BMI-203: Biocomputing Algorithms Lecture 3: Dynamic Programming

Instructor: Conrad Huang E-mail: conrad@cgl.ucsf.edu Phone: 415-476-0415

Dynamic Programming

- Divide and conquer
- Example applications
- Knapsack problem
- Partition problem
- Sequence alignment using local similarity
- Matching one sequence onto another
- Matching parts of one sequence onto parts of another

Divide and Conquer

- Formulate the solution to a large problem in terms of solutions to smaller problems
- Binary search
- Dynamic programming

Dynamic Programming
 Components

- Solution must be formulated as a recurrence relationship or recursive algorithm
- There must be an evaluation order that solves smaller problems before larger ones
- Storing the solutions to smaller problems makes solving the larger problem computable via table lookup
- There cannot be too many "smaller" problems

Fibonacci Number by Recursion

- $\mathrm{F}(\mathrm{n})=\mathrm{F}(\mathrm{n}-1)+\mathrm{F}(\mathrm{n}-2)$
- where $\mathrm{F}(0)=0, F(1)=1$
$-0,1,1,2,3,5,8,13, \ldots$
- Compute using recursion
def $F(n)$:
if $\mathrm{n}<2$:
return n
else:

$$
\text { return } F(n-1)+F(n-2)
$$

Recursion Complexity*

- Let $\mathrm{f}(\mathrm{n})$ be "the number of steps to compute the nth Fibonacci number using this algorithm". We'll compute both upper bounds and lower bounds on $\mathrm{f}(\mathrm{n})$.
- We know that for $\mathrm{n}>1$ and constant c ,

$$
\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)+\mathrm{c}
$$

Complexity Upper Bound

- Since $\mathrm{f}(\mathrm{n}-1)>f(\mathrm{n}-2)$ and c is expected to be small, we can say that $\mathrm{f}(\mathrm{n}) \leq 2 * \mathrm{f}(\mathrm{n}-1)$. That means that:

$$
-\mathrm{f}(\mathrm{n}) \leq 2 * 2 * \mathrm{f}(\mathrm{n}-2) \text {, or }
$$

$-\mathrm{f}(\mathrm{n}) \leq 2 * 2 * 2 * \mathrm{f}(\mathrm{n}-3)$, or more generally,
$-\mathrm{f}(\mathrm{n}) \leq 2^{\mathrm{k} *} \mathrm{f}(\mathrm{n}-\mathrm{k})$.

- For k = ($\mathrm{n}-1$), $\mathrm{f}(\mathrm{n}) \leq 2^{\mathrm{n}-1 *} \mathrm{f}(1)$.
- Since $\mathrm{f}(1)$ is a constant, $\mathrm{F}(\mathrm{n})$ is $\mathrm{O}\left(2^{\mathrm{n}}\right)$.

Complexity Lower Bound

- Since $f(n-2)<f(n-1)$, and c is expected to be small, we can say that $f(n)>=2 * f(n-2)$. Using a similar analyses to the one above, we get that $F(n)$ is in $\Omega\left(2^{n / 2}\right)$.
- Both lower bound and upper bound are exponential. We can therefore say that $\mathrm{F}(\mathrm{n})$ is an exponential algorithm.

Alternate Analysis

- $\mathrm{F}(\mathrm{n})=\left(\Phi^{\mathrm{n}}-(-\Phi)^{-\mathrm{n}}\right) / \sqrt{5}$
- The Golden Ratio Φ is approximately 1.618
- Because the leaves of our recursion are $\mathrm{F}(1)=1$, there must be at least $\mathrm{F}(\mathrm{n})$ leaves in order to sum up to $\mathrm{F}(\mathrm{n})$, which means the entire recursion runs in exponential time

Fibonacci Number by
 Dynamic Programming

- We have a recurrence relationship
$-\mathrm{F}(\mathrm{n})=\mathrm{F}(\mathrm{n}-1)+\mathrm{F}(\mathrm{n}-2)$
- We have an evaluation order which solves smaller problems before larger ones
- F(1), F(2), ..., F(n-2), F(n-1), F(n)
- There are not too many smaller problems
- Exactly (n - 1)
- Dynamic programming is applicable

Fibonacci Number by
 Dynamic Programming

- Compute using dynamic programming $\operatorname{def} \mathrm{F}(\mathrm{n})$:

$$
f=[0,1]
$$

for k in range $(2, n+1)$:

$$
\text { f.append }(f[k-1]+f[k-2])
$$

return $\mathrm{f}[\mathrm{n}]$

- Complexity is O(n) from "for" loop
- Improvement over exponential time comes from storing and looking up intermediate results

Sequence Alignment using Dynamic Programming

- Similar to dynamic programming solutions to the approximate string matching problem
- Needleman, S.B. and Wunsch, C.D. A General Method Applicable to the Search for Similarities in Amino Acid Sequence of Two Proteins. J. Mol. Biol., 48, pp. 443-453, 1970.
- Smith, T.F. and Waterman, M.S. Identification of Common Molecular Subsequences. J. Mol. Biol., 147, pp. 195-197, 1981.

