
UCSF cancer
center

BMI-203: Biocomputing Algorithms
Introduction

Instructor: Ajay N. Jain, PhD
Email: ajain@cc.ucsf.edu

Copyright © 2004, Ajay N. Jain
All Rights Reserved

UCSF cancer
center Important stuff to know

Lectures: Tuesdays 3-5pm in GH-S201 (1 exception: April
27th in GH-261)

Lab: Thursdays 3-5pm in GH-S201 (1 exception: April 1st
in GH-261)

Course Web Site: www.cgl.ucsf.edu/Outreach/bmi203
♦ Schedule
♦ Lectures
♦ Homeworks
♦ Reference material

UCSF cancer
center Textbooks

Introduction to Algorithms: Cormen, Leiserson, and Rivest
Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids: Durbin et al.
Numerical Recipes in C (www.nr.com)

You should probably buy the first book. You will be
looking at it 20 years from now if you continue
research in bioinformatics and algorithms.

($80 new at Amazon, $30 used)

UCSF cancer
center Biocomputing Algorithms

Computational issues and methods in bioinformatics and
computational biology
♦ Analytical thinking
♦ Problem decomposition
♦ Algorithm understanding, design, and implementation

This course is not about
♦ Expert use of existing tools
♦ Learning how to program (if you can’t program in C, Python, or

a similar language, you should take the course after you have
become somewhat proficient)

UCSF cancer
center Programming Languages

We are agnostic about programming languages
However, for some assignments, it will be much easier to

use Python, since you will be provided some code
Languages that are OK: Python, C, C++, Fortran, Java
Perl is probably not OK, but you can try :-)

UCSF cancer
center Lab sessions

TA: Tuan Pham (anhtuan@cc.ucsf.edu)
These sessions are for you to interact if you are having

difficulties with the lectures, homeworks, or final project
Homework is 75% of your grade, with 25% for the final

project

UCSF cancer
center Computer Resources

We expect you to have access to your
own computer

You can download Python: www.python.org
You can download Cygwin (gnu c):

www.cygwin.com
You can run gcc on the Mac (OS X ships with

developer tools, but you have to install them)
For people with special needs, please contact Ajay

UCSF cancer
center

BMI-203: Biocomputing Algorithms
Lecture 1: Complexity and Sorting

Instructor: Ajay N. Jain, PhD
Email: ajain@cc.ucsf.edu

Copyright © 2004, Ajay N. Jain
All Rights Reserved

UCSF cancer
center Outline

Complexity Theory (see Cormen, Chapters 1 and 2)
♦ Every computer algorithm has execution time and space and/or bandwidth

requirements dependent on the size or complexity of its input
♦ Design of useful algorithms is largely dominated by complexity

considerations
♦ We will cover very basic notational conventions (no proofs)

Sorting (see Cormen, Part II, particularly Chapter 8)
♦ Sorting is the classic algorithms problem space in which complexity issues

are taught
♦ Bubble sort
♦ Quicksort

Homework: two sorting algorithms + analysis of run-time perf.
Reference: Introduction to Algorithms, Second Edition by Thomas H. Cormen

(Editor), Charles E. Leiserson, Ronald L. Rivest

UCSF cancer
center Computational Complexity Theory

What is an algorithm?
♦ Given a precise problem description

• Sort a list of N real numbers from lowest to highest

♦ An algorithm is a precise method for accomplishing the result

O notation: informally
♦ Want to capture how fast or how much space an algorithm

requires
♦ We ignore constant factors (even if very large)
♦ O(N) indicates that an algorithm is linear in the size of its input

• Example: sum of N numbers is O(N)

UCSF cancer
center Notes on Notation

We will define the complexity of algorithms based on
describing a function that provides a boundary on time
or space

Formally, we will describe complexity in terms of the
membership of the function in a larger set of functions

Notation
♦ N = {0,1,2,3, ... }
♦ N+ = {1,2,3,4, ... }
♦ R = Set of Reals
♦ R+ = Set of Positive Reals
♦ R* = R+ U {0}

UCSF cancer
center Comparing f(n) and g(n)

Let f be a function from N to R.

