BMI-203: Biocomputing Algorithms Lecture 3: Dynamic Programming

Instructor: Conrad Huang E-mail: conrad@cgl.ucsf.edu Phone: 415-476-0415

Dynamic Programming

- Divide and conquer
- Example applications
 - Knapsack problem
 - Partition problem
 - Sequence alignment using local similarity
 - Matching one sequence onto another
 - Matching parts of one sequence onto parts of another

Divide and Conquer

- Formulate the solution to a large problem in terms of solutions to smaller problems
 - Binary search
 - Dynamic programming

Dynamic Programming Components

- Solution must be formulated as a recurrence relationship or recursive algorithm
- There must be an evaluation order that solves smaller problems before larger ones
- Storing the solutions to smaller problems makes solving the larger problem computable via table lookup

– There cannot be too many "smaller" problems

Fibonacci Number by Recursion

- F(n) = F(n 1) + F(n 2)- where F(0) = 0, F(1) = 1- 0, 1, 1, 2, 3, 5, 8, 13, ...
- Compute using recursion

```
def F(n):
 if n < 2:
     return n
 else:
     return F(n - 1) + F(n - 2)</pre>
```

Recursion Complexity*

- Let f(n) be "the number of steps to compute the nth Fibonacci number using this algorithm". We'll compute both upper bounds and lower bounds on f(n).
- We know that for n > 1 and constant c, f(n) = f(n-1) + f(n-2) + c

*from http://www.math.grin.edu/~rebelsky/Courses/CS152/99S/Assignments/notes.06.html#Fibonacci

Complexity Upper Bound

- Since f(n-1) > f(n-2) and c is expected to be small, we can say that f(n) ≤ 2*f(n-1). That means that:
 - $f(n) \le 2*2*f(n-2)$, or
 - $f(n) \le 2*2*2*f(n-3)$, or more generally,
 - $-f(n) \le 2^{k*}f(n-k).$
 - For k = (n-1), $f(n) \le 2^{n-1} * f(1)$.
- Since f(1) is a constant, F(n) is $O(2^n)$.

Complexity Lower Bound

- Since f(n-2) < f(n-1), and c is expected to be small, we can say that f(n) >= 2*f(n-2). Using a similar analyses to the one above, we get that F(n) is in Ω(2^{n/2}).
- Both lower bound and upper bound are exponential. We can therefore say that F(n) is an exponential algorithm.

Alternate Analysis

• $F(n) = (\Phi^n - (-\Phi)^{-n}) / \sqrt{5}$

– The Golden Ratio Φ is approximately 1.618

 Because the leaves of our recursion are F(1) = 1, there must be at least F(n) leaves in order to sum up to F(n), which means the entire recursion runs in exponential time Fibonacci Number by Dynamic Programming

- We have a recurrence relationship -F(n) = F(n-1) + F(n-2)
- We have an evaluation order which solves smaller problems before larger ones
 F(1), F(2), ..., F(n-2), F(n-1), F(n)
- There are not too many smaller problems
 Exactly (n 1)
- Dynamic programming is applicable

Fibonacci Number by Dynamic Programming

• Compute using dynamic programming

```
def F(n):
 f = [0, 1]
 for k in range(2, n + 1):
     f.append(f[k - 1] + f[k - 2])
     return f[n]
```

• Complexity is O(n) from "for" loop

 Improvement over exponential time comes from storing and looking up intermediate results Sequence Alignment using Dynamic Programming

- Similar to dynamic programming solutions to the approximate string matching problem
- Needleman, S.B. and Wunsch, C.D. A General Method Applicable to the Search for Similarities in Amino Acid Sequence of Two Proteins. *J. Mol. Biol.*, 48, pp. 443-453, 1970.
- Smith, T.F. and Waterman, M.S. Identification of Common Molecular Subsequences. *J. Mol. Biol.*, 147, pp. 195-197, 1981.

Approximate String Matching

- Given two character strings A (length n) and B (length m), what is the minimum number of substitutions, insertions and deletions required to transform A into B?
- Alternatively, what fragments of A and B are matched?

- Best solution has the minimum total cost of:
 - substitution cost
 - replacing A_i with B_i
 - insertion cost
 - inserting B_j
 - deletion cost
 - skipping A_i

Consider the last character from strings A and B. The possibilities are: (1) they match, (2) A_n is matched to something before B_m, (3) B_m is matched to something before A_n.

- Recurrence relationship
 - Let $cost(A_n, B_m)$ be the cost of matching two strings where A_n and B_m are the last characters: $cost(A_n, B_m) = minimum($ $cost(A_{n-1}, B_{m-1}) + substitution(A_n, B_m),$ $cost(A_n, B_{m-1}) + insertion(B_m),$ $cost(A_{n-1}, B_m) + deletion(A_n)$

Boundary conditions

- Let A_1 and B_1 denote the first character of each string and insert dummy characters A_0 and B_0 , $cost(A_0, B_j) = initial_insertion(B_0 through B_j)$ $cost(A_j, B_0) = initial_deletion(A_0 through A_i)$ $cost(A_0, B_0) = 0$
- Note that initial insertion and deletion costs may be different than internal ones

- Order of evaluation
 - To compute $cost(A_n, B_m)$, we need the results from $cost(A_{n-1}, B_{m-1})$, $cost(A_n, B_{m-1})$, and $cost(A_{n-1}, B_m)$
 - By induction, we need to compute cost(A_i, B_j) for all i < n and j < m
- The number of intermediate solutions is n×m