Approximate String Matching

- Given two character strings A (length n) and B (length m), what is the minimum number of substitutions, insertions and deletions required to transform A into B ?
- Alternatively, what fragments of A and B are matched?

Cost Metric

- Best solution has the minimum total cost of:
- substitution cost
- replacing A_{i} with B_{j}
- insertion cost
- inserting B_{j}
- deletion cost
- skipping A_{i}

String Matching using Dynamic Programming

- Consider the last character from strings A and B. The possibilities are: (1) they match, (2) A_{n} is matched to something before B_{m}, (3) B_{m} is matched to something before A_{n}.

(1)	xxxxxxxA ${ }_{n}$ XXXXXXXB
(2)	xxxxxxxxxxx ${ }_{m}$
(3)	xxxxxB $_{\text {m }}$

String Matching using Dynamic Programming

- Recurrence relationship
- Let $\operatorname{cost}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{m}}\right)$ be the cost of matching two strings where A_{n} and B_{m} are the last characters: $\operatorname{cost}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{m}}\right)=$ minimum $($

$$
\begin{aligned}
& \operatorname{cost}\left(A_{n-1}, B_{m-1}\right)+\operatorname{substitution}\left(A_{n}, B_{m}\right), \\
& \operatorname{cost}\left(A_{n}, B_{m-1}\right)+\operatorname{insertion}\left(B_{m}\right), \\
& \operatorname{cost}\left(A_{n-1}, B_{m}\right)+\operatorname{deletion}\left(A_{n}\right)
\end{aligned}
$$

)

$$
\begin{aligned}
& \text { String Matching using } \\
& \text { Dynamic Programming }
\end{aligned}
$$

- Boundary conditions
- Let A_{1} and B_{1} denote the first character of each string and insert dummy characters A_{0} and B_{0}, $\operatorname{cost}\left(\mathrm{A}_{0}, \mathrm{~B}_{\mathrm{j}}\right)=$ initial_insertion $\left(\mathrm{B}_{0}\right.$ through $\left.\mathrm{B}_{\mathrm{j}}\right)$ $\operatorname{cost}\left(\mathrm{A}_{\mathrm{j}}, \mathrm{B}_{0}\right)=$ initial_deletion $\left(\mathrm{A}_{0}\right.$ through $\left.\mathrm{A}_{\mathrm{i}}\right)$ $\operatorname{cost}\left(\mathrm{A}_{0}, \mathrm{~B}_{0}\right)=0$
- Note that initial insertion and deletion costs may be different than internal ones

String Matching using Dynamic Programming

- Order of evaluation
- To compute cost($\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{m}}$), we need the results from $\operatorname{cost}\left(\mathrm{A}_{\mathrm{n}-1}, \mathrm{~B}_{\mathrm{m}-1}\right), \operatorname{cost}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{m}-1}\right)$, and $\operatorname{cost}\left(\mathrm{A}_{\mathrm{n}-1}, \mathrm{~B}_{\mathrm{m}}\right)$
- By induction, we need to compute $\operatorname{cost}\left(\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}\right)$ for all $\mathrm{i}<\mathrm{n}$ and $\mathrm{j}<\mathrm{m}$
- The number of intermediate solutions is $\mathrm{n} \times \mathrm{m}$

String Matching using Dynamic Programming

- Computing the cost
- The $\mathrm{n} \times \mathrm{m}$ nature of the intermediate solutions suggests that they may be stored in a twodimensional array, "H"
- The evaluation order requires that the array be filled in a left-to-right, top-to-bottom fashion
- The cost of aligning the two strings is in the cell at the bottom right corner

String Matching using Dynamic Programming

- Example
- Substitution cost $=0$ if $\mathrm{A}_{\mathrm{i}}=\mathrm{B}_{\mathrm{j}}$; 1 otherwise
- Insertion and deletion costs = 1
- Match "abbcd" to "accd"

H	\mathbf{a}	\mathbf{b}	\mathbf{b}	\mathbf{c}	\mathbf{d}	
	0	1	2	3	4	5
\mathbf{a}	1	0	1	2	3	4
\mathbf{c}	2	1	1	2	2	3
\mathbf{c}	3	2	2	2	2	3
\mathbf{d}	4	3	3	3	3	2

The best score is 2

String Matching using Dynamic Programming

- Recovering the alignment
- Trace back from $\mathrm{H}_{\mathrm{n}, \mathrm{m}}$
- Find which operation resulted in the value of the cell and proceed to corresponding cell:
- match \rightarrow above-left
a-ccd ac-cd
- insert \rightarrow above
- delete \rightarrow left

String Matching using Dynamic Programming

- Recovering the alignment
- The operation that resulted in a particular cell value may either be recorded when computing H , or recomputed during trace back
- There are multiple back traces when a cell on the optimal path may be reached via more than one operation
- All these back traces share the same best score and there are no back traces with a better score

Sequence Alignment

- Given two sequences, where are the similar fragments ...
- if the two sequences are mostly similar?
- global alignment where all residues are matched
- if only parts are similar?
- local alignment where only some residues are matched