O(f) (Big O of f) is the set of all functions g from N
to R such that:
1. There exists a real number c>0
2. AND there exists an n0 in N

Such that: g(n) ≤ cf(n) whenever n ≥ n0

UCSF cancer
center Notation and Pronunciation

Proper Notation: g ∈ O(f)

Also Seen: g = O(f)
“g is oh of f”

UCSF cancer
center Big Omega

Let f be a function from N to R.

Ω(f) (Big Ω of f) is the set of all functions g from
N to R such that:
1. There exists a real number c>0
2. AND there exists an n0 in N

Such that: g(n) ≥ cf(n) whenever n ≥ n0

UCSF cancer
center Big Theta

Θ(f) = O(f) ∩ Ω(f)

g ∈ Θ(f)

“g is of Order f”
“g is Order f”

UCSF cancer
center English Interpretations

O(f) - Functions that grow no faster than f

Ω(f) - Functions that grow no slower than f

Θ(f) - Functions that grow at the same rate as f

UCSF cancer
center Properties

Constant factors may be ignored
♦ For all k > 0, kf is O(f)

Higher powers of n grow faster than lower powers
The growth rate of a sum of terms is the growth rate of its fastest

term
♦ So, if you have a linear element of an algorithm and a element that is n2,

then the algorithm will be O(n2)

If f grows faster than g which grows faster than h, then f grows
faster than h

Exponential functions grow faster than powers
Logarithms grow more slowly than powers (and all logarithms grow

at the same rate)

UCSF cancer
center When complexity gets bad

Polynomial time algorithms
♦ All algorithms such that there

exists an integer d where the
algorithms is O(nd)

Intractable algorithms
♦ The class of problems that

cannot be solved in polynomial
time

Particularly interesting class of
intractable problems:

♦ NP-complete

When this happens, we often care
about approximate solutions

♦ Traveling Salesman Problem: Given
N cities, find the route that goes to
each city exactly once that
minimizes the total distance traveled

♦ N! ways of ordering N cities
♦ NP-complete: if you can solve this

problem in polynomial time, you can
solve all NP-complete problems in
polynomial time

Ε-approximate solutions abound
♦ You can find a city ordering such

that for any ε, your solution is within
ε of the optimal solution

♦ You can do this in polynomial time

UCSF cancer
center Analyzing an algorithm

Simple sequence of statements, executed once: O(1)
Simple loops

♦ For (i=0;i<n;++i) { s; }
♦ O(n)

Nested loops
♦ For (i=0;i<n;++i) { s; }

• For (j = 0; j < n; ++j) { s; }

♦ O(n2)

Multiplicative index jumps can yield O(log(n))
♦ h = 1; while (h < n) { s; h = 2*h; }

UCSF cancer
center Sorting algorithms

Input: a sequence of n numbers (a1, a2, … , an)
Output: a permutation (a1, a2, … , an)
Such that a1≤ a2 ≤ a3 … ≤ an

Example: Insertion Sort (order a hand of cards)
♦ Create an empty array of size n
♦ Find the smallest value in input array

• Put it in the new array in the last unfilled position
• Mark the input array value as done

♦ Repeat until the new array has n values

UCSF cancer
center Bubble sort: In English

Go through your list of n numbers, checking for
misordered adjacent pairs

Swap any adjacent pairs where the second value
is smaller than the first

Repeat this procedure a total of n times

Your final list will be sorted low to high

UCSF cancer
center Bubble sort: In C

/* Bubble sort for integers */
void bubble(int a[], int n)
/* Pre-condition: a contains n items to be sorted */
{

int i, j, t;
/* Make n passes through the array */
for(i=0;i < n; i++) {
/* From the first element to

the end of the unsorted section */
for(j=1;j<(n-i);j++) {
/* If adjacent items are out of order, swap them */
if(a[j-1]>a[j]) {
t = a[j];
a[j] = a[j-1];
a[j-1] = t;

}
}

}
}

One conditional

Three assignments

UCSF cancer
center

Bubble sort complexity:
Worst case

We make (n-1) passes through the data
♦ When i = (n-1), (n - i) is (n-(n-1)) = 1
♦ So, on the last outer loop pass, we don’t do the inner loop

