Outline

- Graphs, Trees, Search (see Cormen, 5.4–5.5, Chapter 13, Chapters 23–24, 27)
 - Many different interesting algorithms in Bioinformatics use graphs as representations
- Homework: An algorithm for computing the minimum rmsd of two molecules under graph equivalences
What is a graph?

• A directed graph G is a pair (V, E) where V is a finite set and E is a binary relation on V

• V is the vertex set

• E is the edge set
 – Set of (u, v) where u, v are in V

• Graphs can be directed or undirected

• Degree: number of edges connected to a vertex

• Cycle: path of length greater than 2 which starts and ends on the same vertex
Types of graphs

(a) Directed
(b) Undirected
Types of graphs

\(G\)

\(G'\)

(a)

(b)

Isomorphic

1,2,3,4,5,6 = u,v,w,x,y,z

Non-isomorphic
What is a tree?

- A tree is an **undirected graph** that is **connected**
- A **rooted tree** is one that has a specified special vertex called the **root**
- Trees can be **ordered** or not
Graphs in bioinformatics:
Can represent many things

- Molecules
 - Proteins and DNA: connected, acyclic, directed graphs
 - Organic molecules: connected, possibly cyclic, undirected graphs

Blackboard Examples
Graphs in bioinformatics: Metabolic Pathways (EcoCyc)

E. coli K-12 Pathway: fatty acid biosynthesis -- initial steps
Graphs in bioinformatics: Phylogenetic trees
Representing graphs

- Adjacency list
- Adjacency matrix

Undirected graph: Matrix is symmetric
Representing graphs

- Adjacency list
- Adjacency matrix

Directed graph: Matrix is asymmetric
Traversing graphs

• Two basic strategies
 – Breadth first
 • We traverse all of the connected vertices of our current vertex
 • Stop when we run out of vertices
 – Depth first
 • We traverse the first untraversed vertex connected to our current vertex and recursively down
 • Stop when we run out of vertices
Breadth first search

• We start with all vertices initialized:
 – White
 – Depth infinite
 – Predecessor NULL

• We queue up vertices before traversing them

for each vertex u

 initialize values

 $d \leftarrow \infty$

 $\text{color} \leftarrow \text{white}$

 $\text{pred} \leftarrow \text{null}$

mark start vertex s $(0, \text{white}, \text{null})$

enqueue (q,s)

while q is non-null

 $u \leftarrow \text{head}(q)$

 for each connected v

 if white

 mark gray

 $d(v) = d(u) + 1$

 $\text{pred}(v) = u$

 enqueue(q,v)

 dequeue(q)

 $\text{color}(u) \leftarrow \text{black}$
Breadth first search

Traversal order: s w r t x v u y
Depth first search

- We start with all vertices initialized:
 - White
 - Time 0
 - Predecessor NULL
- We recursively traverse downward, processing the vertices as we go

```plaintext
dfs(g)
time ← 0
for each vertex u
  initialize values
    d ← 0
    color ← white
    pred ← null
for each vertex u
  if (color(u) is white) dfs-visit(u)

dfs-visit(u)
color(u) ← gray
time ← time+1
d(u) ← time
for each v adjacent to u
  if white
    pred(v) = u
dfs-visit(v)
color(u) ← black
time ← time+1
finish(u) ← time
```
Depth first search

Traversal order: u v y x (back up) w z (back up)
BFS and DFS form the basis of other algorithms

- Finding a cycle:
 - Do a depth first search
 - If, as we are traversing, we encounter a vertex that we have already marked gray, we have a cycle

- Are two atoms (A,B) part of a ring system?
 - Break their bond (edge)
 - Perform DFS from atom A
 - If we encounter atom B, they are part of a ring system
Other operations on graphs

• Minimum spanning trees
 – Can be applied to clustering
 – Interesting applications in many fields
 (electronic circuit design, molecular diversity)

• Flow
 – Obvious applications in metabolic network analysis
Minimum spanning trees

• You have a weighted, connected, undirected graph G

• You must find the tree T such that
 – T is a subgraph of G
 – T spans all vertices of G
 – The total edge weight of T is a minimum
Minimum spanning tree
We will use a **greedy algorithm**

• We will grow a tree while maintaining the invariant that the tree *must be* a minimum spanning tree
• We start with any vertex, since all vertices must eventually be part of the tree
• We add vertices cleverly (using *safe* edges), to make sure we end up with a tree and that the tree is minimal
• The proof is by induction (see pages 500–502 in Algorithms)
Prim’s algorithm: Pictorially

The key to an efficient implementation is a clever method for computing the next guy to add
Maximum Flow

• A flow network is a directed graph with capacities on the edges
• We define a source and a sink
• A flow is subject to constraints
 – Capacity
 – Conservation
 – Symmetry
Maximum Flow

