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Dynamic Programming

• Divide and conquer
• Example applications

– Knapsack problem
– Partition problem
– Sequence alignment using local similarity

• Matching one sequence onto another
• Matching parts of one sequence onto parts of

another



Divide and Conquer

• Formulate the solution to a large problem
in terms of solutions to smaller problems
– Binary search
– Dynamic programming



Dynamic Programming
Components

• Solution must be formulated as a
recurrence relationship or recursive
algorithm

• There must be an evaluation order that
solves smaller problems before larger ones

• Storing the solutions to smaller problems
makes solving the larger problem
computable via table lookup
– There cannot be too many “smaller” problems



Fibonacci Number by Recursion

• F(n) = F(n - 1) + F(n - 2)
– where F(0) = 0, F(1) = 1
– 0, 1, 1, 2, 3, 5, 8, 13, …

• Compute using recursion
def F(n):
    if n < 2:
        return n
    else:
        return F(n - 1) + F(n - 2)



Recursion Complexity*

• Let f(n) be “the number of steps to
compute the nth Fibonacci number using
this algorithm”. We'll compute both upper
bounds and lower bounds on f(n).

• We know that for n > 1 and constant c,
 f(n) = f(n-1) + f(n-2) + c

*from http://www.math.grin.edu/~rebelsky/Courses/CS152/99S/Assignments/notes.06.html#Fibonacci



Complexity Upper Bound

• Since f(n-1) > f(n-2) and c is expected to
be small, we can say that f(n) ≤ 2*f(n-1).
That means that:
– f(n) ≤ 2*2*f(n-2), or
– f(n) ≤ 2*2*2*f(n-3), or more generally,
– f(n) ≤ 2k*f(n-k).
– For k = (n-1), f(n) ≤ 2n-1*f(1).

• Since f(1) is a constant, F(n) is O(2n).



Complexity Lower Bound

• Since f(n-2) < f(n-1), and c is expected to
be small, we can say that f(n) >= 2*f(n-2).
Using a similar analyses to the one above,
we get that F(n) is in Ω(2n/2).

• Both lower bound and upper bound are
exponential. We can therefore say that F(n)
is an exponential algorithm.



Alternate Analysis

• F(n) = (Φn - (-Φ)-n) / √5
– The Golden Ratio Φ is approximately 1.618

• Because the leaves of our recursion are
F(1) = 1, there must be at least F(n) leaves
in order to sum up to F(n), which means
the entire recursion runs in exponential
time



Fibonacci Number by
Dynamic Programming

• We have a recurrence relationship
– F(n) = F(n - 1) + F(n - 2)

• We have an evaluation order which solves
smaller problems before larger ones
– F(1), F(2), …, F(n-2), F(n-1), F(n)

• There are not too many smaller problems
– Exactly (n - 1)

• Dynamic programming is applicable



Fibonacci Number by
Dynamic Programming

• Compute using dynamic programming

• Complexity is O(n) from “for” loop
– Improvement over exponential time comes from

storing and looking up intermediate results

def F(n):
    f = [0, 1]
    for k in range(2, n + 1):
        f.append(f[k - 1] + f[k - 2])
    return f[n]



Sequence Alignment using
Dynamic Programming

• Similar to dynamic programming solutions to the
approximate string matching problem

• Needleman, S.B. and Wunsch, C.D. A General
Method Applicable to the Search for Similarities
in Amino Acid Sequence of Two Proteins. J. Mol.
Biol., 48, pp. 443-453, 1970.

• Smith, T.F. and Waterman, M.S. Identification of
Common Molecular Subsequences. J. Mol. Biol.,
147, pp. 195-197, 1981.



Approximate String Matching

• Given two character strings A (length n)
and B (length m), what is the minimum
number of substitutions, insertions and
deletions required to transform A into B?

• Alternatively, what fragments of A and B
are matched?



Cost Metric

• Best solution has the minimum total cost
of:
– substitution cost

• replacing Ai with Bj

– insertion cost
• inserting Bj

– deletion cost
• skipping Ai



String Matching using
Dynamic Programming

• Consider the last character from strings A
and B.  The possibilities are: (1) they
match, (2) An is matched to something
before Bm, (3) Bm is matched to something
before An.

xxxxxxxAn
(1) xxxxxxxBm
(2) xxxxxxxxxxBm
(3) xxxxxBm



String Matching using
Dynamic Programming

• Recurrence relationship
– Let cost(An, Bm) be the cost of matching two

strings where An and Bm are the last characters:
 cost(An, Bm) = minimum(

 cost(An-1, Bm-1) + substitution(An, Bm),
 cost(An, Bm-1) + insertion(Bm),
 cost(An-1, Bm) + deletion(An)

 )



String Matching using
Dynamic Programming

• Boundary conditions
– Let A1 and B1 denote the first character of each

string and insert dummy characters A0 and B0,
 cost(A0, Bj) = initial_insertion(B0 through Bj)
 cost(Aj, B0) = initial_deletion(A0 through Ai)
 cost(A0, B0) = 0
– Note that initial insertion and deletion costs

may be different than internal ones



String Matching using
Dynamic Programming

• Order of evaluation
– To compute cost(An, Bm), we need the results

from cost(An-1, Bm-1), cost(An, Bm-1), and
cost(An-1, Bm)

– By induction, we need to compute cost(Ai, Bj)
for all i < n and j < m

• The number of intermediate solutions is
n×m



String Matching using
Dynamic Programming

• Computing the cost
– The n×m nature of the intermediate solutions

suggests that they may be stored in a two-
dimensional array, “H”

– The evaluation order requires that the array be
filled in a left-to-right, top-to-bottom fashion