How many operations do we do in each pass (at worst)?
♦ On the last pass, we do one conditional and three assignments
♦ On the second to last pass, we do 2 and 6
♦ Etc…

So
♦ (1*(1+2+ … + (n-1))) compares
♦ (3*(1+2+ … + (n-1))) assignments
♦ Recall that sum (1…k) is k(k+1)/2
♦ We have n(n-1)/2 compares and 3n(n-1)/2 assignments

Since we don’t care about constant factors and higher-order
polynomials dominate, BubbleSort is O(n2)

UCSF cancer
center QuickSort: In English

Quicksort is a divide and conquer algorithm
It was invented by C. A. R. Hoare
Divide: The array A[p…r] is partitioned into two nonempty

subarrays A[p…q] and A[q+1…r] (q is pivot element)

Conquer: The two subarrays A[p…q-1] and A[q+1…r] are
themselves subjected to Quicksort (by recurrence)

Combine: The results of the recursion don’t need
combining, since the subarrays are sorted in place

The final A[p…r] is now sorted

UCSF cancer
center Quicksort: Complexity

The average case for Quicksort is O(n log(n)) with smallish constant
factors for good implementations
♦ The partitioning algorithm requires O(n) time to rearrange the array (it

examines every element once)
♦ The partitioning is done around a pivot, which is chosen with no

knowledge (in the simplest case); elements are partitioned to be less than
or greater than the pivot

♦ We expect that randomly chosen pivots will tend to partition an array into
roughly two halves

♦ So, we end up doing O(log(n)) partitions, and O(n log(n)) overall

In practice, this is one of the fastest sorting methods known
However, its worst case behavior is O(n2): poor luck with the pivot

choices can lead to n partitions!

UCSF cancer
center Quicksort: In C

The partition function does all of
the work
It selects the pivot element

It partitions the subarray
The quicksort function just does
bookkeeping
Note: in C, arrays are passed by reference, so
the operations are occurring on the same array

/* We would call quicksort(a, 0, n-1) */

quicksort(void *a, int p, int r)
{
int pivot;
/* Termination condition! */
if (r > p)
{
pivot = partition(a, p, r);
quicksort(a, p, pivot-1);
quicksort(a, pivot+1, r);
}

}

p pivot r

< pivot > pivot

UCSF cancer
center Quicksort partitioning

There is a straightforward way to partition
♦ Pick any element as the pivot (say the first)
♦ Create a new array of the same size as input
♦ For each element in the old array, put it at the beginning if it is

less than the pivot element
♦ Else, put it at the end
♦ [Keep track of the “beginning” and “end”, which move]
♦ Copy the new array back into the original one
♦ Return the value of the pivot index

Problem: requires additional space (allocate and free) and
an additional n assignments in the end

UCSF cancer
center Quicksort: Partition in place

Note: this this code does not check that left
does not exceed the array bound.

int partition(void *a, int p, int r)
{
int left, right;
void *pivot_item;

pivot_item = a[p];
pivot = left = p;
right = r;
while (left < right) {
/* Move left while item < pivot */
while(a[left] <= pivot_item) left++;
/* Move right while item > pivot */
while(a[right] > pivot_item) right--;
if (left < right) SWAP(a,left,right);
}

/* right is final position for the pivot */
a[p] = a[right];
a[right] = pivot_item;
return right;
}

UCSF cancer
center Homework 1: due 4-6-04 (email answers to ajain@cc.ucsf.edu)

Implement BubbleSort and
QuickSort for integers

♦ Instrument your code
• Count number of assignments
• Count number of conditionals

Test the time complexity of your
algorithms as follows

♦ For sizes of 100, 200, 300, …
1000

♦ Generate 100 random arrays
♦ Sort them using your code

You can use C, Python, Fortran,
Lisp, Perl

Using the count data generated,
illustrate the following:

♦ BubbleSort is O(n2) on average
♦ QuickSort is O(n log(n)) on average

What to turn in: a single PDF or Word or
RTF file

♦ Readable listing of your code
♦ Input and output of both procedures on

one example of size 100
♦ Graphical depiction of counts for

assignments and conditionals for both
functions

♦ Argument (graphical or textual) that the
algorithms’ average case performance is
as expected

