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What is Systems Biology?What is Systems Biology?

Quantitative reasoning about the dynamics of living systems.

Okay, so what’s a “system”?

A collection of interacting components

• enzymatic pathway
• bacterial colony
• cohabitating species

Philosophy: A system possesses emergent properties that make it
more than the sum of its parts.
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What is Systems Biology?What is Systems Biology?

Werner, E (2003) Drug Discovery Today, 24 p.1121.
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Learning a biological networkLearning a biological network
Let’s start with a very simple experimental data set.

I have N genes, x1, x2, …, xN, each with only two states,

high expression  =  1
low expression   =  0

I observe these genes under a set of M of conditions, p

1    1    1   …  0 
- 1    0   …  1
1    - 0   …  0
1    1    - …  1
…  …  …  … …
1    1    1   …  +

x1

p1

x2 x3 xN

p2
p3
p4

pM

expression
matrix E
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Learning a biological networkLearning a biological network
I assume that any given gene either

(1) influences another gene to increase expression
(2) influences another gene to decrease expression
(3) has no influence on a given gene

x1

x2

x3

x4 1    0    1    0 
1    1    0    0
0    0    1    0

x2
x3
x4

“truth table”
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1    1    1    0 
- 1    0    1
1    - 0    0
1    1    - 1
1    1    1    +

Learning a biological networkLearning a biological network
How do we connect the genes in a network that is consistent with
my observed expressions?

For each gene xi, we determine a minimum set of genes 
whose levels must be included as input to xi’s truth table.

We consider all pairs of rows (i, j) in E such that the expression
level of xi differs.

x1 x2 x3 x4

p1
p2
p3
p4
p5

for x4, I consider rows
(1, 2)
(1, 4)
(2, 3)
(3, 4)
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1    1    1    0 
- 1    0    1
1    - 0    0
1    1    - 1
1    1    1    +

x1 x2 x3 x4

p1
p2
p3
p4
p5

Learning a biological networkLearning a biological network

(1, 2)  =  {x1, x3}

For each pair, we build the set of genes which also differed.

(1, 4)  =  {x3}
(2, 3)  =  {x1, x2} 
(3, 4)  =  {x2} 

To construct the network with the minimum number of required
edges, we want the smallest number of nodes required to 
explain the changes in xi’s expression.

For x4, this set is {x2, x3}

This is a classic problem known as minimum set covering, and
is solved by well-known applications of branch-and-bound algorithms.
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1    1    1    0 
- 1    0    1
1    - 0    0
1    1    - 1
1    1    1    +

x1 x2 x3 x4

p1
p2
p3
p4
p5

Learning a biological networkLearning a biological network

We now take our covering set and construct a truth table for xi

1    0    1    0 
1    1    0    0

x2
x3
x4 0 1 0*

The genes in the covering set are connected to xi,

x2

x3

x4

covering set of x4 = {x2, x3}
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Learning a biological networkLearning a biological network

What do we do if xi has more than one minimum covering set?

We build multiple hypothetical networks.

If gene xa has 3 minimum covering sets, and node xb has 2, then
we build 3 x 2 = 6 hypothetical networks.

For a network of reasonable size, without a lot of expression 
conditions, we can easily end up with a huge number of networks.

Observing the results of another perturbation experiment would
help us rule out some of these networks. 

But what gene do we perturb?
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Learning a biological networkLearning a biological network

The problem now is that we have L equally parsimonious networks 
to choose from, and a set of possible perturbations, P.

For each possible perturbation p in P, we compute the network 
state resulting from p in each of the L networks.

The perturbation p of a network l results in a state s. If we let ls
denote the number of networks which give state s under perturbation
p, we can calculate an entropy score 

Hp = - Σ ls

L

ls

L
log2

S
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Learning a biological networkLearning a biological network

Thus, we choose the perturbation p that gives us the highest 
value of Hp. 

