
BMI-203: Biocomputing Algorithms
Lecture 3: Dynamic Programming

Instructor: Conrad Huang
E-mail: conrad@cgl.ucsf.edu

Phone: 415-476-0415

Copyright 2002 Conrad C. Huang. All rights reserved.

Dynamic Programming

• Divide and conquer
• Example applications

– Knapsack problem
– Partition problem
– Sequence alignment using local similarity

• Matching one sequence onto another
• Matching parts of one sequence onto parts of

another

Divide and Conquer

• Formulate the solution to a large problem
in terms of solutions to smaller problems
– Binary search
– Dynamic programming

Dynamic Programming
Components

• Solution must be formulated as a
recurrence relationship or recursive
algorithm

• There must be an evaluation order that
solves smaller problems before larger ones

• Storing the solutions to smaller problems
makes solving the larger problem
computable via table lookup
– There cannot be too many “smaller” problems

Fibonacci Number by Recursion

• F(n) = F(n - 1) + F(n - 2)
– where F(0) = 0, F(1) = 1
– 0, 1, 1, 2, 3, 5, 8, 13, …

• Compute using recursion
def F(n):
 if n < 2:
 return n
 else:
 return F(n - 1) + F(n - 2)

Recursion Complexity*

• Let f(n) be “the number of steps to
compute the nth Fibonacci number using
this algorithm”. We'll compute both upper
bounds and lower bounds on f(n).

• We know that for n > 1 and constant c,
 f(n) = f(n-1) + f(n-2) + c

*from http://www.math.grin.edu/~rebelsky/Courses/CS152/99S/Assignments/notes.06.html#Fibonacci

Complexity Upper Bound

• Since f(n-1) > f(n-2) and c is expected to
be small, we can say that f(n) ≤ 2*f(n-1).
That means that:
– f(n) ≤ 2*2*f(n-2), or
– f(n) ≤ 2*2*2*f(n-3), or more generally,
– f(n) ≤ 2k*f(n-k).
– For k = (n-1), f(n) ≤ 2n-1*f(1).

• Since f(1) is a constant, F(n) is O(2n).

Complexity Lower Bound

• Since f(n-2) < f(n-1), and c is expected to
be small, we can say that f(n) >= 2*f(n-2).
Using a similar analyses to the one above,
we get that F(n) is in Ω(2n/2).

• Both lower bound and upper bound are
exponential. We can therefore say that F(n)
is an exponential algorithm.

Alternate Analysis

• F(n) = (Φn - (-Φ)-n) / √5
– The Golden Ratio Φ is approximately 1.618

• Because the leaves of our recursion are
F(1) = 1, there must be at least F(n) leaves
in order to sum up to F(n), which means
the entire recursion runs in exponential
time

Fibonacci Number by
Dynamic Programming

• We have a recurrence relationship
– F(n) = F(n - 1) + F(n - 2)

• We have an evaluation order which solves
smaller problems before larger ones
– F(1), F(2), …, F(n-2), F(n-1), F(n)

• There are not too many smaller problems
– Exactly (n - 1)

• Dynamic programming is applicable

Fibonacci Number by
Dynamic Programming

• Compute using dynamic programming

• Complexity is O(n) from “for” loop
– Improvement over exponential time comes from

storing and looking up intermediate results

def F(n):
 f = [0, 1]
 for k in range(2, n + 1):
 f.append(f[k - 1] + f[k - 2])
 return f[n]

Sequence Alignment using
Dynamic Programming

• Similar to dynamic programming solutions to the
approximate string matching problem

• Needleman, S.B. and Wunsch, C.D. A General
Method Applicable to the Search for Similarities
in Amino Acid Sequence of Two Proteins. J. Mol.
Biol., 48, pp. 443-453, 1970.

• Smith, T.F. and Waterman, M.S. Identification of
Common Molecular Subsequences. J. Mol. Biol.,
147, pp. 195-197, 1981.

Approximate String Matching

• Given two character strings A (length n)
and B (length m), what is the minimum
number of substitutions, insertions and
deletions required to transform A into B?

• Alternatively, what fragments of A and B
are matched?

