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Outline

* Graphs, Trees, Search (see Cormen, 5.4—
5.5, Chapter 13, Chapters 23-24, 27)

— Many different interesting algorithms in
Bioinformatics use graphs as representations
 Homework: An algorithm for computing the
minimum rmsd of two molecules under
graph equivalences

 Reference: Introduction to Algorithms, Second
Edition by Thomas H. Cormen (Editor), Charles
E. Leiserson, Ronald L. Rivest




What is a graph?

A directed graph G is a pair (V, E) where V
IS a finite set and E is a binary relation on V

V is the vertex set

E is the edge set
— Set of (u, v) where u,v are in V

Graphs can be directed or undirected

Degree: number of edges connected to a
vertex

Cycle: path of length greater than 2 which
starts and ends on the same vertex



Types of graphs

(b)

Directed Undirected



Types of graphs

‘FRETP

(a) (b)

Isomorphic Non-isomorphic
1,2,3,4,5,6 = u,v,w,X,y,z



What is a tree?

* Atreeis an undirected graph that is
connected

* A rooted tree is one that has a specified
special vertex called the root

* Trees can be ordered or not
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Graphs in bioinformatics:
Can represent many things

* Molecules

— Proteins and DNA: connected, acyclic,
directed graphs

— Organic molecules: connected, possibly
cyclic, undirected graphs

Blackboard Examples



Graphs in bioinformatics:
Metabolic Pathways (EcoCyc)

E. coli K-12 Pathway: fatty acid biosynthesis -- initial 4
steps
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raphs in bioinformatics:

hylogenetic trees
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Representing graphs

* Adjacency list
* Adjacency matrix

12 3 4 5
L 2] 5]/ 1lo 1 0 0
2 = 1 - 5 > 3 - 4 |/ 211 0 1 1
3 (Sl ] =-la ]/ 3o 1 01 ¢
4| —p{ 2 - 5 = 3|/ 4170 1 1 0
s [ iRl 511101 ¢

(a) (b) (c)

Undirected graph: Matrix is symmetric



Representing graphs

* Adjacency list
* Adjacency matrix
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Directed graph: Matrix is asymmetric
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Traversing graphs

* Two basic strategies
— Breadth first

 We traverse all of the connected vertices of our
current vertex

« Stop when we run out of vertices

— Depth first

« We traverse the first untraversed vertex
connected to our current vertex and recursively
down

« Stop when we run out of vertices



Breadth first search

* \We start with all
vertices initialized:
— White
— Depth infinite
— Predecessor NULL
 We queue up

vertices before
traversing them

for each vertex u
intialize values
d <— infinity
color <— white
pred <— null
mark start vertex s (0, white, null)
enqueue (q,s)
while g is non-null
u <— head(q)
for each connected v
if white
mark gray
d(v) =d(u) + 1
pred(v) = u
enqueue(q,Vv)
dequeue(q)
color(u) <— black



Breadth first search
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Depth first search

 We start with all
vertices initialized:
— White
— Time O
— Predecessor NULL

* We recursively
traverse downward,
processing the
vertices as we go

dfs(g)
time <- 0
for each vertex u
intialize values
d<-0
color <— white
pred <— null
for each vertex u
if (color(u) is white) dfs-visit(u)

dfs-visit(u)
color(u) <— gray
time <— time+1
d(u) <—time
for each v adjacent to u
if white
pred(v) = u
dfs-visit(v)
color(u) <— black
time <— time+1
finish(u) <— time



Depth first search
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Traversal order: u v y x (back up) w z (back up)



BFS and DFS form the basis of
other algorithms

* Finding a cycle:
— Do a depth first search

— If, as we are traversing, we encounter a
vertex that we have already marked gray,
we have a cycle

* Are two atoms (A,B) part of a ring
system?
— Break their bond (edge)
— Perform DFS from atom A

— If we encounter atom B, they are part of a
ring system



Other operations on graphs

* Minimum spanning trees
— Can be applied to clustering

— Interesting applications in many fields
(electronic circuit design, molecular
diversity)

 Flow

— Obvious applications in metabolic network
analysis



Minimum spanning trees

* You have a weighted, connected,
undirected graph G

* You must find the tree T such that
— T is a subgraph of G
— T spans all vertices of G
— The total edge weight of T is a minimum



Minimum spanning tree




We will use a greedy algorithm

We will grow a tree while maintaining the
invariant that the tree must be a minimum
spanning tree

We start with any vertex, since all vertices
must eventually be part of the tree

We add vertices cleverly (using safe edges),
to make sure we end up with a tree and that
the tree is minimal

The proof is by induction (see pages 500-502
in Algorithms)