Email enclosure to: ajain@cc.ucsf.edu

UCSF cancer
center Complexity complexities

We care about time complexity (see previous)
We may specifically care about best, worst, or average

case complexity (usually average)
Very frequently there is a trade-off between time and

space complexity
♦ Using a huge amount of memory can buy you time
♦ Example: finding a small gene sequence within a HUGE gene

sequence

White board interlude 1

UCSF cancer
center

Computational complexity in the real world:
Molecular similarity (2D versus 3D)

Nicotine example
♦ Nicotine
♦ Abbott molecule: competitive

agonist
♦ Natural ligand (acetylcholine)
♦ Pyridine derivatives

2D similarity
♦ Graph-based approach to

comparing organic structures
♦ Very efficient algorithm
♦ Can search 100,000 compounds in

seconds

Ranked list versus nicotine places
competitive ligands last

1.001.00 0.990.99 0.900.90 0.890.89

0.820.82

N

N

0.570.57

0.650.650.730.73 0.580.58

0.450.45

O

N+

O

0.130.130.540.54

N

N

N

N

N

N

N

HO

N

N

N

N

O
N

N

O

O N

N

N

N

N

N

O
N

N

UCSF cancer
center Molecular similarity: 2D versus 3D

Nicotine example
♦ Nicotine
♦ Abbott molecule: competitive

agonist
♦ Natural ligand (acetylcholine)
♦ Pyridine derivatives

3D similarity
♦ Surface-based comparison

approach
♦ Requires dealing with molecular

flexibility and alignment
♦ Much slower, but fast enough for

practical use
Ranked list places the Abbot ligand
near the top, and acetylcholine has a
“high” score

1.001.00 0.970.97

0.890.89

0.870.87

0.870.870.900.90 0.880.88

0.820.82

0.910.910.930.93

O

N+

O

0.630.630.830.83

N

N

N

N

O
N

N N

N

N

N
N

N

N
N

N

N

N

O

N

N

HO

N

N

N

N

O

O

UCSF cancer
center Molecular similarity: 2D

2D similarity
♦ Graph-based approach to comparing

organic structures
♦ Very efficient algorithm
♦ Can search 100,000 compounds in

seconds

What is the algorithm?
♦ We compute all atomic paths of length K

in a molecule of size N atoms
♦ We mark a bit in a long bitstring if the

corresponding path exists
♦ We fold the bitstring in half many times,

performing an OR, thus yielding a short
bitstring

♦ Given bitstrings A and B, we compute
the number of bits in common divided by
the total number of bits in either

1.001.00 0.990.99 0.900.90 0.890.89

0.820.82

N

N

0.570.57

0.650.650.730.73 0.580.58

0.450.45

O

N+

O

0.130.130.540.54

N

N

N

N

N

N

N

HO

N

N

N

N

O
N

N

O

O N

N

N

N

N

N

O
N

N

Complexity: Computing the bitstring is O(N); computing S(A,B) is essentially constant time (small constant!)

UCSF cancer
center Molecular similarity: 3D

3D similarity
♦ Surface-based comparison

approach
♦ Requires dealing with molecular

flexibility and alignment
♦ Much slower, but fast enough for

practical use
What is the algorithm?

♦ Take a sampling of the
conformations of molecules A and B

♦ For each conformation, optimize the
conformation and alignment of the
other molecule to maximize S

♦ Report the average S for all
optimizations

Key issues: not number of atoms.
Number of rotatable bonds, alignment

1.001.00 0.970.97

0.890.89

0.870.87

0.870.870.900.90 0.880.88

0.820.82

0.910.910.930.93

O

N+

O

0.630.630.830.83

N

N

N

N

O
N

N N

N

N

N
N

N

N
N

N

N

N

O

N

N

HO

N

N

N

N

O

O

UCSF cancer
center Similarity function: focus on what a protein sees

Formalize our intuition about molecules’
non-covalent protein-ligand interactions

♦ Molecular surface interactions
♦ Hydrophobic interactions
♦ Hydrogen bonds
♦ Salt-bridges

We don’t care about
♦ Graph identity
♦ Whether we’ve got a “pyridine” or an

“oxazole”
♦ Whether it’s an N or an O that are making

available an H-bonding partner

UCSF cancer
center

Morphological similarity:
Measure the molecules from the outside

N

N
O

N

N

Similarity between Similarity between
molecules is defined as a molecules is defined as a
function of the differences function of the differences
in surface measurements in surface measurements
from observation points.from observation points.