Cost Metric

• Best solution has the minimum total cost
of:
– substitution cost

• replacing Ai with Bj

– insertion cost
• inserting Bj

– deletion cost
• skipping Ai

String Matching using
Dynamic Programming

• Consider the last character from strings A
and B. The possibilities are: (1) they
match, (2) An is matched to something
before Bm, (3) Bm is matched to something
before An.

xxxxxxxAn
(1) xxxxxxxBm
(2) xxxxxxxxxxBm
(3) xxxxxBm

String Matching using
Dynamic Programming

• Recurrence relationship
– Let cost(An, Bm) be the cost of matching two

strings where An and Bm are the last characters:
 cost(An, Bm) = minimum(

 cost(An-1, Bm-1) + substitution(An, Bm),
 cost(An, Bm-1) + insertion(Bm),
 cost(An-1, Bm) + deletion(An)

)

String Matching using
Dynamic Programming

• Boundary conditions
– Let A1 and B1 denote the first character of each

string and insert dummy characters A0 and B0,
 cost(A0, Bj) = initial_insertion(B0 through Bj)
 cost(Aj, B0) = initial_deletion(A0 through Ai)
 cost(A0, B0) = 0
– Note that initial insertion and deletion costs

may be different than internal ones

String Matching using
Dynamic Programming

• Order of evaluation
– To compute cost(An, Bm), we need the results

from cost(An-1, Bm-1), cost(An, Bm-1), and
cost(An-1, Bm)

– By induction, we need to compute cost(Ai, Bj)
for all i < n and j < m

• The number of intermediate solutions is
n×m

String Matching using
Dynamic Programming

• Computing the cost
– The n×m nature of the intermediate solutions

suggests that they may be stored in a two-
dimensional array, “H”

– The evaluation order requires that the array be
filled in a left-to-right, top-to-bottom fashion

– The cost of aligning the two strings is in the
cell at the bottom right corner

String Matching using
Dynamic Programming

• Example
– Substitution cost = 0 if

Ai = Bj; 1 otherwise
– Insertion and deletion

costs = 1
– Match “abbcd” to

“accd”

a b b c d
0 1 2 3 4 5

a 1 0 1 2 3 4
c 2 1 1 2 2 3
c 3 2 2 2 2 3
d 4 3 3 3 3 2
The best score is 2

H

String Matching using
Dynamic Programming

• Recovering the
alignment
– Trace back from Hn,m

– Find which operation
resulted in the value of
the cell and proceed to
corresponding cell:

• match → above-left
• insert → above
• delete → left

a b b c d
0 1 2 3 4 5

a 1 0 1 2 3 4
c 2 1 1 2 2 3
c 3 2 2 2 2 3
d 4 3 3 3 3 2
a-ccd
abbcd

ac-cd
abbcd

H

String Matching using
Dynamic Programming

• Recovering the alignment
– The operation that resulted in a particular cell

value may either be recorded when computing
H, or recomputed during trace back

– There are multiple back traces when a cell on
the optimal path may be reached via more than
one operation

– All these back traces share the same best score
and there are no back traces with a better score

Sequence Alignment

• Given two sequences, where are the
similar fragments ...
– if the two sequences are mostly similar?

• global alignment where all residues are matched
– if only parts are similar?

• local alignment where only some residues are
matched

Sequence Alignment

• This is similar to approximate string
matching

• Algorithm transformation
– substitution costs replaced by similarity scores
– insertion and deletion costs replaced by gap

penalties
– best solution being maximum instead of

minimum

Sequence Alignment

• The recurrence relationship is typically
written as
 Hi,j = maximum(

 Hi-1,j-1 + S(A i, B j),
 Hi-1,j − gap penalty,
 Hi,j-1 − gap penalty

)

Amino Acid Score Matrices

• Substitutions scores are typically stored in
a matrix whose rows and columns are
residue types and whose cells are the
similarity between the two types of
residues
– Genetic code matrix
– PAM 250 (Dayhoff)
– BLOSUM

Amino Acid Score Matrices

• Dynamic programming algorithm for
sequence alignment is the same regardless
of which matrix is used

• Matrix construction will be covered in
another lecture

Needleman & Wunsch

• Global alignment method for finding
identical matching residues

• Used multiple genetic code score matrix
for testing evolutionary distance
hypotheses