Prim’s algorithm: Pictorially

(a)

(c)

(h)

The key to an efficient implementation
is a clever method for computing the
next guy to add

(1)




Maximum Flow

* A flow network is a directed graph with
capacities on the edges

« \We define a source and a sink

* A flow is subject to constraints
— Capacity
— Conservation
— Symmetry



Maximum Flow

Edmonton Saskatoon

Vancouver Winnipeg

14
Calgary Regina
(a) (b)



Graphs, trees, and molecules

* Many interesting scientific problems in
computational chemistry can be
addressed using graph and tree
algorithms

— Molecular diversity

« We want to pick a small number of molecules
from a large collection, where the small set is

“diverse”

— Evaluating the quality of molecular docking

* We need to compute how good a molecular
docking is, but internal symmetries in small
molecules makes this nontrivial



Biologically Relevant Chemical Diversity

Diversity increases leverage

— Smaller number of compounds Brute-force library
synthesized PY
— Greater number of hits .’. ¢
— Broader SAR ®
Diversity measure must be sensitive to ‘ P
molecular properties that relate to > '
specific binding events Large
— Maximize the likelihood of each Redundant hit families
molecule probing a different protein Hits with poor properties

binding pocket
Critical features of distance measure _ :
between molecules Well-designed library

— Small distance --> high probability
of binding to the same pocket

— Large distance --> low probability of
binding to the same pocket

— Must be very fast to compute




We can compute similarities quickly using
vectorial approximations

Molecular hashkeys measure surface properties
of molecules by seeing “who they look like”

Key1 Key2
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Diversity Analysis of Antibacterials

* 450 antibacterials in the CMC

« Small number of protein targets
and chemical classes

— Cephalosporins:
74

— “Mycins”:
74

— Penicillins:
62

— Sulfa drugs:
49

— Quinolones:
27

— Nitrofurantoin + analogs: 23
— Tetracyclines: 21
— Miscellaneous (dermatologicals
etc...)
« We can automatically select a
small diverse subset that hits all
classes
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Diverse set of 15 covers all
classes

O
O OH

Chosen by maximizing diversity of 450 molecular hashkeys



Docking accuracy

We have a ligand of a protein and dock
it into the protein

We have determined the crystal
structure of the protein ligand complex

We can define the accuracy of the
docking as the rmsd of the heavy atoms
(non-hydrogens)

Rmsd = sqgrt(sum of squared deviations)



A molecule with symmetries may be correctly
docked but have high nominal rmsd

H2N NH2+ +H2N NH2



rmsd = 1.5 but should be 0.5

<" WebLab ViewerLite - [show.mol2]
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Press «<Shift> for Z-axis, press <Cirl= to rotate selected objects




Sybyl mol2 file format

@<TRIPOS>MOLECULE
ran-00-ligand
18 18 0 0 0O

SMALL

NO CHARGES

@<TRIPOS>ATOM
1 C -1
2 C -1
3 cC -2
4 C -3
5 C -3
6 C -1
7 C 0
8 N 0
9 N 1
10 H -1
11 H -3
12 H -4
13 H -3
14 H -1
15 H 1
16 H -0
17 H 0
18 H 1

.221
.784
.990
.629
.047
.846
.084
.366
.022
.297
.432
.561
.526
.394
.263
.309
.831
. 957

.911
.887
.559
.253
.261
.587
.195
.685
.226
.349
.543
L7176
.788
.591
.201
. 764
.624
.852

.953
.202
.437
. 397
.127
.920
.703
.541
.603
.006
.426
.577
.309
.935
.395
767
.533
.385

T DD D DD DD 22 000000a0n

@<TRIPOS>BOND
1 1
2 1
3 1
4 2
5 3
6 4
7 5
8 7
9 7

10 2
11 3
12 4
13 5
14 6
15 8
16 8
17 9
18 9

O o O b W DN oy I

e e e e e e
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Homework 2: Due April 13th

» Write a program that will * You should not check bond
compute the minimum rmsd order equivalence, since it will
between two molecules over all cause trouble
isomorphic projections y Inst_eaclj, check atom

* Input: a list of pathnames to pairs equivalence

f molecule files — Atoms A and B are the same

° element
«  Output — They have the same number of

— Actual rmsd (atom number substituents
equivalence) — Their substituents are the same

— Min rmsd under isomorphism elements |

— Correspondence of atoms that * Only worry about the following
gave rise to the min rmsd elements: CNOSPF CIBrl

What to turn in

« Alisting of your program

« The output of your program on Pathlist (sensibly formatted)
 Brief discussion of the complexity of your algorithm

« Email 1 file to ajain@cc.ucsf.edu