• Computing the cost

- The n×m nature of the intermediate solutions suggests that they may be stored in a twodimensional array, "H"
- The evaluation order requires that the array be filled in a left-to-right, top-to-bottom fashion
- The cost of aligning the two strings is in the cell at the bottom right corner

• Example

- Substitution cost = 0 if $A_i = B_i$; 1 otherwise
- Insertion and deletion
 costs = 1
- Match "abbcd" to
 "accd"

Η		a	b		C	
	0	1	2	3	4	
a	1	0	1	2	3	4
С	2	1	1	2	2	3
С	3		2		2	3
d	4	3	3	3	3	2

The best score is 2

- Recovering the alignment
 - Trace back from H_{n,m}
 - Find which operation resulted in the value of the cell and proceed to corresponding cell:
 - match \rightarrow above-left
 - insert \rightarrow above
 - delete \rightarrow left

Η		a	b	b	C	d
	0	1	2	3	4	5
a	1	0	1	2	3	4
C	2	1	1	2	2	3
С	3	2	2	2	2	3
d	4	3	3	3	3	2

a-ccd	ac-cd
abbcd	abbcd

- Recovering the alignment
 - The operation that resulted in a particular cell value may either be recorded when computing H, or recomputed during trace back
 - There are multiple back traces when a cell on the optimal path may be reached via more than one operation
 - All these back traces share the same best score and there are no back traces with a better score

Sequence Alignment

- Given two sequences, where are the similar fragments ...
 - if the two sequences are mostly similar?
 - global alignment where all residues are matched
 - if only parts are similar?
 - local alignment where only some residues are matched

Sequence Alignment

- This is similar to approximate string matching
- Algorithm transformation
 - substitution costs replaced by similarity scores
 - insertion and deletion costs replaced by gap penalties
 - best solution being maximum instead of minimum

Sequence Alignment

• The recurrence relationship is typically written as

 $H_{i,j} = maximum($ $H_{i-1,j-1} + S(A_i, B_j),$ $H_{i-1,j} - gap penalty,$ $H_{i,j-1} - gap penalty$)

Amino Acid Score Matrices

- Substitutions scores are typically stored in a matrix whose rows and columns are residue types and whose cells are the similarity between the two types of residues
 - Genetic code matrix
 - PAM 250 (Dayhoff)
 - BLOSUM

Amino Acid Score Matrices

- Dynamic programming algorithm for sequence alignment is the same regardless of which matrix is used
- Matrix construction will be covered in another lecture

- Global alignment method for finding identical matching residues
- Used multiple genetic code score matrix for testing evolutionary distance hypotheses

• Genetic code score matrix

- -1 for identical amino acids
- 0 for amino acid pairs whose codons have no possible corresponding base
- Range of values between 0 and 1 for pairs with maximum of one or two corresponding bases
- Constant gap penalty per insertion/deletion
 Values range from 0 to 25

- Procedure for comparing A to B
 - Produce a set of sequences by randomizing B
 - Align randomized set against A to obtain
 "random" score average and standard deviation
 - Align B to A to find a "maximum match" score
 - Compute number of standard deviations
 "maximum match" score is from "random"
 score

- Why not examine just the best solution?
 - Dynamic programming will always produce the best answer for the problem at hand, whether the question is meaningful or not
 - The significance of the question can only be measured relative to some control
 - If "maximum match" score is more than 3 standard deviations above "random" score, the result is considered significant

• Results and conclusions

- Alignments between β-hemoglobin and myoglobin were significant for all seven sets of parameters tested
- Alignments between ribonuclease and lysozyme were not significant for any of the seven sets of parameters tested
- Beware of global alignments when the two sequences are not "closely" related

- Local alignment method for identifying best matching fragment
- Score matrix remains unchanged
- Extends gap penalty to be lengthdependent
 - Recurrence relationship changes

• Recurrence relationship with lengthdependent gap penalty $H_{ii} = maximum($ $H_{i-1,i-1} + S(A_i, B_i),$ $maximum(H_{i-k,i} - W_k, 1 \le k \le i),$ $maximum(H_{i,i-m} - W_m, 1 \le m < j),$ ()

- W_x is the penalty for a gap of length x
- Score at any cell should not drop below zero, which would penalize subsequent fragment alignments

- Best aligned fragments are found by starting at cell with highest score and trace back to cell with zero score
- More aligned fragments may be found by back traces starting at other high scoring cells

- Dynamic programming is a divide-andconquer method for solving problems with recurrence relationships
 - Results from intermediate results are stored so they do not need to be recomputed (space-time trade-off)
 - There is always a "best" solution, but it still may not be a reasonable solution

Homework

- Implement the Smith-Waterman algorithm
 - Write a function which accepts the following arguments:
 - 2 sequences
 - a similarity measure between sequence elements (either a function which takes two residue types as arguments, or a two-dimensional matrix)
 - a gap penalty function, which takes the gap length as an argument

Homework

- Implement the Smith-Waterman algorithm
 - Your function should return the common subsequence with the highest score
 - For grading purposes, your function should also print out the score matrix
 - *E*-mail both your code and program output to conrad@cgl.ucsf.edu

Homework

- Input data
 - Apply your code to the example from the Smith & Waterman paper
 - CAGCCUCGCUUAG VS. AAUGCCAUUGACGG
 - $S(A_i, B_j) = 1$ if $A_i = B_j$; -1/3 otherwise
 - $W_k = 1.0 + (1/3) * k$
 - Also try GCCCUGCUUAG vs. UGCCGCUGACGG
 - Your alignment and score matrix should match those published in the paper