
2

=  O(n2)
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ComplexityComplexity

A divisive algorithm must first consider all 
divisions of the entire data set into two non-
empty sets,

2n-1 - 1

There do exist some divisive algorithms that use 
tricks to get around the expensive first steps.

=  O(2n)
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The The MacnaughtonMacnaughton--Smith MethodSmith Method

Step 1: Find the object with the highest average 
distance from all of the others.

This object forms a splinter set.
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|orig set|

The The MacnaughtonMacnaughton--Smith MethodSmith Method
Step 2: For each object left in the original set, 

calculate the difference between the average 
distance from objects in the set and the average 
distance from objects in the splinter set.

Diff(X)  =  1 Σ
A in orig set

D(X, A)

|spliter set|
1 Σ

B in orig set
D(X, B)-
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The The MacnaughtonMacnaughton--Smith MethodSmith Method

Step 3: If all the differences are negative, stop.
Else, move the object with the most 
positive difference to the splinter set and 
go to Step 2.

This algorithm takes O(n2) instead of O(2n) to 
split a group
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“Fuzzy” Variants“Fuzzy” Variants
There are “fuzzy” variants to both partitioning 
and hierarchical methods.

These variants allow objects to be assigned to 
more than one cluster at a time.
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A Sample AlgorithmA Sample Algorithm
Input: A set of data points, {x1, x2, …, xn}, and a threshold t.

i = 1,  k = 1 
assign x1 to cluster C1
if not all points assigned:

i = i + 1
dist =  min(distance between xi and all x assigned)
Cm = cluster with corresponding to dist
if dist < t:  assign xi to Cm
else: 

k = k + 1
assign xi to Ck

Is this a partitioning algorithm, or a hierarchical algorithm?

What parts of the algorithm effect the final clustering?

What’s the runtime of this algorithm?
c 2004 Scott C.-H. Pegg



Choosing an AlgorithmChoosing an Algorithm
Often, there is no clear choice of clustering 
algorithm to use.

Considerations include:
• Total number of objects
• Number of likely clusters
• Shape of clusters

You may want to try more than one algorithm.
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EvaluatingEvaluating ClusteringsClusterings
Clusterings can often be quite arbitrary.

How do you know when you’ve clustered 
correctly?

No algorithm works best on all sets of objects.

Unless you know the answer ahead of time, in 
general you don’t.

But that doesn’t mean that people haven’t tried 
to evaluate clusterings mathematically.
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Sum of Distances MethodSum of Distances Method

This often-used quantitative method looks at the 
sum of distances between objects within a cluster 
(or to a representative object).

The lower the sum, the tighter (and often “better”) 
the clustering.

Q = Σ
n = 1

K

Σ
i,j in Sn

D(Xi - Xj) + C
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Back to Binary RelationsBack to Binary Relations

One qualitative way to look at the results of a 
clustering is to look at the equivalence relation 
defined by the clustering itself.

Does it make sense in the context of your 
particular problem?

Is it essentially the same as the relationship 
between objects that the clustering algorithm was 
using?
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CautionsCautions
Clustering is often used as a “fishing” tool--
cluster first and ask questions later.

Think about the question you’re trying to 
answer and choose a relationship and 
algorithm accordingly. 

Boundaries between clusters are almost never 
“nice”. 

Don’t take them as gospel, especially if 
they change when different algorithms are 
used on the same data.
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Clustering in Clustering in BioinformaticsBioinformatics
Objects Variables Algorithms
genes sequence, organism, 

promoters
agglomerative

proteins sequence, structure, 
function

partitioning,
hierarchical

microarray
data

fluorescence, time,
conditions

agglomerative

small
compounds

structure, bioactivity partitioning,
hierarchical

patients treatment, outcome,
location

partitioning,
hierarchical
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SummarySummary
What have we learned today?

• Some relational algebra
• Some useful relations between objects
• Data handling
• Partitioning methods (K-means, etc.)
• Hierarchical methods (single linkage, etc.)
• How to choose an algorithm
• How to evaluate a clustering
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