UCSF cancer
center

UCSF cancer
center Complexity: bad news

Similarity function
♦ Given two molecules, each in a

particular pose
• Alignment parameters:

(X,Y,Z,Θ1, Θ2, Θ3)
• Conformation parameters

(Φ1,Φ2,Φ3,…)

♦ The similarity function has a
weak dependence on the
number of atoms

♦ We’ll call it O(N) in number of
atoms

♦ It’s pretty fast, but not blindingly
so

Now the bad news: optimization
♦ We have to find a pose of B that

maximizes S(B,A)
♦ Alignment

• Assume optimal alignment will
not deviate more than 10A from
mutual center of mass

• Sample X,Y,Z at 0.25A
• 403 = 64,000 translations
• Rotation: sample at 50

• (360/5)3 = 373,248 rotations
• Total: 24e9 (“constant time” but

constant is BIG)
♦ Conformation: K rotatable

bonds, sampled 6x each: 6K

UCSF cancer
center

Discussion

UCSF cancer
center Alignment: approximate solution

Don’t compute similarity for all
alignment samplings!
Find a set of alignments likely to
yield high scores

♦ Find observation point triplet
correspondences that satisfy:

• Local similarity is high
• Internal distances are similar
• Approximation to full similarity

is high
♦ Evaluate top transformations

from above
♦ Return the best alignment

Perform gradient-based
optimization and return final
alignment

N

N

O

N

N

UCSF cancer
center Conformation: approximate solution

Break molecule into fragments
♦ 10 rotatable bonds: 610 = 60

million conformations
♦ Assume that we can find good

similarity based on a piece of a
molecule

♦ Sample each fragment into a
maximum number of
conformations

Align each fragment, keep the best
Perform directed alignment of
missing pieces, using their
sampled conformations
Perform gradient-based
optimization of conformation and
alignment
Report the best pose

Complexity
♦ Number of sampled

conformations now linear in
number of rotatable bonds (only
hundreds, not millions)

♦ Number of alignment
optimizations linear in number
of samples

♦ Number of fragment merge
operations linear in number of
rotatable bonds

♦ Expect O(N) for overall
algorithm

N

N

N

N
N

N

N

N O

O

OH

O

HO

H

H

HH

H

H

UCSF cancer
center

Discussion

UCSF cancer
center

Complexity is essentially linear in number of
rotatable bonds

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

"rot0"
"rot1"
"rot2"
"rot3"
"rot4"
"rot5"
"rot6"

0.5

Speed is Bi-Modal: Fragmented and non-fragmented fall into mixed normal distributions

Time (s)

Time of conformation and alignment optimization CDFs for over 100,000 molecules
flexibly optimized to maximize similarity to other molecules (chosen to be diverse).

UCSF cancer
center Molecular docking follows the same argument

Divide and conquer strategy essentially
linearizes the complexity of docking flexible
molecules to protein binding sites

Biotin docked to streptavidin from random initial conformation. Best 2
scoring poses shown relative the to crystallographic conformation (green).
This takes about a minute on a PIII 400MHz Wintel machine.

Small probes are complementary to protein
We use these to generate alignments
We dock the fragments of biotin
We chain off of the best ones

UCSF cancer
center Conclusions

Algorithm complexity analysis can be a useful tool in
understanding performance issues

Complexity theory allows us to formalize the notions of
“how fast” or “how big” depending on the complexity of
input

Even though “constant factors” mostly don’t matter, when
the constants are HUGE, they really really do

Many problems of interest are formally intractable, but
clever non-exhaustive approaches can often come
close enough that such problems can have useful and
practical solutions