Sequence Alignment

- This is similar to approximate string matching
- Algorithm transformation
- substitution costs replaced by similarity scores
- insertion and deletion costs replaced by gap penalties
- best solution being maximum instead of minimum

Sequence Alignment

- The recurrence relationship is typically written as
$\mathrm{H}_{\mathrm{i}, \mathrm{j}}=\operatorname{maximum}($

$$
\mathrm{H}_{\mathrm{i}-1, \mathrm{j}-1}+\mathrm{S}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{j}}\right),
$$

$\mathrm{H}_{\mathrm{i}-1, \mathrm{j}}$ - gap penalty,
$\mathrm{H}_{\mathrm{i}, \mathrm{j}-1}$ - gap penalty
)

Amino Acid Score Matrices

- Substitutions scores are typically stored in a matrix whose rows and columns are residue types and whose cells are the similarity between the two types of residues
- Genetic code matrix
- PAM 250 (Dayhoff)
- BLOSUM

Amino Acid Score Matrices

- Dynamic programming algorithm for sequence alignment is the same regardless of which matrix is used
- Matrix construction will be covered in another lecture

Needleman \& Wunsch

- Global alignment method for finding identical matching residues
- Used multiple genetic code score matrix for testing evolutionary distance hypotheses

Needleman \& Wunsch

- Genetic code score matrix
- 1 for identical amino acids
- 0 for amino acid pairs whose codons have no possible corresponding base
- Range of values between 0 and 1 for pairs with maximum of one or two corresponding bases
- Constant gap penalty per insertion/deletion
- Values range from 0 to 25

Needleman \& Wunsch

- Procedure for comparing A to B
- Produce a set of sequences by randomizing B
- Align randomized set against A to obtain "random" score average and standard deviation
- Align B to A to find a "maximum match" score
- Compute number of standard deviations "maximum match" score is from "random" score

Needleman \& Wunsch

- Why not examine just the best solution?
- Dynamic programming will always produce the best answer for the problem at hand, whether the question is meaningful or not
- The significance of the question can only be measured relative to some control
- If "maximum match" score is more than 3 standard deviations above "random" score, the result is considered significant

Needleman \& Wunsch

- Results and conclusions
- Alignments between β-hemoglobin and myoglobin were significant for all seven sets of parameters tested
- Alignments between ribonuclease and lysozyme were not significant for any of the seven sets of parameters tested
- Beware of global alignments when the two sequences are not "closely" related

Smith \& Waterman

- Local alignment method for identifying best matching fragment
- Score matrix remains unchanged
- Extends gap penalty to be lengthdependent
- Recurrence relationship changes

Smith \& Waterman

- Recurrence relationship with lengthdependent gap penalty
$\mathrm{H}_{\mathrm{i}, \mathrm{j}}=\operatorname{maximum}($
$H_{i-1, j-1}+S\left(A_{i}, B_{j}\right)$, $\operatorname{maximum}\left(\mathrm{H}_{\mathrm{i}-\mathrm{k}, \mathrm{j}}-\mathrm{W}_{\mathrm{k}}, 1 \leq \mathrm{k}<\mathrm{i}\right)$, $\operatorname{maximum}\left(\mathrm{H}_{\mathrm{i}, \mathrm{j}-\mathrm{m}}-\mathrm{W}_{\mathrm{m}}, 1 \leq \mathrm{m}<\mathrm{j}\right)$, 0
)

Smith \& Waterman

- W_{x} is the penalty for a gap of length x
- Score at any cell should not drop below zero, which would penalize subsequent fragment alignments

Smith \& Waterman

- Best aligned fragments are found by starting at cell with highest score and trace back to cell with zero score
- More aligned fragments may be found by back traces starting at other high scoring cells

Summary

- Dynamic programming is a divide-andconquer method for solving problems with recurrence relationships
- Results from intermediate results are stored so they do not need to be recomputed (space-time trade-off)
- There is always a "best" solution, but it still may not be a reasonable solution

Homework

- Implement the Smith-Waterman algorithm
- Write a function which accepts the following arguments:
- 2 sequences
- a similarity measure between sequence elements (either a function which takes two residue types as arguments, or a two-dimensional matrix)
- a gap penalty function, which takes the gap length as an argument

Homework

- Implement the Smith-Waterman algorithm
- Your function should return the common subsequence with the highest score
- For grading purposes, your function should also print out the score matrix
- E-mail both your code and program output to conrad@cgl.ucsf.edu

Homework

- Input data
- Apply your code to the example from the Smith \& Waterman paper
- CAACCCUCGCUUAAG vs. AAAAUGCCAUUGAACGG
- $\mathrm{S}\left(\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}\right)=1$ if $\mathrm{A}_{\mathrm{i}}=\mathrm{B}_{\mathrm{j}} ;-1 / 3$ otherwise
- $\mathrm{W}_{\mathrm{k}}=1.0+(1 / 3) * \mathrm{k}$
- Also try GCCCUGCUUAAG vs. UGCCGCUGAACGG
- Your alignment and score matrix should match those published in the paper