Hp can be interpreted as a measure of the expected information
gained in performing perturbation p. This information decreases
the uncertainty as to which of the networks in L is the true 
network.

Note: If the truth values of a network are not complete, a 0 or 1
is chosen at random for each missing value in order to
calculate Hp.

If the number of networks, L, is too large, then we’re forced to
sample a smaller number when calculating Hp.
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Analyzing metabolic networksAnalyzing metabolic networks

What sorts of question am I trying to answer?

• Given that I know some of the rates and concentrations,
can I determine the others?

• How do the rates and concentrations change if I perturb
one of the others?

• What are the theoretical yields?

• Are there influential branch points or alternative 
pathways?
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Flux Balance AnalysisFlux Balance Analysis

One of the simplest, but most powerful methods.

We start with a simple mass balance of the system

S . V - b = -dX/dt
S = stoichiometric matrix
V = rate vector
b = transportation vector
X = concentration of intermediates
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Flux Balance AnalysisFlux Balance Analysis

We assume that we’re at a steady-state condition
(i.e. the intermediates do not build up)

S . V = - b

-dX/dt = 0
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A B C E
RA r1 r2

r3

RE

D

r4 r5

r6

r7

RD

RC

A: -r1= -RA
B: -r1 + r4 - r2 - r3 = 0
C: r2 - r5 - r6 =  Rc
D: r3 + r5 - r4 - r7 = RD
E: r6 + r7 = RE

-1  0  0  0  0  0  0  
1 –1 -1  1  0  0  0 
0  1  0  0 –1 –1  0   
0  0  1 –1  1  0 –1 
0  0  0  0  0  1  1   

r1  r2  r3  r4 r5 r6 r7

-RA
0
RC
RD
RE

=

S . v = -b
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A B C E
RA = 10 r1 r2

r3

RE

D

r4 r5

r6

r7

RD

RC

A: -r1= -10
B: -r1 + r4 - r2 - r3 = 0
C: r2 - r5 - r6 - Rc = 0
D: r3 + r5 - r4 - r7 - RD = 0
E: r6 + r7 - RE = 0

-1  0  0  0  0  0  0  0  0  0  
1 –1 -1  1  0  0  0  0  0  0
0  1  0  0 –1 –1  0 -1  0  0 
0  0  1 –1  1  0 –1  0 -1  0
0  0  0  0  0  1  1  0  0 -1 

r1  r2  r3  r4 r5 r6 r7 RC RD RE

-10
0
0
0
0 

=
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A B C E
RA = 10 r1 r2

r3

RE

D

r4 r5

r6

r7

RD

RC

degrees 
of 

freedom
=

number
of

fluxes

number
of

known fluxes

number
of

metabolites
- -

11 1 55
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Flux Balance AnalysisFlux Balance Analysis

In general, the number of fluxes will always be greater
than the number of metabolites, leaving the system
underdetermined.

As a result, there will be multiple solutions to the system.

To determine the unknown fluxes, one typically optimizes
the unknowns with the goal of minimizing or maximizing
one of the fluxes.

e.g. maximize the output of a final metabolite
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Flux Balance AnalysisFlux Balance Analysis

This allows us to pose our flux analysis as a linear
programming problem.

A linear programming problem is one where we want
to identify an extreme point of a function 

f(x1, x2, …, xn)

which satisfies a set of constraints

g(x1, x2, …, xn) > b

and where both f and g are linear functions
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Flux Balance AnalysisFlux Balance Analysis

While it’s nice to have such a simple (and solvable)
model, there are some disadvantages…

• Most biological systems are actually non-linear

• The model lacks kinetic and/or regulatory terms

• The steady-state may not be the most interesting

• The function being optimized may not be biologically
relevant
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Flux Balance AnalysisFlux Balance Analysis

So how many conditions should I measure my system
under in order to have a fully determined system?

For each flux, there’s an equation,

Vi = 
ki [Ei] [Xα]

Ki + [Xα]
for example

If there are N enzymes, there are N equations. 

