Systems Biology

Scott C.-H. Pegg

BMI203 June 1, 2004

What is Systems Biology?

Quantitative reasoning about the dynamics of living systems.

Okay, so what's a "system"?
A collection of interacting components

- enzymatic pathway
- bacterial colony
- cohabitating species

Philosophy: A system possesses emergent properties that make it more than the sum of its parts.
(C) 2004 by Scott C.-H. Pegg

What is Systems Biology?

Werner, E (2003) Drug Discovery Today, 24 p. 1121.
(C) 2004 by Scott C.-H. Pegg

Learning a biological network

Let's start with a very simple experimental data set.
I have N genes, $x_{1}, x_{2}, \ldots, x_{N}$, each with only two states,

$$
\begin{aligned}
& \text { high expression }=1 \\
& \text { low expression }=0
\end{aligned}
$$

I observe these genes under a set of M of conditions, p

Learning a biological network

I assume that any given gene either
(1) influences another gene to increase expression
(2) influences another gene to decrease expression
(3) has no influence on a given gene

(C) 2004 by Scott C.-H. Pegg

Learning a biological network

How do we connect the genes in a network that is consistent with my observed expressions?

For each gene x_{i}, we determine a minimum set of genes whose levels must be included as input to x_{i} 's truth table.

We consider all pairs of rows (i, j) in E such that the expression level of x_{i} differs.

x_{1}	x_{2}	x_{3}	x_{4}	
1	1	1	0	p_{1}
-	1	0	1	p_{2}
1	-	0	0	p_{3}
1	1	-	1	p_{4}
1	1	1	+	p_{5}

for χ_{4}, I consider rows
$(1,2)$
$(1,4)$
$(2,3)$
$(3,4)$

Learning a biological network

For each pair, we build the set of genes which also differed.

x_{1}	x_{2}	x_{3}	x_{4}	
1	1	1	0	p_{1}
-	1	0	1	p_{2}
1	-	0	0	p_{3}
1	1	-	1	p_{4}
1	1	1	+	p_{5}

$(1,2)=\left\{x_{1}, x_{3}\right\}$
$(1,4)=\left\{x_{3}\right\}$
$(2,3)=\left\{x_{1}, x_{2}\right\}$
$(3,4)=\left\{x_{2}\right\}$

To construct the network with the minimum number of required edges, we want the smallest number of nodes required to explain the changes in x_{i} 's expression.

$$
\text { For } x_{4} \text {, this set is }\left\{x_{2}, x_{3}\right\}
$$

This is a classic problem known as minimum set covering, and is solved by well-known applications of branch-and-bound algorithms.

Learning a biological network

The genes in the covering set are connected to x_{i},

We now take our covering set and construct a truth table for x_{i}

x_{1}	x_{2}	x_{3}	x_{4}	
1	1	1	0	p_{1}
-	1	0	1	p_{2}
1	-	0	0	p_{3}
1	1	-	1	p_{4}
1	1	1	+	p_{5}

x_{2}	1	0	1	0
x_{3}	1	1	0	0
x_{4}	$\mathbf{0}$	$*$	$\mathbf{1}$	$\mathbf{0}$

Learning a biological network

What do we do if x_{i} has more than one minimum covering set?

> We build multiple hypothetical networks.

If gene x_{a} has 3 minimum covering sets, and node x_{b} has 2, then we build $3 \times 2=6$ hypothetical networks.

For a network of reasonable size, without a lot of expression conditions, we can easily end up with a huge number of networks.

Observing the results of another perturbation experiment would help us rule out some of these networks.

But what gene do we perturb?
(C) 2004 by Scott C.-H. Pegg

Learning a biological network

The problem now is that we have L equally parsimonious networks to choose from, and a set of possible perturbations, P.

For each possible perturbation p in P, we compute the network state resulting from p in each of the L networks.

The perturbation p of a network l results in a state s. If we let l_{s} denote the number of networks which give state s under perturbation p, we can calculate an entropy score

$$
H_{p}=-\sum_{S} \frac{l_{s}}{L} \log _{2}\left(\frac{l_{s}}{L}\right)
$$

(C) 2004 by Scott C.-H. Pegg

Learning a biological network

H_{p} can be interpreted as a measure of the expected information gained in performing perturbation p. This information decreases the uncertainty as to which of the networks in L is the true network.

Thus, we choose the perturbation p that gives us the highest value of H_{p}.

Note: If the truth values of a network are not complete, a 0 or 1 is chosen at random for each missing value in order to calculate H_{p}.

If the number of networks, L, is too large, then we're forced to sample a smaller number when calculating H_{p}.

Analyzing metabolic networks

What sorts of question am I trying to answer?

- Given that I know some of the rates and concentrations, can I determine the others?
- How do the rates and concentrations change if I perturb one of the others?
-What are the theoretical yields?
- Are there influential branch points or alternative pathways?