– The cost of aligning the two strings is in the
cell at the bottom right corner



String Matching using
Dynamic Programming

• Example
– Substitution cost = 0 if

Ai = Bj; 1 otherwise
– Insertion and deletion

costs = 1
– Match “abbcd” to

“accd”

a b b c d
0 1 2 3 4 5

a 1 0 1 2 3 4
c 2 1 1 2 2 3
c 3 2 2 2 2 3
d 4 3 3 3 3 2
The best score is 2

H



String Matching using
Dynamic Programming

• Recovering the
alignment
– Trace back from Hn,m

– Find which operation
resulted in the value of
the cell and proceed to
corresponding cell:

• match → above-left
• insert → above
• delete → left

a b b c d
0 1 2 3 4 5

a 1 0 1 2 3 4
c 2 1 1 2 2 3
c 3 2 2 2 2 3
d 4 3 3 3 3 2
a-ccd
abbcd

ac-cd
abbcd

H



String Matching using
Dynamic Programming

• Recovering the alignment
– The operation that resulted in a particular cell

value may either be recorded when computing
H, or recomputed during trace back

– There are multiple back traces when a cell on
the optimal path may be reached via more than
one operation

– All these back traces share the same best score
and there are no back traces with a better score



Sequence Alignment

• Given two sequences, where are the
similar fragments ...
– if the two sequences are mostly similar?

• global alignment where all residues are matched
– if only parts are similar?

• local alignment where only some residues are
matched



Sequence Alignment

• This is similar to approximate string
matching

• Algorithm transformation
– substitution costs replaced by similarity scores
– insertion and deletion costs replaced by gap

penalties
– best solution being maximum instead of

minimum



Sequence Alignment

• The recurrence relationship is typically
written as
 Hi,j = maximum(

 Hi-1,j-1 + S(A i, B j),
 Hi-1,j − gap penalty,
 Hi,j-1 − gap penalty

 )



Amino Acid Score Matrices

• Substitutions scores are typically stored in
a matrix whose rows and columns are
residue types and whose cells are the
similarity between the two types of
residues
– Genetic code matrix
– PAM 250 (Dayhoff)
– BLOSUM



Amino Acid Score Matrices

• Dynamic programming algorithm for
sequence alignment is the same regardless
of which matrix is used

• Matrix construction will be covered in
another lecture



Needleman & Wunsch

• Global alignment method for finding
identical matching residues

• Used multiple genetic code score matrix
for testing evolutionary distance
hypotheses



Needleman & Wunsch

• Genetic code score matrix
– 1 for identical amino acids
– 0 for amino acid pairs whose codons have no

possible corresponding base
– Range of values between 0 and 1 for pairs with

maximum of one or two corresponding bases

• Constant gap penalty per insertion/deletion
– Values range from 0 to 25



Needleman & Wunsch

• Procedure for comparing A to B
– Produce a set of sequences by randomizing B
– Align randomized set against A to obtain

“random” score average and standard deviation
– Align B to A to find a “maximum match” score
– Compute number of standard deviations

“maximum match” score is from “random”
score



Needleman & Wunsch

• Why not examine just the best solution?
– Dynamic programming will always produce

the best answer for the problem at hand,
whether the question is meaningful or not

– The significance of the question can only be
measured relative to some control

– If “maximum match” score is more than 3
standard deviations above “random” score, the
result is considered significant



Needleman & Wunsch

• Results and conclusions
– Alignments between β-hemoglobin and

myoglobin were significant for all seven sets of
parameters tested

– Alignments between ribonuclease and
lysozyme were not significant for any of the
seven sets of parameters tested

– Beware of global alignments when the two
sequences are not “closely” related



Smith & Waterman

• Local alignment method for identifying
best matching fragment

• Score matrix remains unchanged
• Extends gap penalty to be length-

dependent
– Recurrence relationship changes



Smith & Waterman

• Recurrence relationship with length-
dependent gap penalty
 Hi,j = maximum(

 Hi-1,j-1 + S(Ai, Bj),
 maximum(Hi-k,j − Wk, 1 ≤ k < i),
 maximum(Hi,j-m − Wm, 1 ≤ m < j),
 0

 )



Smith & Waterman

• Wx is the penalty for a gap of length x

• Score at any cell should not drop below
zero, which would penalize subsequent
fragment alignments



Smith & Waterman

• Best aligned fragments are found by
starting at cell with highest score and trace
back to cell with zero score

• More aligned fragments may be found by
back traces starting at other high scoring
cells



Summary

• Dynamic programming is a divide-and-
conquer method for solving problems with
recurrence relationships
– Results from intermediate results are stored so

they do not need to be recomputed (space-time
trade-off)

– There is always a “best” solution, but it still
may not be a reasonable solution



Homework

• Implement the Smith-Waterman algorithm
– Write a function which accepts the following

arguments:
• 2 sequences
• a similarity measure between sequence elements

(either a function which takes two residue types as
arguments, or a two-dimensional matrix)

• a gap penalty function, which takes the gap length
as an argument



Homework

• Implement the Smith-Waterman algorithm
– Your function should return the common

subsequence with the highest score
– For grading purposes, your function should

also print out the score matrix
– E-mail both your code and program output to

conrad@cgl.ucsf.edu



Homework

• Input data
– Apply your code to the example from the

Smith & Waterman paper
•CAGCCUCGCUUAG vs. AAUGCCAUUGACGG
• S(Ai, Bj) = 1 if Ai = Bj; -1/3 otherwise
• Wk = 1.0 + (1/3) * k
• Also try GCCCUGCUUAG  vs. UGCCGCUGACGG

– Your alignment and score matrix should match
those published in the paper
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