The unknowns are N maximal rates, M metabolite 
concentrations, and G constants.
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Flux Balance AnalysisFlux Balance Analysis

If we let e be the number of equations, and u be the number of 
unknowns, then

e(1) = N
u(1) = N + M + G

For any extra condition we add N equations for the new fluxes 
and N equations relating the enzyme concentrations to the baseline 
amounts. 

e(C) = N + 2N(C-1)
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Flux Balance AnalysisFlux Balance Analysis
And for each additional condition, the number of unknowns 
increases by N maximal rates and M steady-state metabolite
concentrations,

What we really want is a value for C where e(C) = u(C)

u(C) = C(N + M) + G

C =
N + G
N - M

Without the equations dealing with the enzyme concentration
ratios, e would always be less than u.
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Flux Balance AnalysisFlux Balance Analysis

But these C conditions must be independent of each other!

For a real metabolic network (e.g. E. coli), the values 
are roughly,

N = 700, M = 400, and G = 5N.

In this case, e(C) = u(C) when C = 14.

Segre, D’haeseleer, & Church, “Inference of metabolic network dynamics from flux balance 
methods and enzyme ratio measurements”, ICSB2002
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Metabolic Control AnalysisMetabolic Control Analysis
A technique based on engineering control theory (first described as 
applied to metabolism in 1973). 

MCA attempts to describe the relative control each component in a 
metabolic system (the independent variables or parameters) exerts 
on the pathway fluxes and metabolite concentrations (the dependent 
variables). 

The degree of control any individual component of a metabolic 
system has is determined by changing the level of that component
and monitoring its effect on the system variable (flux or metabolite 
concentration) of concern. (aka sensitivity analysis)

Unlike flux balance analysis, MCA considers the concentrations
of the enzymes and allosteric effectors.

2004 by Scott C.-H. Peggc

Metabolic Control AnalysisMetabolic Control Analysis
At the heart of MCA are the control coefficients,

CY =
∆X
∆Y

X = the control parameter Y has on variable X

For example, consider the effect of an enzyme concentration, [ei]
on the total flux, J

Cei =J ∆J
∆[ei] J

[ei] =
dJ [ei]
d[ei] J

=
d ln J
d ln [ei]
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Metabolic Control AnalysisMetabolic Control Analysis
Likewise, we can have concentration control coefficients,

Cei =Xi ∆[Xi]
∆[ei] [Xi]

[ei] =
d[Xi] [ei]
d[ei] [Xi]

=
d ln [Xi]
d ln [ei]
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Metabolic Control AnalysisMetabolic Control Analysis
Using a steady-state assumption, 

Cei =  1JΣ
i = 1

n

Cei =  0XiΣ
i = 1

n

So a change in one coefficient requires a compensation in the others 
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Metabolic Control AnalysisMetabolic Control Analysis
We can also define “elasticity” coefficients relating the change in
metabolite concentration with a change in reaction rate, V

εXi =Vi ∆Vi

∆[Xi] Vi

[Xi] =
dVi [Xi]
d[Xi] Vi

=
d ln Vi

d ln [Xi]

Cei ε[Xi] =  0JΣ
i = 1

n

These coefficients are related, 

Vi Cei ε[Xi] =  -1[Xi]Σ
i = 1

n
Vi
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Metabolic Control AnalysisMetabolic Control Analysis

Cei ε[Xi] =  0JΣ
i = 1

n
Vi Cei ε[Xi] =  -1[Xi]Σ

i = 1

n
Vi

This connectivity implies that if two enzymes are connected in
a pathway via a common intermediate, the relative degree of
control those enzymes have on the pathway is determined by
their relative elasticity coefficients.