Flux Balance Analysis

One of the simplest, but most powerful methods.
We start with a simple mass balance of the system

$$
\mathbf{S} \cdot \mathbf{V}-\mathbf{b}=-\mathrm{d} \mathbf{X} / \mathrm{dt}
$$

$$
\begin{aligned}
& \mathbf{S}=\text { stoichiometric matrix } \\
& \mathbf{V}=\text { rate vector } \\
& \mathbf{b}=\text { transportation vector } \\
& \mathbf{X}=\text { concentration of intermediates }
\end{aligned}
$$

Flux Balance Analysis

We assume that we're at a steady-state condition (i.e. the intermediates do not build up)

$$
-\mathrm{dX} / \mathrm{dt}=0
$$

$$
\mathbf{S} \cdot \mathbf{V}=-\mathbf{b}
$$

$$
\begin{aligned}
&\left(\begin{array}{rrrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \\
&\left.\begin{array}{lllllll}
r_{1} & r_{2} & r_{3} & r_{4} & r_{5} & r_{6} & r_{7}
\end{array}\right]
\end{aligned}=\begin{array}{ll}
& =\left(\begin{array}{l}
-R_{A} \\
0 \\
R_{C} \\
R_{D} \\
R_{E}
\end{array}\right) \\
& =-b
\end{array}
$$

(C) 2004 by Scott C.-H. Pegg

$$
\left(\begin{array}{rrrrrrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right)\left[r_{1} r_{2} r_{3} r_{4} r_{5} r_{6} r_{7} R_{C} R_{D} R_{E}\right]=\left(\begin{array}{c}
-10 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Flux Balance Analysis

In general, the number of fluxes will always be greater than the number of metabolites, leaving the system underdetermined.

As a result, there will be multiple solutions to the system.
To determine the unknown fluxes, one typically optimizes the unknowns with the goal of minimizing or maximizing one of the fluxes.
e.g. maximize the output of a final metabolite

Flux Balance Analysis

This allows us to pose our flux analysis as a linear programming problem.

A linear programming problem is one where we want to identify an extreme point of a function

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

which satisfies a set of constraints

$$
g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqslant b
$$

and where both f and g are linear functions

Flux Balance Analysis

While it's nice to have such a simple (and solvable) model, there are some disadvantages...

- Most biological systems are actually non-linear
- The model lacks kinetic and/or regulatory terms
- The steady-state may not be the most interesting
- The function being optimized may not be biologically relevant

Flux Balance Analysis

So how many conditions should I measure my system under in order to have a fully determined system?

For each flux, there's an equation,

$$
\text { for example } \quad V_{\mathrm{i}}=\frac{k_{\mathrm{i}}\left[E_{\mathrm{i}}\right]\left[X_{\alpha}\right]}{K_{\mathrm{i}}+\left[X_{\alpha}\right]}
$$

If there are N enzymes, there are N equations.
The unknowns are N maximal rates, M metabolite concentrations, and G constants.

Flux Balance Analysis

If we let e be the number of equations, and u be the number of unknowns, then

$$
\begin{aligned}
& e(1)=N \\
& u(1)=N+M+G
\end{aligned}
$$

For any extra condition we add N equations for the new fluxes and N equations relating the enzyme concentrations to the baseline amounts.

$$
e(C)=N+2 N(C-1)
$$

Flux Balance Analysis

And for each additional condition, the number of unknowns increases by N maximal rates and M steady-state metabolite concentrations,

$$
u(C)=C(N+M)+G
$$

What we really want is a value for C where $e(C)=u(C)$

$$
C=\frac{N+G}{N-M}
$$

Without the equations dealing with the enzyme concentration ratios, e would always be less than u.

Flux Balance Analysis

For a real metabolic network (e.g. E. coli), the values are roughly,

$$
\mathrm{N}=700, \mathrm{M}=400, \text { and } \mathrm{G}=5 \mathrm{~N} .
$$

In this case, $e(C)=u(C)$ when $C=14$.

But these C conditions must be independent of each other!

Metabolic Control Analysis

A technique based on engineering control theory (first described as applied to metabolism in 1973).

MCA attempts to describe the relative control each component in a metabolic system (the independent variables or parameters) exerts on the pathway fluxes and metabolite concentrations (the dependent variables).

The degree of control any individual component of a metabolic system has is determined by changing the level of that component and monitoring its effect on the system variable (flux or metabolite concentration) of concern. (aka sensitivity analysis)

Unlike flux balance analysis, MCA considers the concentrations of the enzymes and allosteric effectors.