(a)

(b)
Graphs, trees, and molecules

• Many interesting scientific problems in computational chemistry can be addressed using graph and tree algorithms
 – Molecular diversity
 • We want to pick a small number of molecules from a large collection, where the small set is “diverse”
 – Evaluating the quality of molecular docking
 • We need to compute how good a molecular docking is, but internal symmetries in small molecules makes this nontrivial
Biologically Relevant Chemical Diversity

- Diversity increases leverage
 - Smaller number of compounds synthesized
 - Greater number of hits
 - Broader SAR

- Diversity measure must be sensitive to molecular properties that relate to specific binding events
 - Maximize the likelihood of each molecule probing a different protein binding pocket

- Critical features of distance measure between molecules
 - Small distance -> high probability of binding to the same pocket
 - Large distance -> low probability of binding to the same pocket
 - Must be very fast to compute
We can compute similarities quickly using vectorial approximations.

Molecular hashkeys measure surface properties of molecules by seeing “who they look like.”

Basis molecules

<table>
<thead>
<tr>
<th>Key1</th>
<th>Key2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.54</td>
<td>0.65</td>
</tr>
<tr>
<td>0.52</td>
<td>0.78</td>
</tr>
<tr>
<td>0.28</td>
<td>0.48</td>
</tr>
<tr>
<td>0.30</td>
<td>0.47</td>
</tr>
<tr>
<td>0.57</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Molecules with similar keys
Diversity Analysis of Antibacterials

- 450 antibacterials in the CMC
- Small number of protein targets and chemical classes
 - Cephalosporins: 74
 - “Mycins”: 74
 - Penicillins: 62
 - Sulfa drugs: 49
 - Quinolones: 27
 - Nitrofurantoin + analogs: 23
 - Tetracyclines: 21
 - Miscellaneous (dermatologicals etc...)
- We can automatically select a small diverse subset that hits all classes
Diverse set of 15 covers all classes

Chosen by maximizing diversity of 450 molecular hashkeys
Docking accuracy

- We have a ligand of a protein and dock it into the protein
- We have determined the crystal structure of the protein ligand complex
- We can define the accuracy of the docking as the rmsd of the heavy atoms (non-hydrogens)
- \(\text{Rmsd} = \sqrt{\text{sum of squared deviations}} \)
A molecule with symmetries may be correctly docked but have high nominal rmsd.
rmsd = 1.5 but should be 0.5
Sybyl mol2 file format

@<TRIPOS>MOLECULE
ran-00-ligand
 18 18 0 0 0
SMALL
NO_CHARGES

@<TRIPOS>ATOM
 1 C -1.221 -4.911 -4.953 C
 2 C -1.784 -4.887 -6.202 C
 3 C -2.990 -5.559 -6.437 C
 4 C -3.629 -6.253 -5.397 C
 5 C -3.047 -6.261 -4.127 C
 6 C -1.846 -5.587 -3.920 C
 7 C 0.084 -4.195 -4.703 C
 8 N 0.366 -3.685 -3.541 N
 9 N 1.022 -4.226 -5.603 N
10 H -1.297 -4.349 -7.006 H
11 H -3.432 -5.543 -7.426 H
12 H -4.561 -6.776 -5.577 H
13 H -3.526 -6.788 -3.309 H
14 H -1.394 -5.591 -2.935 H
15 H 1.263 -3.201 -3.395 H
16 H -0.309 -3.764 -2.767 H
17 H 0.831 -4.624 -6.533 H
18 H 1.957 -3.852 -5.385 H

@<TRIPOS>BOND
 1 1 7 1
 2 1 6 ar
 3 1 2 ar
 4 2 3 ar
 5 3 4 ar
 6 4 5 ar
 7 5 6 ar
 8 7 9 2
 9 7 8 1
 10 2 10 1
 11 3 11 1
 12 4 12 1
 13 5 13 1
 14 6 14 1
 15 8 15 1
 16 8 16 1
 17 9 17 1
 18 9 18 1
Homework 2: Due April 13th

- Write a program that will compute the minimum rmsd between two molecules over all isomorphic projections
- Input: a list of pathnames to pairs of molecule files
- Output
 - Actual rmsd (atom number equivalence)
 - Min rmsd under isomorphism
 - Correspondence of atoms that gave rise to the min rmsd
- You should not check bond order equivalence, since it will cause trouble
- Instead, check atom equivalence
 - Atoms A and B are the same element
 - They have the same number of substituents
 - Their substituents are the same elements
- Only worry about the following elements: C N O S P F Cl Br I

What to turn in
- A listing of your program
- The output of your program on Pathlist (sensibly formatted)
- Brief discussion of the complexity of your algorithm
- Email 1 file to ajain@cc.ucsf.edu