Needleman & Wunsch

• Genetic code score matrix
– 1 for identical amino acids
– 0 for amino acid pairs whose codons have no

possible corresponding base
– Range of values between 0 and 1 for pairs with

maximum of one or two corresponding bases

• Constant gap penalty per insertion/deletion
– Values range from 0 to 25

Needleman & Wunsch

• Procedure for comparing A to B
– Produce a set of sequences by randomizing B
– Align randomized set against A to obtain

“random” score average and standard deviation
– Align B to A to find a “maximum match” score
– Compute number of standard deviations

“maximum match” score is from “random”
score

Needleman & Wunsch

• Why not examine just the best solution?
– Dynamic programming will always produce

the best answer for the problem at hand,
whether the question is meaningful or not

– The significance of the question can only be
measured relative to some control

– If “maximum match” score is more than 3
standard deviations above “random” score, the
result is considered significant

Needleman & Wunsch

• Results and conclusions
– Alignments between β-hemoglobin and

myoglobin were significant for all seven sets of
parameters tested

– Alignments between ribonuclease and
lysozyme were not significant for any of the
seven sets of parameters tested

– Beware of global alignments when the two
sequences are not “closely” related

Smith & Waterman

• Local alignment method for identifying
best matching fragment

• Score matrix remains unchanged
• Extends gap penalty to be length-

dependent
– Recurrence relationship changes

Smith & Waterman

• Recurrence relationship with length-
dependent gap penalty
 Hi,j = maximum(

 Hi-1,j-1 + S(Ai, Bj),
 maximum(Hi-k,j − Wk, 1 ≤ k < i),
 maximum(Hi,j-m − Wm, 1 ≤ m < j),
 0

)

Smith & Waterman

• Wx is the penalty for a gap of length x

• Score at any cell should not drop below
zero, which would penalize subsequent
fragment alignments

Smith & Waterman

• Best aligned fragments are found by
starting at cell with highest score and trace
back to cell with zero score

• More aligned fragments may be found by
back traces starting at other high scoring
cells

Summary

• Dynamic programming is a divide-and-
conquer method for solving problems with
recurrence relationships
– Results from intermediate results are stored so

they do not need to be recomputed (space-time
trade-off)

– There is always a “best” solution, but it still
may not be a reasonable solution

Homework

• Implement the Smith-Waterman algorithm
– Write a function which accepts the following

arguments:
• 2 sequences
• a similarity measure between sequence elements

(either a function which takes two residue types as
arguments, or a two-dimensional matrix)

• a gap penalty function, which takes the gap length
as an argument

Homework

• Implement the Smith-Waterman algorithm
– Your function should return the common

subsequence with the highest score
– For grading purposes, your function should

also print out the score matrix
– E-mail both your code and program output to

conrad@cgl.ucsf.edu

Homework

• Input data
– Apply your code to the example from the

Smith & Waterman paper
•CAGCCUCGCUUAG vs. AAUGCCAUUGACGG
• S(Ai, Bj) = 1 if Ai = Bj; -1/3 otherwise
• Wk = 1.0 + (1/3) * k
• Also try GCCCUGCUUAG vs. UGCCGCUGACGG

– Your alignment and score matrix should match
those published in the paper

	BMI-203: Biocomputing AlgorithmsLecture 3: Dynamic Programming
	Dynamic Programming
	Divide and Conquer
	Dynamic Programming Components
	Fibonacci Number by Recursion
	Recursion Complexity*
	Complexity Upper Bound
	Complexity Lower Bound
	Alternate Analysis
	Fibonacci Number by Dynamic Programming
	Fibonacci Number by Dynamic Programming
	Sequence Alignment using Dynamic Programming
	Approximate String Matching
	Cost Metric
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	String Matching using Dynamic Programming
	Sequence Alignment
	Sequence Alignment
	Sequence Alignment
	Amino Acid Score Matrices
	Amino Acid Score Matrices
	Needleman & Wunsch
	Needleman & Wunsch
	Needleman & Wunsch
	Needleman & Wunsch
	Needleman & Wunsch
	Smith & Waterman
	Smith & Waterman
	Smith & Waterman
	Smith & Waterman
	Summary
	Homework
	Homework
	Homework