Ce1

Ce2

J

J

εX

εX

V1

V2
=  −
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Metabolic Control AnalysisMetabolic Control Analysis

Cei = J

εX1
V1

Some simple algebra allows us to express the control coefficients
in terms of just the elasticity coefficients,

εX1
V2 εX2

V3

εX2
V3 εX1

V2 εX2
V3 εX2

V2 εX1
V1− −
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Metabolic Control AnalysisMetabolic Control Analysis

RA =  Cei ε[A]
J Vi

We can also define “response” coefficients to model the effects
of an external influence, A

J

Or, if the external influence effects more than one enzyme,

RA =      Cei ε[A]
J ViΣ

i = 1

n
J
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Metabolic Control AnalysisMetabolic Control Analysis

MCA has some distinct limitations,

• The coefficients refer to only a steady-state conditions.

• Models deal with only infinitesimal changes.

• Models assume intermediates are freely diffusable between
enzymes.

MCA can also be applied to complex, branching pathways, but
the math gets more tedious…

2004 by Scott C.-H. Peggc

Network AnalysisNetwork Analysis
There are other, increasingly complex methods of representing
metabolic networks. These typically result in a set of partial 
differential equations which must be solved.

Steady-state bifurcation analysis has also been applied to 
metabolic networks.

x*

λ∗

d F(x*, λ*)
d x

=  0
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data representation & visualization BioCharon www.cis.upenn.edu/group/biocomp

BioNetGen cellsignaling.lanl.gov/cgi-bin/bionetgen

BioSpice biospice.lbl.gov/home.html

BioSpreadsheet biocomp.ece.utk.edu/tools.html

bioUML www.biouml.org

BSTLab bioinformatics.musc.edu/bstlab

CellDesigner www.systems-biology.org/002

Cellerator www-aig.jpl.nasa.gov/public/mls/cellerator

Cellware www.bii.a-star.edu.sg/research/sbg/cellware

Cytoscape www.cytoscape.org

DBsolve biosim.genebee.msu.su/dbsdownload_en.php

Dizzy  labs.systemsbiology.net/bolouri/software/Dizzy

E-CELL   ecell.sourceforge.net

Gepasi www.gepasi.org

JDesigner www.sys-bio.org

JigCell jigcell.biol.vt.edu

JSIM  nsr.bioeng.washington.edu/PLN/Members/butterw/JSIMDOC1.6

Kinsolver lsdis.cs.uga.edu/~aleman/kinsolver

MMT2  www.simtec.mb.uni-siegen.de/software_mmt2.0.html

MOMA  arep.med.harvard.edu/moma

NetBuilder strc.herts.ac.uk/bio/maria/NetBuilder

SCAMP   www.cds.caltech.edu/~hsauro/Scamp/scamp.htm

SigPath icb.med.cornell.edu/crt/SigPath/index.xml

SigTran csi.washington.edu/teams/modeling/projects/sigtran

Simpathica bioinformatics.nyu.edu/Projects/Simpathica

SimWiz projects.villa-bosch.de/bcb/software/software/Ulla/SimWiz

StochSim info.anat.cam.ac.uk/groups/comp-cell/StochSim.html

STOCKS  www.sysbio.pl/stocks

Systems Biology Workshop (SBW) sbw.sourceforge.net

Trelis sourceforge.net/projects/trelis

free modeling packages

commercial modeling packages

PathArt jubilantbiosys.com/pd.htm

ProcessDB www.integrativebioinformatics.com/processdb.html

VLX Suite  www.teranode.com/products/vlxbiological.php

Karyote biodynamics.indiana.edu/cyber_cell

Virtual Cell  www.nrcam.uchc.edu/vcellR3/login/login.jsp

web-based servers

BALSA   www.csi.washington.edu/teams/modeling/projects/BALSA

BioSketchpad bio.bbn.com/biospice/biosketchpad

CADLIVE  kurata21.bse.kyutech.ac.jp/cadlive

libSBML www.libsbml.org

PaVESy pavesy.mpimp-golm.mpg.de/PaVESy.htm
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