Metabolic Control Analysis

At the heart of MCA are the control coefficients,

$$
\mathrm{C}_{\mathrm{Y}}^{\mathrm{X}}=\frac{\Delta \mathrm{X}}{\Delta \mathrm{Y}}=\text { the control parameter } \mathrm{Y} \text { has on variable } \mathrm{X}
$$

For example, consider the effect of an enzyme concentration, $\left[e_{i}\right]$ on the total flux, J

$$
\mathrm{C}_{e \mathrm{i}}^{J}=\frac{\Delta J}{\Delta\left[e_{\mathrm{i}}\right]} \frac{\left[e_{\mathrm{i}}\right]}{J}=\frac{\mathrm{d} J\left[e_{\mathrm{i}}\right]}{\mathrm{d}\left[e_{\mathrm{i}}\right] J}=\frac{\mathrm{d} \ln J}{\mathrm{~d} \ln \left[e_{\mathrm{i}}\right]}
$$

Metabolic Control Analysis

Likewise, we can have concentration control coefficients,

$$
\mathrm{C}_{e \mathrm{i}}^{X i}=\frac{\Delta\left[X_{\mathrm{i}}\right]}{\Delta\left[e_{\mathrm{i}}\right]} \frac{\left[e_{\mathrm{i}}\right]}{\left[X_{\mathrm{i}}\right]}=\frac{\mathrm{d}\left[X_{\mathrm{i}}\right]\left[e_{\mathrm{i}}\right]}{\mathrm{d}\left[e_{\mathrm{i}}\right]\left[X_{\mathrm{i}}\right]}=\frac{\mathrm{d} \ln \left[X_{\mathrm{i}}\right]}{\mathrm{d} \ln \left[e_{\mathrm{i}}\right]}
$$

(C) 2004 by Scott C.-H. Pegg

Metabolic Control Analysis

Using a steady-state assumption,

$$
\sum_{i=1}^{n} C_{e i}^{J}=1
$$

$$
\sum_{i=1}^{n} C_{e i}^{X i}=0
$$

So a change in one coefficient requires a compensation in the others

$$
\mathrm{S} \underset{\mathrm{e}_{1}}{\stackrel{v_{l}}{\rightleftarrows}} \mathrm{X}_{1} \stackrel{\mathrm{c}_{2}}{\rightleftarrows} \mathrm{X}_{2} \stackrel{v_{3}}{\mathrm{c}_{3}} \mathrm{X}_{3} \stackrel{v_{4}}{\rightleftarrows} \underset{\mathrm{c}_{4}}{\rightleftarrows} \mathrm{P}
$$

Metabolic Control Analysis

We can also define "elasticity" coefficients relating the change in metabolite concentration with a change in reaction rate, V

$$
\varepsilon_{X \mathrm{i}}^{V_{i}}=\frac{\Delta V_{\mathrm{i}}}{\Delta\left[X_{\mathrm{i}}\right]} \frac{\left[X_{\mathrm{i}}\right]}{V_{\mathrm{i}}}=\frac{\mathrm{d} V_{\mathrm{i}}\left[X_{\mathrm{i}}\right]}{\mathrm{d}\left[X_{\mathrm{i}}\right] V_{\mathrm{i}}}=\frac{\mathrm{d} \ln V_{\mathrm{i}}}{\mathrm{~d} \ln \left[X_{\mathrm{i}}\right]}
$$

These coefficients are related,

$$
\sum_{i=1}^{n} C_{e i}^{J} \varepsilon_{[X i]}^{V i}=0
$$

$$
\sum_{i=1}^{n} C_{e i}^{[X i]} \mathcal{E}_{[X i]}^{V i}=-1
$$

Metabolic Control Analysis

$$
\sum_{i=1}^{n} C_{e \mathrm{i}}^{J} \varepsilon_{[X i]}^{V i}=0
$$

$$
\sum_{i=1}^{n} C_{e i}^{[X i]} \mathcal{E}_{[X i]}^{V i}=-1
$$

This connectivity implies that if two enzymes are connected in a pathway via a common intermediate, the relative degree of control those enzymes have on the pathway is determined by their relative elasticity coefficients.

Metabolic Control Analysis

Some simple algebra allows us to express the control coefficients in terms of just the elasticity coefficients,

$$
C_{e i}^{J}=\frac{\varepsilon_{X 1}^{V_{2}} \varepsilon_{X 2}^{V_{3}}}{\varepsilon_{X 1}^{V_{1}} \varepsilon_{X 2}^{V_{3}}-\varepsilon_{X 1}^{V_{2}} \varepsilon_{X 2}^{V_{3}}-\varepsilon_{X 2}^{V_{2}} \varepsilon_{X 1}^{V_{1}}}
$$

Metabolic Control Analysis

We can also define "response" coefficients to model the effects of an external influence, A

$$
\mathrm{R}_{\mathrm{A}}^{J}=\mathrm{C}_{e \mathrm{i}}^{J} \varepsilon_{[A]}^{V i}
$$

Or, if the external influence effects more than one enzyme,

$$
\mathrm{R}_{A}^{J}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{ei}}^{J} \varepsilon_{[A]}^{V i}
$$

Metabolic Control Analysis

MCA has some distinct limitations,

- The coefficients refer to only a steady-state conditions.
- Models deal with only infinitesimal changes.
- Models assume intermediates are freely diffusable between enzymes.

MCA can also be applied to complex, branching pathways, but the math gets more tedious...

Network Analysis

There are other, increasingly complex methods of representing metabolic networks. These typically result in a set of partial differential equations which must be solved.

Steady-state bifurcation analysis has also been applied to metabolic networks.

(C) 2004 by Scott C.-H. Pegg

